
Computer Architecture

Lecture 08– Branch Prediction

Tian Xia

Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2023

http://gr.xjtu.edu.cn/web/pengjuren

Recap: Phases of Instruction Execution of OoO

2

Pengju Ren@XJTU 2023

Jump/Branch Instructions (in RISC-V)

3

Conditional
Jump
(Branch)

Unconditional
Jump

PC: JAL x0, IMM

Next

PC

x0

PC: JALR x0, IMM(x4)

Next

PC

x0 x4

PC: BEQ x1, x3, IMM

Next

PC?

x1 x3

Cond

(BEQ,BNE,BLT,BLTU,BGT,BGTU)

PC-Relative Address Absolute Address

◼ No conditional absolute
address branch in RISC-V

◼ Exists in other ISA
-- e.g. conditional BEQ in ARM

Pengju Ren@XJTU 2023

Jump/Branch Instructions (in RISC-V)

4

Conditional
Jump
(Branch)

Unconditional
Jump

PC-Relative Address Absolute Address

If Jump?
YES

Jump Where?
Known Fast

If Jump?
YES

Jump Where?
Known Slow
(depend on regs)

If Jump?
Conditional
(depend on regs)

Jump Where?
Known Fast

Branch Direction
Prediction

Jump Destination
PredictionPengju Ren@XJTU 2023

Incorrect Control-Flow Penalty

5

• ~ Loop length * pipeline width + buffers

• Flush pipeline
• Flush reorder buffer

How much work is lost if pipeline
doesn’t follow correct instruction
flow?

Modern processors may have > 10
pipeline stages between next PC
calculation and branch resolution !

Pengju Ren@XJTU 2023

Importance of Branch Prediction

▪ Consider 4-way superscalar with 8 pipeline stages
from fetch to dispatch, and 80-entry ROB, and 3 cycles
from issue to branch resolution

▪On a misprediction, could throw away 8*4+(80-1)=111
instructions (in worst case)

▪ Improving from 90% to 95% prediction accuracy,
removes 50% of branch mispredictions

– If 1/6 instructions are branches, then move from 60
instructions between mispredictions, to 120 instructions
between mispredictions 6

Load x

If (x)

do task 1

Else

do task 2

BRTASK1 (Speculative)

D$ Response (x=0)

LD

D$ miss

Pengju Ren@XJTU 2023

7

Misprediction Penalty in SuperScalars

BEQ F D I A0 A1 W

OpA F D I B0 - -

OpB F D I - - -

OpC F D I - - -

OpD F D - - - -

OpE F D - - - -

OpF F

OpG F

OpH F D I A0 A1 W

OpL F D I B0 B1 W

Maximal Wasted

Pipeline Slots

Misprediction Detect

Pengju Ren@XJTU 2023

8

Misprediction Penalty in OoO Pipeline

⚫ Steady instruction issue throughput (Insn-Per-Cycle, IPC) is broken

⚫ Drain: linearly drop to 0

⚫ Refill: wait for useful instructions reach issue port

⚫ Recover: issue bandwidth grows in curve

⚫ Wasted cycles = unused_slots / issue_throughput
 Typically 10—20 cycles in Intel Xeon CPU (4 issue bandwidth)

Pengju Ren@XJTU 2023

Average Run-Length between Branches

9

What is the average run length between braches ?

SPEC(int) SPEC(fp)

Branches 19% 11%

Loads 24% 26%

Stores 10% 7%

Others 47% 56%

Average dynamic instruction mix of SPEC CPU 2017 [Limaye and Adegbiya, ISPASS’18]

Roughly 1 jump for every 5-10 instructions

◼ Essential in modern processors to mitigate branch delay latency

◼ Two types of Prediction:
• Predict Branch Direction (Taken or not ?)
• Predict Branch/Jump Address (Target address ? PC related and Absolute)

◼ Typical Ideal Prediction: >95%

Pengju Ren@XJTU 2023

Reducing Control-Flow Penalty

▪ Software solutions

– Eliminate branches - loop unrolling

• Increases the run length

– Reduce resolution time - instruction scheduling

• Compute the branch condition as early as possible (of limited
value because branches often in critical path through code)

