
Computer Architecture

Lecture 07 – Address Translation & Virtual Mem

Tian Xia

Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren&Tian Xia@XJTU 2023

http://gr.xjtu.edu.cn/web/pengjuren

2

Any problem in

computer science

can be solved with

another layer of

indirection.

--David Wheeler

British Computer Scientist

(1927--2004)
⚫ Fellow of the Royal Society (1981)

⚫ Computer Pioneer Award (1985)

⚫ Fellow, Computer History Museum

(2003)

Pengju Ren&Tian Xia@XJTU 2023

Bare Machine

3

In a bare machine, the only kind of address is a
physical address, corresponding to address lines of
actual hardware memory.

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address Physical Address

Pengju Ren&Tian Xia@XJTU 2023

Managing Memory in Bare Machines

▪ Early machines only ran one program at a time, with this
program having unrestricted access to all memory and all
I/O devices

– This simple memory management model was also used in turn
by the first minicomputer and first microcomputer systems

▪ Subroutine libraries became popular, were written in
location-independent form

– Different programs use different combination of routines

▪ To run program on bare machines, use linker or loader
program to relocate library modules to actual locations in
physical memory

4

Pengju Ren&Tian Xia@XJTU 2023

Dynamic Address Translation

▪ Motivation
– Each process limited to a non-overlapping contiguous physical

memory region (space doesn’t start from addr 0…)

– Everything must fit in the region

▪ Location-independent programs
– Programming and storage management ease

→ need for a base register

▪ Protection
– Independent programs should not affect each other inadvertently

→ need for a bound register

▪ Multiprogramming drives requirement for resident
supervisor software (e.g. OS) to manage context switches
between multiple programs

5

P
h

ys
ic

al
 M

e
m

o
ry

Program 1

Program 2

OS

Pengju Ren&Tian Xia@XJTU 2023

Simple Base and Bound Translation

6

Load X

Program
Address
Space

Bound
Register

Bounds
Violation?

P
h

ys
ic

al
 M

em
o

ry

Current
Segment

Base
Register

+

Physical
Address

Logical
Address

Base(Staring address) and bounds(size of region) registers are
visible/accessible only when processor is running in the supervisor
mode (privileged control registers)

Base Physical Address

Segment Length

≥

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Pengju Ren&Tian Xia@XJTU 2023

Separate Areas for Program and Data

7

What is an advantage of this separation?
- Shared program segment
- Very fast

What about more base/bound pairs?

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Physical
Address

Physical
Address

Load X

Program
Address
Space

P
h

ys
ic

al
 M

em
o

ry

Data
Segment

Data Bound
Register

Data Base
Register +

Bounds
Violation?

Program Bound
Register

Program Base
Register +

Program
Segment

Logical
Address

Logical
Address

≥

≥
Bounds

Violation?

Program Counter

Effective Address
Register

Pengju Ren&Tian Xia@XJTU 2023

Base and Bound Machine

8

Can fold addition of base register into (register+immediate) address calculation
using a carry-save adder (sums three numbers with only a few gate delays more
than adding two numbers)

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

+

Logical
Address

Bounds Violation?

Physical
Address

Program Base
Register

+

Logical
Address

Bounds Violation?

≥ ≥

Program Bound
Register

Pengju Ren&Tian Xia@XJTU 2023

External Fragmentation with Segments

9

As users come and go, the storage is "fragmented“(external)
◼ Plan ahead to avoid bubbles
◼ Programs are moved around to compact the storage

User 6 (32KB)

arrivesPengju Ren&Tian Xia@XJTU 2023

Why do we need Virtual Address Space ?

10

Reason 1: Adding Disks to Hierarchy

Need to devise a mechanism to “Connect” memory and
disk in the memory hierarchy.

Pengju Ren&Tian Xia@XJTU 2023

11

Reason 2: Simplifying Memory for Apps

Why do we need Virtual Address Space ?

Pengju Ren&Tian Xia@XJTU 2023

12

Reason 3: Protection Between Processes

◼ With a bare system, addresses issued with loads/stores
are real physical addresses

◼ This means any program can issue any address,
therefore can access any part of memory, even areas
which it doesn’t own
– Ex: The OS data structures

◼ We should send all addresses through a mechanism
that the OS controls, before they make it out to DRAM
- a translation and protection mechanism

Why do we need Virtual Address Space ?

Pengju Ren&Tian Xia@XJTU 2023

2 Parts to Modern Virtual Memory

13

In a multi-tasking system, virtual memory supports the illusion of
a large, private, and uniform memory space to each process

◼ Ingredient A: naming and protection
– each process sees a large, contiguous address space
without holes (for convenience)

– each process’s memory is private, i.e., protected from
access by other processes (for sharing and protection, Readable?