▪ Hardware solutions

– Find something else to do (delay slots)

• Replaces pipeline bubbles with useful work (requires
software cooperation) – quickly see diminishing returns

– Speculate, i.e., branch prediction

• Speculative execution of instructions beyond the branch

• Many advances in accuracy, widely used

10

Pengju Ren@XJTU 2023

Branch Prediction

11

Motivation:
Branch penalties limit performance of deeply pipelined processors
Modern branch predictors have high accuracy (>95%) and can
reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables（BHT), branch target buffers(BTB), etc.
Misprediction recovery mechanisms:

• Keep result computation separate from commit
• Kill instructions following branch in pipeline （a.k.a. flush）
• Restore state to that following branch

Pengju Ren@XJTU 2023

Static Branch Prediction

12

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

• bne0 (preferred taken) beq0 (not taken)

• typically reported as ~80% accurate

Loop:
Backward 90%

If-Else:
Forward 50%

Pengju Ren@XJTU 2023

Speculating Both Directions?

▪ An alternative to branch prediction is to execute both
directions of a branch speculatively (Predicated Execution)

– Resource requirement is proportional to the number of concurrent
speculative executions

– Only half the resources engage in useful work when both directions of a
branch are executed speculatively

▪With accurate branch prediction, it is more cost effective
to dedicate all resources to the predicted direction!

13

Pengju Ren@XJTU 2023

Dynamic Branch Prediction
Learning based on past behavior

▪ Branch behavior is monitored during program execution
– History data can influence prediction of future execution of the branch

instruction

▪ Temporal correlation
– The way a branch resolves may be a good predictor of the way it will

resolve at the next execution

▪ Spatial correlation
– Several branches may resolve in a highly correlated manner (a preferred

path of execution)

14

for (i=0; i<ITER; i++)

y[i] += x[i];

if (x[i] < 7) then

y += 1;

if (x[i] < 5) then

c -= 4;

Pengju Ren@XJTU 2023

Prediction based on Instruction

15

Fast
Decoder

Fast
Decoder

Fast
Decoder

Fast
Decoder

I CachePC

Direction
Predictor

Target
Predictor

PC of Branch Instruction

Fetch Group

◼ Fast decode instructions belonging to one fetch group, only
detect whether it is branch or not ?

◼ Some design doing pre-decode when moving Instructions
from L2$ to L1I$ (with Branch Flag)

Pengju Ren@XJTU 2023

Prediction based on PC

16

◼ The Physical Address of an instruction of a program is changeable
(Depends on OS Page Scheduler)

◼ The Virtual Address of an instruction of a program is fixed after
compilation

◼ ASID is used together with PC for prediction (Otherwise, Branch
predictor need to be clear after context switch)

I CachePC

Direction
Predictor

Target
Predictor

Fetch Group

ASID

Pengju Ren@XJTU 2023

One-Bit Branch History Predictor

▪ For each branch, remember last way branch went

▪ Has problem with loop-closing backward branches, as
two mispredictions occur on every loop execution

1. first iteration predicts loop backwards branch not-taken
(loop was exited last time)

2. last iteration predicts loop backwards branch taken (loop
continued last time)

171-bit Saturating Counter

Pengju Ren@XJTU 2023

1-Bit Saturating Counter

18

Iteration Prediction Actual Mispredict?

1 NT T Yes

2 T T No

… T T …

N-1 T T No

N T NT Yes

What happens on loop branches ?
At best, two mispredictions for every use of loop

Pengju Ren@XJTU 2023

2-Bit Branch Prediction

19

• Assume 2 BP bits per instruction instead of one
• Change the prediction after two consecutive mistakes!

BP state:(predict take/¬take) x (last prediction right/wrong)

i Prediction Actual Mispredict? State

1 NT T Yes Strong NT

2 NT T Yes Weak NT

3 T T No Weak T

4 T T No Stong T

.. … … No ..

N T N Yes Strong T

1 T T No Weak T

i Prediction Actual Mispredict? State

1 NT T Yes Weak NT

2 T T No Weak T

3 T T No Stong T

4 T T No ..

.. … … No Strong T

N T N Yes Strong T

1 T T No Weak T

Pengju Ren@XJTU 2023

Pattern History Table (PHT)

20

• 4K-entry PHT （Why the low bits of PC?）, 2 bits/entry (~80-90%
correct predictions)

• PHT is updated at the commit stage

Target PC

+

0 0Fetch PC

Branch?

I-Cache

Opcode offset
Instruction

Predict Taken/¬Taken?

L

2
L

e
n

tr
ie

s

PHT

FSM
Update

Logic

Mispredict?

Hash

2-bit saturating

counter

Pengju Ren@XJTU 2023

21

for (i=0; i<ITER; i++)

y[i] += x[i];

• Local branch history: latest branch results of one branch
instruction

• In many codes, loops may have fixed iteration period

• Use local history buffer to capture loop patterns, need
to be larger than iteration period

Prediction Based on Local Branch History

…N T T T T T T T T T N T T T T T T T T N…

Period

Pengju Ren@XJTU 2023

22

Prediction Based on Local Branch History

Shift in Taken/¬Taken
results of one branch

Branch History Register (BHR): recent K
outcomes (Taken or Not-taken) of branch

Branch
PC

2-bit saturating counter:
Branch behavior for last
occurrences of specific
history sequence

Taken/¬Taken?

2
K

e
n

tr
ie

s

• For each branch instruction, record its latest K branch results

• For total 2K possible history record, put one 2-bit saturating
counter for each case (into a PHT)

• Prediction reach 100% if K > Loop Period

• Too expensive to hold all branch instructions!

Pattern History Table (PHT)

Pengju Ren@XJTU 2023

0 0
Fetch PC

Two-Level Branch Predictor

23

• BHT = K * 2T bits

• PHTs = 2K * 2L * 2 bits

Branch History Table (BHT)

T

Taken/¬Taken?

K-bit history

2
T

L

2L

Pattern History Table(PHT)

2
K

Pengju Ren@XJTU 2023

Two-Level Branch Predictor (Hash)

24

Hash

K-bit history

• Avoid conflict of different branches with the same history
• Less hardware resource requirement

Pattern History Table(PHT)

Taken/¬Taken?

0 0

L

Fetch PC

Branch History Table (BHT)

2
L

Pengju Ren@XJTU 2023

Exploiting Spatial Correlation
Yeh and Patt, 1992

25

Global branch history: the direction of the last N
branches executed by the processor

if (x[i] < 7) then

y += 1;

if (x[i] < 5) then

c -= 4;

• If first condition false, second condition also false

• Prediction must be a function of own branch as well as
recent outcomes of other branches.Pengju Ren@XJTU 2023

Two-Level Branch Predictor
(Global history based prediction)

26

0 0

L
Fetch PC

Global History Register (GHR):
recent outcomes (Taken or Not-
taken) of branches (last K branches)

K-bit Global history

B
r-

0

B
r-

1

B
r-

2

B
r-

3

B
r-

4

B
r-

5

Pattern History Table(PHT)

2
K

Taken/¬Taken?

2L

Pengju Ren@XJTU 2023

Two-Level Branch Predictor (Hash)
(Global history based prediction)

27

Taken/¬Taken?Global History Register (GHR)

Pattern History Table(PHT)

K-bit Global History

• All branch instructions share one PHT

• Can blend branch PC with GHR bits to avoid conflicts

0 0Fetch PC

Hash

2
K

Pengju Ren@XJTU 2023

Limitations of BHT/PHTs

28

• BHT/PHT only predicts branch direction. Therefore, cannot
redirect fetch stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly predicted

taken branch
penalty

（PC += offset）

Jump Register penalty
（PC = Reg[x] + offset）

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Relative Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute/ Absolute Branch Address Calc

Remainder of execute pipeline
(+ another 6 stages)

• If predict branch taken, need to know WHERE TO JUMP!