Writeable? Executable?)

◼ Ingredient B: demand paging (for hierarchy and efficiency)

– location-independent programs
– capacity of secondary storage (swap space on disk)
– speed of primary storage (DRAM)

Pengju Ren&Tian Xia@XJTU 2023

14

Virtual Address Space

Program 1

Virtual Address Space

Program 2

Why do we need Virtual Address Space ?

Page

Pengju Ren&Tian Xia@XJTU 2023

Names for Memory Locations

15

◼Machine Language address
➢ As specified in machine code

◼ Virtual Address (VA)
➢ ISA specifies translation of machine code address into virtual

address of program variable (sometime called effective address)

◼ Physical Address (PA)
➢ Operating System specifies mapping of virtual address into

name for a physical memory location

Visible to Users Managed by hardware/OS

Pengju Ren&Tian Xia@XJTU 2023

The Common Denominator：Address Translation

16

◼ Large, private, and uniform abstraction achieved through
address translation
– user process operates on virtual address (VA)
– HW translates VA to physical address (PA) on every memory
reference

◼ Through address translation
– control which physical locations (DRAM and/or swap disk)
can be referred to by a process
– allow dynamic allocation and relocation of physical backing
store (where in DRAM and/or swap disk)

◼ Address translation HW and policies controlled by the OS and
protected from user

Pengju Ren&Tian Xia@XJTU 2023

Paged Memory Systems (How)

▪ Program-generated virtual address is split into {VPN + offset}

17

▪ Fixed-sized pages (mostly 4KB) in virtual address space are
mapped to physical address using Page Table (PT)

Virtual Address Space
Pages for Job 1

0
1
2
3

Physical
Memory

Pages

1

0

3

2

Page Table
for Job 1

0
1
2
3

▪ For each program, an independent Page Table is maintained

▪ Paging makes it possible to store a large contiguous virtual memory
space using non-contiguous physical memory pages

Virtual Page Number (VPN) Offset

Physical Page Number (PPN) concat
Physical Address

look-up in

page table

Virtual Address

V
P

N

P
P

N

PPN
PPN
PPN
PPN

Pengju Ren&Tian Xia@XJTU 2023

Private Address Space per User

18

Virtual Address Space
Pages for Job 1

Page Table
for Job 1 Physical

Memory
Pages

0
1
2
3

0
1
2
3

1

0

1
3
3
3
2

0
0

2

2

1

Operating
System
Pages

Virtual Address Space
Pages for Job 2

Page Table
for Job 2

0
1
2
3

0
1
2
3

Virtual Address Space
Pages for Job 3

Page Table
for Job 3

0
1
2
3

0
1
2
3

⚫ Each user has a Page Table contains an entry for each user page

⚫ Persistent OS residing in memory to control all page tables

Pengju Ren&Tian Xia@XJTU 2023

Paging Simplifies Memory Allocation

▪ Fixed-size pages can be kept on OS free list and
allocated as needed to any process

19

▪ Process memory usage can easily grow and shrink
dynamically

▪ Paging suffers from internal fragmentation (inside
Page) where not all bytes on a page are used

– Much less of an issue than external fragmentation or
compaction for common page sizes (4-8KB)

– But one reason that many oppose move to larger page sizes

Pengju Ren&Tian Xia@XJTU 2023

Coping with Limited Primary Storage

▪ Paging reduces fragmentation, but still many problems
would not fit into primary memory, have to move data
to/from secondary storage (drum, disk)

20

▪ Early approach:
– Manual overlays, programmer explicitly copies code and data in

and out of primary memory
• Tedious coding, error-prone (jumping to non-resident code?)
• IBM Cell microprocessor using in Playstation-3 had explicitly

managed local store!
• Many new “deep learning” accelerators have similar arch.

▪Using virtual memory pages:
– Put a physical page in primary or secondary storage wherever

suitable
– Maintain its position in a virtual memory page table entry.

Pengju Ren&Tian Xia@XJTU 2023

Where should Page Tables Reside ?

21

◼ Space required by the page table (PT) is proportional to
the address space, number of users, …
➢ Space requirement is large (4GB space = 1M PT Entries of 4KB

pages for each user = 4MB for 32-bit entry)

◼ Bad Idea: Keep PT of current user in special registers
➢ May not be feasible for large page tables
➢ Too expensive to keep in registers
➢ Increases the cost of context swap

◼ Good Idea: Keep PTs in the main memory
➢ Use one Page Table Base Register (PTBR) to hold PT’s

location in the main memory
➢ Needs one additional reference to retrieve the page base

address and another to access the data word
➢ Double the number of memory references!

Pengju Ren&Tian Xia@XJTU 2023

Page Tables Live in Memory

22

Virtual Address Space
Pages for Job 1

Physical
Memory

Pages

0
1
2
3

Page Table
for Job 1

1

0

1
3
3

2

0

2
Virtual Address Space

Pages for Job 2

0
1
2
3

Page Table
for Job 2

Simple linear page
tables are too large,
so hierarchical page
tables are commonly
used (see later)

Common for modern
OS to place page
tables in kernel’s
virtual memory (page
tables can be swapped
to secondary storage)

Pengju Ren&Tian Xia@XJTU 2023

Linear Page Table

23

Pengju Ren&Tian Xia@XJTU 2023

Page Table Walk

Hierarchical Page Table Walk: SPARC v8

24

31 11 0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP

PTP

PTE

Context Table

L1 Table

L2 Table

L3 Table

Physical Address PPN Offset

◼ Hierarchical Page Table is a tree structure, PTBR is the root.
◼ Only create page table when necessary, reduces memory footprint
◼ Termed as page table walk , usually performed in hardware unit.

Pengju Ren&Tian Xia@XJTU 2023

Two-Level Page Tables in Physical Memory

25

VA1

User 1

User1/PA1

User2/PA1

Level 1 PT
(User 1)

Level 1 PT
(User 2)

VA1

User 2

Level 2 PT
(User 2)

Virtual Address
Spaces

Physical
Memory

Level 2 PT
(User 1)

Virtual Address
Spaces

Pengju Ren&Tian Xia@XJTU 2023

Address Translation & Protection Check

26

◼ Every instruction/data access needs address translation and
protection checks

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset
Permission?

Protection
Check

◼ Address translation is very expensive!
In a two-level page table, each reference requires several
memory accesses

◼ Privilege/Authority Check

◼ Read/Write Check

◼ Executable Check

For current user that issues the access:

Pengju Ren&Tian Xia@XJTU 2023

Translation-Lookaside Buffers (TLB)

27

Idea: Cache the address translation of frequently used pages

A good VM design needs to be fast (~ one cycle) and space efficient

TLB hit→ Single
Cycle Translation

TLB miss → Page
Table Walk to refill Pengju Ren&Tian Xia@XJTU 2023

TLB Designs

▪ Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial locality across
pages ➔more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level (L1 and L2) TLBs

▪ Replacement policy： Random or FIFO

▪ TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

– Example: 64 TLB entries, 4KB pages, one page per entry

– TLB Reach = ___?

28

64 entries * 4 KB = 256 KB (if contiguous)

Pengju Ren&Tian Xia@XJTU 2023

Variable-Size Page TLB

29

Some Systems support multiple page sizes

Page mask Page Size Pagemask Page Size

0_0000_0000 4KB 0_0011_1111 256KB

0_0000_0011 16KB 0_1111_1111 1MB

0_0000_1111 64KB 1_1111_1111 2MB

MIPS using Pagemask mark different Page size (OS manage)

Pengju Ren&Tian Xia@XJTU 2023

Handling a TLB Miss

▪ Software (MIPS, Alpha)

– TLB miss causes an TLB miss exception and the operating
system walks the page tables and reloads TLB.

– Very expensive on out-of-order superscalar processor as
requires a flush of pipeline to jump to trap handler.

30

▪ TLB misses when:
– The page exists in memory → just add the missing entry in TLB.
– The page doesn’t exist in memory→ transfer control to the OS

▪ Hardware (SPARC v8, x86, PowerPC, RISC-V)

– A memory management unit (MMU) walks the page tables and
reloads the TLB.

– If a missing (data or PT) page is encountered during the TLB
reloading, MMU gives up and signals a Page Fault exception for
the original instruction.

Pengju Ren&Tian Xia@XJTU 2023

Handling a TLB Miss

31

TLB Hit

① Processor sends Virtual

Address (VA)

② Extract Virtual Page

Number(VPN) from VA. Query

TLB using VPN.

③ TLB returns Page Table Entry

(PTE).

④ Combine PTE with Page Offset

to get Physical Address (PA).

Query Cache using PA.

⑤ Send data to processorPengju Ren&Tian Xia@XJTU 2023

Handling a TLB Miss

32

TLB Miss

① Processor sends Virtual

Address (VA)

② Extract Virtual Page Number

(VPN) from VA. Query TLB

using VPN.

③ TLB miss. Query Memory

using Page Table Entry

Address (PTEA) to get Page

Table Entry (PTE)

④ Save VPN to PTE mapping in

TLB.

⑤ Combine PTE with Page Offset

to get Physical Address (PA).