Pengju Ren@XJTU 2023

Branch Target Buffer (BTB)

29

• Keep both the branch PC and target PC in the BTB
• Only taken branches and jumps held in BTB (to save space)
• If PC doesn’t exist in BTB: PC+4 is fetched (continue as non-taken)
• Next PC determined before the branch instruction is fetched

-- Useful for both absolute branch and PC-relative branch

2L entry direct-mapped BTB
(can also be associative)I-Cache

PC

L

Valid

valid

Entry PC
(Tag)

=

match

Predicted

target

Target PC
0 0

Pengju Ren@XJTU 2023

Combining BTB and BHT
▪ BTB entries are considerably more expensive than BHT, but can

redirect fetches at earlier stage in pipeline and can accelerate
indirect branches (JR)

▪ BHT can hold many more entries and is more accurate

30

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Relative Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted taken
branch

BTB/BHT only updated after branch resolves in E stage

Pengju Ren@XJTU 2023

Absolute Address Jump/Branch
with uses of Jump Register (JALR)

▪ Switch statements (jump to address of matching case)

▪ Dynamic function call (jump to run-time function
address)

▪ Subroutine returns (jump to return address)

31

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if usually return to the same place

 Often one function called from many distinct call sites!
Pengju Ren@XJTU 2023

Absolute Address Jump/Branch
(Function calls and returns)

32

Fa8 0x2020

Fcc 0x2020

FF0 0x2020

0x2020 printf

⚫ CALL for some shared subroutine
⚫ The Target address of call is fixed
⚫ Can be solved using BTB

⚫ Return from callee to different callers
⚫ The target(return) address is unfixed
⚫ Can’t be solved using BTB

Fa8 0x2020

Fcc 0x2020

FF0 0x2020

0x2020 printf

return

Pengju Ren@XJTU 2023

Subroutine Return Address Stack (RAS)

33

Small structure to accelerate JR for subroutine returns, typically
much more accurate than BTBs.

&fb()

&fc()

Push call address when
function call executed

Pop return address when
subroutine return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

Return Address Stack (RAS)

Pengju Ren@XJTU 2023

Absolute Branch Prediction with RAS

34

Fa8 0x2020

Fcc 0x2020

FF0 0x2020

printf

return

Push fac

Pop fac

Push fd0

Pop fd0

Push ff4

Pop ff4

Return Address Stack
(RAS)

Func A

CALL
Func B

Func C

Main
CALL

Return Return Return

Func B

CALL
Func C

Push Push Push

Pop Pop Pop

Return Address Stack
(RAS)

Pengju Ren@XJTU 2023

Decode Call and Return Instructions

35

▪ Subroutine Call and Return instructions are usually
pseudo instructions

▪ Automatically translated into fixed-format real
instructions by compiler

Pseudo Code Instructions Description

CALL
auipc x1,offset[31:12]

jalr x0,x1,offset[11:0]

Call far-away

subroutine

RET jalr x0, x1, 0
Return from

subroutine call

RISC-V Pseudo Call and Return

▪ Decoder recognizes the fixed encoding to find subroutine
Call and Return branch instructions.

Pengju Ren@XJTU 2023

Return Address Stack in Pipeline

▪ How to use return address stack (RAS) in deep fetch
pipeline?

▪Only know if subroutine call/return at decode stage

36

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

RAS
RAS Push/Pop
after decode gives
large bubble in
fetch stream.

Return Address Stack prediction checked

Pengju Ren@XJTU 2023

Return Address Stack in Pipeline

▪ Can remember whether PC is call/return in extended
BTB structure

▪ Instead of target-PC, just store push/pop bit

37

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

RAS

Push/Pop before
instructions decoded!

Return Address Stack prediction checked

Pengju Ren@XJTU 2023

Branch Prediction for CALL/Return

38

BTB+

PC of CALL Instruction

Write PC+4 into RAS

Target Address of
CALL instruction

BTB

PC of RETURN Instruction

Read from RAS

Target Address of
Return instruction

RETURN or not ?