Query Cache using PA.

⑥ Send data to processor.

What if there is
no valid PTE?

Pengju Ren&Tian Xia@XJTU 2023

Page Fault Exception

33

◼ Occurs when an instruction references a memory page
that is not in main memory.

Virtual Address Space

Case 1: Page is swapped to
secondary storage (e.g. disk)

Program 1

Physical

Memory

Disk

Storage

Page Table

Case 2: Page is virtually allocated
but not really created (e.g. malloc)

Virtual Address Space

Program 2

Physical

Memory

Disk

Storage

Page Table

?Pengju Ren&Tian Xia@XJTU 2023

Page Fault Exception

34

◼ Since it takes a long time to transfer a page (msecs), page faults
are handled completely in software by OS

◼ Page Fault Handler (of OS) does the following:
– Assign an unused page in DRAM

⚫ If no unused page is left, a page currently in DRAM is swapped out
 Replacement policy: Pseudo-LRU, implemented in software
 If the replaced page is ‘dirty’, write it back to
 page table entry that maps that VPN->PPN is marked as

invalid/DPN

– If virtual page exist in disk, Initiate transfer of the requested
page from disk to DRAM, assigning to an unused page

⚫ Another job may be run on the CPU while the first job waits for the
requested page to be read from disk

– Page table entry of the requested page is updated with a (now)
valid PPN

– Return and re-execute the exception-causing instruction
⚫ Need for precise exceptions

Pengju Ren&Tian Xia@XJTU 2023

Handling VM-related exceptions

▪ Handling TLB miss needs a hardware or software mechanism to
refill TLB （usually hardware as MMU）

▪ Handling Page Fault (e.g., page is on disk) needs restartable
exception so software handler can resume after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

▪ A protection violation may abort process
– But often handled the same as a page fault

35

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Pengju Ren&Tian Xia@XJTU 2023

36

Address Translation – Putting it all together

◼ Often occurs in malloc()

◼ Known as a special “page fault”

Pengju Ren&Tian Xia@XJTU 2023

37

Address Translation – Putting it all together

Pengju Ren&Tian Xia@XJTU 2023

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

38
▪ MMU uses untranslated physical memory to access page tables

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Page Fault?
Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address

Physical
Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

Page Fault?
Protection violation?

Pengju Ren&Tian Xia@XJTU 2023

Sequential Access to TLB & Cache
(Physical Index/Physical Tag, PIPT)

39

VPN Page offset

TLB

Direct-map Cache

PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Physical Cache Index

k

Adding one more stage for TLB access will increase:
◼ For I-Cache the miss prediction penalty
◼ D-Cache load latency (critical path!)

ASID

Pengju Ren&Tian Xia@XJTU 2023

Address Translation in CPU Pipeline

▪Need to cope with additional latency of TLB:

– slow down the clock?
• Unacceptable for modern CPUs

– pipeline the TLB and cache access?
• Sub-optimal solution (still long latency)

– virtual address caches

– parallel TLB/cache access
40

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Pengju Ren&Tian Xia@XJTU 2023

Virtual-Address Caches

41

▪ one-step process in case of a hit (+)

▪ Homonym and aliasing problems (-)

CPU
Physical
Cache

TLB
Primary
Memory

VA PA

Alternative: place the cache before the TLB

Virtual
Cache

CPU

VA

(StrongARM)PA
TLB

Primary
Memory

Pengju Ren&Tian Xia@XJTU 2023

Homonym in Virtual Address

42

VA
PA1

PA2

Virtual Address
Space

Same virtual address mapped
to two physical pages

Physical
Pages

PT2

▪ Conflicting virtually-tagged entry (both TLB and VIVT cache)

▪ Software (OS): Cache and TLB needs to be flushed on a
context switch

▪ Hardware: add Address Space Identifier (ASID) into Tags

Virtual Address
Space

Pengju Ren&Tian Xia@XJTU 2023

Aliasing in Virtual-Address Caches

43

VA1

VA2

Page Table

Data Pages

PA

Two virtual pages share
one physical page

General Solution: Prevent aliases coexisting in cache

Software (i.e., OS) solution for direct-mapped cache:
VAs of shared pages must agree in cache index bits; this ensures
all VAs accessing same PA will conflict in direct-mapped cache
(early SPARCs)

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Virtual cache can have two copies of
same physical data. Writes to one
copy not visible to reads of other!

VA1

VA2

Pengju Ren&Tian Xia@XJTU 2023

Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag，VIPT)

44

Index L is available without consulting the TLB.
→ Cache and TLB accesses can begin simultaneously!
→ Actually, these are physical indexed Cache

VPN L b

TLB
Direct-map Cache

2L blocks
2b-byte blockPPN Page Offset

=
hit?

DataPhysical Tag
Tag

VA

PA

Virtual
Index

kASID

Tag comparison is made after both accesses are completed.

if Cases: L + b ≤ k

L=Cache Index, b=Cache Block, k=Page Size,

Pengju Ren&Tian Xia@XJTU 2023

Concurrent Access to TLB & Large L1
The problem with L1 Cache > Page size

45

VA1 and VA2 both map to same PA

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa Data

PPNa Data

VA1

VA2

VA1: a =1，Pageoffset = 0x555

VA2: a =0，Pageoffset = 0x555ASID

k

If Cases: L + b > k

Direct-mapped

VIPT L1

L=Cache Index, b=Cache Block, k=Page Size,

Pengju Ren&Tian Xia@XJTU 2023

Virtual-Index Physical-Tag Caches:
Associative Organization

46

How does this scheme scale to larger caches?

VPN a L = k-b b

TLB
Direct-map

2L blocks

PPN Page Offset

=
hit?

Data

Physical
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map

2L blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

ASID

Pengju Ren&Tian Xia@XJTU 2023

A solution via Second-Level Cache

47

◼ PIPT: Applied for most L2/L3/LLC cache design
◼ Unified: L2 cache backs up both Instruction and Data L1 caches
◼ Inclusive: L2 has copies of all cache lines in both L1 D-Cache and

I-Cache

CPU

L1 Data
Cache

L1
Instruction

Cache
Unified
physical

indexed L2
Cache

Reg
File Memory

Memory

Memory

Memory

Physical-index physical-tag (PIPT) , Inclusive L2 Cache:
Pengju Ren&Tian Xia@XJTU 2023

Anti-Aliasing (VIPT) Using L2 [MIPS R10000,1996]

48

▪ Suppose (VA1  VA2) both map to PA

▪ VA1 is already in L1 and L2 (with ‘a’ bits)

▪ After VA2 is resolved to PA, L2 detects a
collision. (Field ‘a’ is different）

▪ VA1 will be purged from L1 and L2, and VA2
will be loaded  no aliasing !

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
Direct-mapped

VIPT L1

= hit?

PPNa DataVA1

PPN

ASID
PPNa DataVA2

Direct-Mapped

PIPT L2

PA a1 Data

into L2 tag

a2
Pengju Ren&Tian Xia@XJTU 2023

Virtually Addressed Cache
(Virtual Index/Virtual Tag, VIVT)

49

PC

Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
AddressInstruction data

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address

Virtual
Address

Hardware Page

Table Walker

$ Miss?$ Miss?

• Directly use full virtual address for L1 cache access
• Only check TLB on L1 cache miss
• Use physical address for L2 cache access

Pengju Ren&Tian Xia@XJTU 2023

PA VPN1 Data

entire VPN into L2 tag

Anti-Aliasing (VIVT) using L2

50

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Tag

Physical
Index & Tag

VA1 Data

“Virtual Tag”

▪ Physical-addressed L2 is used to avoid
aliases in virtual-tagged L1

▪ L2 uses entire VPN for collision check

ASID

Virtual Index Direct-mapped

VIVT L1

Inclusive
PIPT L2

VPN2

VA2 Data

Pengju Ren&Tian Xia@XJTU 2023

Summary: Caching v.s Demand Paging

51

Pengju Ren&Tian Xia@XJTU 2023

Summary: TLB, Cache and Page

52

Situation TLB Page Table D-Cache Physical Page Operations

D$ hit Hit TLB hit, it hit Hit D$ hit, it hit No need to check Phys.
Mem

D$ miss Hit TLB hit, it hit Miss TLB hit, it hit Update D$

TLB miss Miss D$ hit, it Hit Hit D$ hit, it hit Update TLB, then access
TLB again

TLB+D$
both miss

Miss Hit Miss PT hit, it hit Update TLB and D$,
then access TLB again

Page Fault Miss Miss Miss Miss Page Fault process

TLB、Page Table、D-Cache and Physical Page (Total 2^4=16 cases)

◼ IF PT hit → Physical Page exists in DDR

◼ IF TLB hit or D$ hit → PT hit and physical page exists in DDR

C
o

s
t

Pengju Ren&Tian Xia@XJTU 2023

Summary : TLB, Cache and Page

53

Pengju Ren&Tian Xia@XJTU 2023

Summary：Modern Virtual Memory Systems
Illusion of a large, private, uniform store

54

Protection & Privacy
Several users, each with their private
address space and one or more shared
address spaces

Demand Paging

Provides the ability to run programs larger
than the primary memory

Hides differences in physical memory
layouts

Cost
The price is address translation on
each memory reference
Use TLB and Virtual Indexed cache

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB

Pengju Ren&Tian Xia@XJTU 2023

Why a Privileged Architecture?