4

If RAS is full, drop the new one? Or the oldest?
⚫ Drop the oldest in a First-in-First-out fashion (FIFO)
⚫ Use it in a Last-in-First-out fashion (Stack)

Pengju Ren@XJTU 2023

Absolute Address Jump/Branch
(Switch case, function pointer array, …)

39

Case (cond)

case 1: Branch Target 1

case 2: Branch Target 2

case 3: Branch Target 3

case 4: Branch Target 4

…

Default:Branch Target T

Switch Case

int x = 20

int y = 50

int (*arr[4])(int, int)；
arr = {&add,&sub,&mul,&div};

for (i=0; i<4; i++)

printf(arr[i](x, y));

Function Pointer Array

PC: JALR x0, IMM(x4)

Next

PC

x0 x4

/* Fill x4 with control flow*/

... ▪ Jump address is dynamically
generated

▪ The condition of control flow
influences target address

▪ Branch history might help!

Pengju Ren@XJTU 2023

40

Target Cache

Predicted
Target
Address

0 0

L
Fetch PC

Branch History Table (BHT)

Hash

Hash(PC, BHR(PC))

K-bit BHR

Absolute Branch Prediction with Target Cache

▪Use local branch history to help predict target address

▪Use hash to combine branch PC and branch history

▪ Like BHT, but stores target address instead of direction

Pengju Ren@XJTU 2023

Temporal and Spatial Correlation

41

History register records the direction of the last N branches
executed by the processor

if (x[i] < 7) then

y += 1;

if (x[i] < 5) then

c -= 4;

Prediction must be a function of own branch as well as recent
outcomes of other branches.

How about the first condition is true,
does this help make the prediction of
the second ‘if” statement ?

Local branch history Global branch history

No!

If first condition false, second condition
also false.

Pengju Ren@XJTU 2023

Tournament Branch Predictor
(Alpha 21264)

▪ Choice predictor learns whether best to use local or global
branch history in predicting next branch (Different schemes work
better for different branches)

▪ Global history is speculatively updated but restored on mispredict

▪ Claim 90-100% success on range of applications

42

Local

history table

(1,024x10b)

PC

Local

prediction

(1,024x3b)

Global Prediction

(4,096x2b)

Choice Prediction

(4,096x2b)

Global History (12b)Prediction

k

n

Pengju Ren@XJTU 2023

Tournament Branch Predictor
(Alpha 21264)

43

PHT (3-bit)

0 0

10-bit

Fetch PC

Local History Table

10-bit
History

PHT(2-bit)

Path History (GHR)

12-bit Global
History

C
h

o
ic

e
 P

re
d

ic
ti

o
n

Pengju Ren@XJTU 2023

2-Bit Choice Prediction

44

Strongly
Choose

OP1

Weakly
Choose

OP1

Weakly
Choose

OP2

Strongly
Choose

OP2

OP1=Ture/OP2=Ture
OP1=False/OP2=Ture
OP1=False/OP2=False

OP1=Ture/OP2=Ture
OP1=Ture/OP2=False
OP1=False/OP2=False

OP1=False/OP2=Ture

OP1=Ture/OP2=False

Tournament Predictors – Combine approaches (local and global)
Pengju Ren@XJTU 2023

In-Order vs. Out-of-Order Branch Prediction

45

▪ Speculative fetch but not speculative
execution - branch resolves before
later instructions complete

▪ Completed values held in bypass
network until commit

▪ Speculative execution, with branches
resolved after later instructions complete

▪ Completed values held in rename
registers in ROB or unified physical
register file until commit

Both styles of machine can use same branch predictors in front-end
fetch pipeline, and both can execute multiple instructions per cycle

Common to have 10-30 pipeline stages in either style of design

Fetch

Decode

Execute

Commit

In-Order Issue

Br. Pred.

Resolve
In-Order

Out-of-Order Issue

Fetch

Decode

Execute

Commit

ROB

Br. Pred.

Resolve
In-Order

In-Order

Out-of-Order

Pengju Ren@XJTU 2023

InO vs. OoO Mispredict Recovery

▪ In-order execution?

– Design so no instruction issued after branch can write-back
before branch resolves

• Kill all instructions in pipeline behind mispredicted branch

▪Out-of-order execution?

– Multiple instructions following branch in program order can
complete before branch resolves

– A simple solution would be to handle like precise exception
• Kill following instructions in pipeline and ROB

• Restore rename register status to the branch time point

– How about multiple branches are encountered?