55

◼ Profiles (Simple Embedded w/wo Protection, Unix-like OS, Cloud OS)

◼ Privileges and Modes
◼ Privileged Features

• CSRs
• Instructions

◼ Memory Addressing
• Translation
• Protection

◼ Trap Handling
• Exceptions
• Interrupts

◼ Counters
• Time
• Performance

Pengju Ren&Tian Xia@XJTU 2023

RISC-V Privilege Modes

▪Machine mode (M-mode, highest privileges)

– A.K.A monitor mode, microcode mode, …

▪Hypervisor-Extended Supervisor Mode (HS-Mode)

▪Supervisor Mode (S-mode)

▪User Mode (U-mode, lowest privileges)

▪Supported combinations of modes:
– M (simple embedded systems)

– M, U (embedded systems with security)

– M, S, U (systems running Unix-like OS)

– M, S, HS, U (systems running hypervisors, Cloud OS Capable)

48

Pengju Ren&Tian Xia@XJTU 2023

RISC-V System State (Privileged)

▪ Processor registers

– Compute registers
• General-purpose (x0-x31)

• Optional floating-point (f0-f31)

• Optional vector (v0-v31)

• Optional custom

– Control and status registers (CSRs)
• Accessibility controlled by privilege mode or higher

▪ System main memory

▪ System I/O devices

▪ All system memory and device control registers
mapped into flat machine physical address space

57

Pengju Ren&Tian Xia@XJTU 2023

Extended Page Tables (EPT) in HS Mode

58

Guest Physical Address

Guest Page Tables

Guest Linear
Address Space

Host Physical Address

Guest OS

Hypervisor

Guest Physical Address

Guest Page Tables

Guest Linear
Address Space

Guest OS

Extended Page Table

Virtual Machine Virtual Machine

Pengju Ren&Tian Xia@XJTU 2023

Extended Page Tables (EPT) in HS Mode

59

Pengju Ren&Tian Xia@XJTU 2023

Physical Memory Protection (PMP)

60

Core
Bus Master

Device
Core

Bus Master
Device

PMP PMP ioPMP ioPMP

SoC Bus Matrix

Main Memory
Device control

registers
Device RAM

Machine Physical Address Space

0
x
0
…
0
0
0

0
x
F
…
F
F
F

An optional physical memory protection (PMP) unit provides per-hart machine-
mode control registers to allow physical memory access privileges (read, write,
execute) to be specified for each physical memory region

Pengju Ren&Tian Xia@XJTU 2023

M-Mode controls PMPs

▪M-mode has access to entire machine after reset

▪ Configures PMPs and ioPMPs to contain each active
context inside a physical partition

▪ Can even restrict M-mode access to regions until
next reset

▪M-mode can dynamically swap PMP settings to run
different security contexts on a hart

▪ RISC-V hardware thread (hart)

61

Pengju Ren&Tian Xia@XJTU 2023

Multiple Concurrent Security Contexts

62

Core
Bus Master

Device
Core

Bus Master
Device

PMP PMP ioPMP ioPMP

SoC Bus Matrix

Main Memory
Device control

registers
Device RAM

Machine Physical Address Space

0
x
0
…
0
0
0

0
x
F
…
F
F
F

PMP checks are applied to all accesses when the hart is
running in S or U modes

Pengju Ren&Tian Xia@XJTU 2023

63

S
Mode

MMU
Translation

Page
Protection

Check

U
Mode

(in virtual
address)

M
Mode

PMP
Check

Main
Memory

U
Mode

(in physical
address)

Virtual

Address

Physical

Address

Memory Protection for RISC-V Modes

P
h

y
s
ic

a
l

A
d

d
re

s
s

C
o

n
fi

g

EPT
(if VM)

Pengju Ren&Tian Xia@XJTU 2023

64

Privilege Level Change

◼ Combine privilege level change with
interrupt/exception transfer
– switch to next higher privilege level on
interrupt/exception
– privilege level restored on return from
interrupt/exception

◼ Interrupt/exception control transfer is only
gateway to privileged mode
– lower-level code can never escape into
privileged mode
– lower-level code don’t even need to
know there is a privileged mode

Pengju Ren&Tian Xia@XJTU 2023

Exceptions

▪ An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

– Kernel is the memory-resident part of the OS

– Examples of events: Divide by 0, arithmetic overflow, page
fault, I/O request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing

by exception handler
• Return to I_current

• Return to I_next

• Abort

Event I_current
I_nextPengju Ren&Tian Xia@XJTU 2023

0
1

2
...

n-1

Exception Tables

▪ Each type of event has a
unique exception number k

▪ k = index into exception table
(a.k.a. interrupt vector)

▪ Handler k is called each time
exception k occurs

Exception Table

Code for

exception handler 0

Code for

exception handler 1

Code for

exception handler 2

Code for

exception handler n-1

...

Exception numbers

Pengju Ren&Tian Xia@XJTU 2023

Asynchronous Exceptions (Interrupts)

▪ Caused by events external to the processor
– Indicated by setting the processor’s interrupt pin

– Handler returns to “next” instruction

▪ Examples:
– Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

– I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

Pengju Ren&Tian Xia@XJTU 2023

Synchronous Exceptions

▪ Caused by events that occur as a result of executing an instruction:
– Traps

• Intentional, set program up to “trip the trap” and do something

• Examples: software interrupts, system calls, gdb breakpoints

• Returns control to “next” instruction

– Faults

• Unintentional but possibly recoverable

• Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

– Aborts

• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

Pengju Ren&Tian Xia@XJTU 2023

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

Pengju Ren&Tian Xia@XJTU 2023

RISC-V Secure Embedded Systems
(M, U modes)

▪ M-mode runs secure boot and runtime monitor

▪ Embedded code runs in U-mode

▪ Physical memory protection (PMP) on U-mode accesses

▪ Interrupt handling can be delegated to U-mode code
– User-level interrupt support (N-extension)

▪ Provides arbitrary number of isolated security contexts

70

M-mode monitor

U-mode
process 1

U-mode
process 2

Device 2
Interrupts

Device 1
Interrupts

Other
Interrupts

PMP PMP

Pengju Ren&Tian Xia@XJTU 2023

RISC-V Virtual Memory Architectures
(M, S, U modes)

▪ Designed to support current Unix-style operating systems

▪ Sv32 (RV32)
– Demand-paged 32-bit virtual-address spaces

– 2-level page table

– 4 KiB pages, 4 MiB megapages

▪ Sv39 (RV64)
– Demand-paged 39-bit virtual-address spaces

– 3-level page table

– 4 KiB pages, 2 MiB megapages, 1 GiB gigapages

▪ Sv48, Sv57, Sv64 (RV64)
– Sv39 + 1/2/3 more page-table levels

71

Pengju Ren&Tian Xia@XJTU 2023

S-Mode runs on top of M-mode

▪ M-mode runs secure boot and monitor

▪ S-mode runs OS

▪ U-mode runs application on top of OS or M-mode

72

M-mode security monitor

U-mode
system process

S-mode
OS

Device 2
Interrupts

Device 1
Interrupts

Secure
Interrupts

U-mode
app

PMP PMP

VM

S-mode
OS

U-mode
app

PMP

VM

◼ PMP checks are also applied to page-table accesses for virtual-address
translation, for which the effective privilege mode is S. Optionally, PMP checks
may additionally apply to M-mode accesses.

◼ PMP can grant permissions to S and U modes, which by default have none, and
can revoke permissions from M-mode, which by default has full permissions.

Pengju Ren&Tian Xia@XJTU 2023

Virtual Memory Use Today - 1

▪ Servers/desktops/laptops/smartphones have full
demand-paged virtual memory

– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

▪ Vector supercomputers have translation and protection
but rarely complete demand-paging

▪ (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in memory)

– Mostly run in batch mode (run set of jobs that fits in memory)

– Difficult to implement restartable vector instructions

73

Pengju Ren&Tian Xia@XJTU 2023

Virtual Memory Use Today - 2

▪Most embedded processors and DSPs provide
physical addressing only

– Can’t afford area/speed/power budget for virtual memory support

– Often there is no secondary storage to swap to!

– Programs custom written for particular memory configuration in
product

– Difficult to implement restartable instructions for exposed
architectures

74

Pengju Ren&Tian Xia@XJTU 2023

75

Next Lecture：Branch Prediction

Pengju Ren&Tian Xia@XJTU 2023

76

Acknowledgements

▪ Some slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– David Patterson (UCB)

– David Wentzlaff (Princeton University)

▪ MIT material derived from course 6.823

▪ UCB material derived from course CS252 and CS 61C
Pengju Ren&Tian Xia@XJTU 2023

	幻灯片 1: Computer Architecture Lecture 07 – Address Translation & Virtual Mem
	幻灯片 2
	幻灯片 3: Bare Machine
	幻灯片 4: Managing Memory in Bare Machines
	幻灯片 5: Dynamic Address Translation
	幻灯片 6: Simple Base and Bound Translation
	幻灯片 7: Separate Areas for Program and Data
	幻灯片 8: Base and Bound Machine
	幻灯片 9: External Fragmentation with Segments
	幻灯片 10: Why do we need Virtual Address Space ?
	幻灯片 11: Why do we need Virtual Address Space ?
	幻灯片 12: Why do we need Virtual Address Space ?
	幻灯片 13: 2 Parts to Modern Virtual Memory
	幻灯片 14: Why do we need Virtual Address Space ?
	幻灯片 15: Names for Memory Locations
	幻灯片 16: The Common Denominator：Address Translation
	幻灯片 17: Paged Memory Systems (How)
	幻灯片 18: Private Address Space per User
	幻灯片 19: Paging Simplifies Memory Allocation
	幻灯片 20: Coping with Limited Primary Storage
	幻灯片 21: Where should Page Tables Reside ?
	幻灯片 22: Page Tables Live in Memory
	幻灯片 23: Linear Page Table
	幻灯片 24: Hierarchical Page Table Walk: SPARC v8
	幻灯片 25: Two-Level Page Tables in Physical Memory
	幻灯片 26: Address Translation & Protection Check
	幻灯片 27: Translation-Lookaside Buffers (TLB)
	幻灯片 28: TLB Designs
	幻灯片 29: Variable-Size Page TLB
	幻灯片 30: Handling a TLB Miss
	幻灯片 31: Handling a TLB Miss
	幻灯片 32: Handling a TLB Miss
	幻灯片 33: Page Fault Exception
	幻灯片 34: Page Fault Exception
	幻灯片 35: Handling VM-related exceptions
	幻灯片 36: Address Translation – Putting it all together
	幻灯片 37: Address Translation – Putting it all together
	幻灯片 38: Page-Based Virtual-Memory Machine (Hardware Page-Table Walk)
	幻灯片 39: Sequential Access to TLB & Cache (Physical Index/Physical Tag, PIPT)
	幻灯片 40: Address Translation in CPU Pipeline
	幻灯片 41: Virtual-Address Caches
	幻灯片 42: Homonym in Virtual Address
	幻灯片 43: Aliasing in Virtual-Address Caches
	幻灯片 44: Concurrent Access to TLB & Cache (Virtual Index/Physical Tag，VIPT)
	幻灯片 45: Concurrent Access to TLB & Large L1 The problem with L1 Cache > Page size
	幻灯片 46: Virtual-Index Physical-Tag Caches: Associative Organization
	幻灯片 47: A solution via Second-Level Cache
	幻灯片 48: Anti-Aliasing (VIPT) Using L2 [MIPS R10000,1996]
	幻灯片 49: Virtually Addressed Cache (Virtual Index/Virtual Tag, VIVT)
	幻灯片 50: Anti-Aliasing (VIVT) using L2
	幻灯片 51: Summary: Caching v.s Demand Paging
	幻灯片 52: Summary: TLB, Cache and Page
	幻灯片 53: Summary : TLB, Cache and Page
	幻灯片 54: Summary：Modern Virtual Memory Systems Illusion of a large, private, uniform store
	幻灯片 55: Why a Privileged Architecture?
	幻灯片 56: RISC-V Privilege Modes
	幻灯片 57: RISC-V System State (Privileged)
	幻灯片 58: Extended Page Tables (EPT) in HS Mode
	幻灯片 59: Extended Page Tables (EPT) in HS Mode
	幻灯片 60: Physical Memory Protection (PMP)
	幻灯片 61: M-Mode controls PMPs
	幻灯片 62: Multiple Concurrent Security Contexts
	幻灯片 63: Memory Protection for RISC-V Modes
	幻灯片 64: Privilege Level Change
	幻灯片 65: Exceptions
	幻灯片 66: Exception Tables
	幻灯片 67: Asynchronous Exceptions (Interrupts)
	幻灯片 68: Synchronous Exceptions
	幻灯片 69: System Calls
	幻灯片 70: RISC-V Secure Embedded Systems (M, U modes)
	幻灯片 71: RISC-V Virtual Memory Architectures (M, S, U modes)
	幻灯片 72: S-Mode runs on top of M-mode
	幻灯片 73: Virtual Memory Use Today - 1
	幻灯片 74: Virtual Memory Use Today - 2
	幻灯片 75
	幻灯片 76: Acknowledgements
	幻灯片 77: Hashed Page Table: Approximating Associative Addressing
	幻灯片 78: Power PC: Hashed Page Table
	幻灯片 79: VM features track historical uses:
	幻灯片 80: Hierarchical Page Table
	幻灯片 81: Hierarchical Page Table
	幻灯片 82: Page Fault Handler
	幻灯片 83: Cache-TLB Interactions