46

Pengju Ren@XJTU 2023

Branch Misprediction in OoO Pipeline

47

▪ Can have multiple unresolved branches in ROB
▪ Can resolve branches out-of-order by killing all the instructions in

ROB that follow a mispredicted branch
▪ Use mask bits to tag instructions that are dependent on different

speculative branches
▪ Mask bits cleared as branch resolves, and reused for next branch

Pengju Ren@XJTU 2023

Rename Table Recovery

▪ Have to quickly recover rename table on branch
mispredictions

▪MIPS R10K only has four snapshots for each of four
outstanding speculative branches

▪ Alpha 21264 has 80 snapshots, one per ROB instruction

48

P Preg

X1

X2

X3

…

X31

P Preg

X1

X2

X3

…

X31

P Preg

X1

X2

X3

…

X31

P Preg

X1

X2

X3

…

X31Snapshots of RT for mispredict recovery

Pengju Ren@XJTU 2023

Load-Store Queue Design

▪ After control hazards, data hazards through memory are
probably next most important bottleneck to superscalar
performance

▪Modern superscalars use very sophisticated load-store
reordering techniques to reduce effective memory latency
by allowing loads and stores to be speculatively issued

– Speculative load → ROB and physical register (rename)

– Speculative store → Store Buffer

49

Pengju Ren@XJTU 2023

Recap: I2OI (OoO superscalar)

50

PRF = Physical Register File (Future File)
ROB=Reorder Buffer, FSB=Finished Store Buffer (1 Entry)

Pengju Ren@XJTU 2023

Speculative Store Buffer

▪ Just like register updates, stores should
not modify the memory until after the
instruction is committed. A speculative
store buffer is a structure introduced to
hold speculative store data.

▪ During decode, store buffer slot
allocated in program order

▪ Stores split into “store address” and
“store data” micro-operations

▪ “Store address” execution writes tag

▪ “Store data” execution writes data

▪ Store commits when oldest instruction
and both address and data available:

– clear speculative bit and eventually
move data to cache

– On store abort:, clear valid bit

51

DataTags

Store Commit
Path

Speculative
Store Buffer

L1 Data Cache

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

Store
Address

Store
Data

Pengju Ren@XJTU 2023

Load bypass from speculative store buffer

▪ If data in both store buffer and cache, which should we use?

Speculative store buffer

▪ If same address in store buffer twice, which should we use?

Youngest store older than load

52

Data

Load Address

Tags

Speculative
Store Buffer

L1 Data Cache

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

Pengju Ren@XJTU 2023

Summary: a Full Branch Prediction method

53

I CachePC

Hash

Sizeof(Fetch Group)

BHT

BTB

RAS

Target

Cache

Call
addr

Taken?

Return
addrPush on Call

Abs
addr

PHT

Type?

▪ BHT+PHT:
– Branch direction
– Conditional branch

▪ BTB:
– Branch Target Address
– Absolute branch and PC-

Relative branch
– Call of functions

▪ RAS:
– Branch Target Address
– Absolute branch
– Return of calls

▪ Target Cache:
– Branch Target Address
– Absolute branch
– Dynamic long jumps

Pengju Ren@XJTU 2023

54

Next Lecture：Very Long Instruction Words

(Data Level Parallel)

Pengju Ren@XJTU 2023

	幻灯片 1: Computer Architecture Lecture 08– Branch Prediction
	幻灯片 2: Recap: Phases of Instruction Execution of OoO
	幻灯片 3: Jump/Branch Instructions (in RISC-V)
	幻灯片 4: Jump/Branch Instructions (in RISC-V)
	幻灯片 5: Incorrect Control-Flow Penalty
	幻灯片 6: Importance of Branch Prediction
	幻灯片 7: Misprediction Penalty in SuperScalars
	幻灯片 8: Misprediction Penalty in OoO Pipeline
	幻灯片 9: Average Run-Length between Branches
	幻灯片 10: Reducing Control-Flow Penalty
	幻灯片 11: Branch Prediction
	幻灯片 12: Static Branch Prediction
	幻灯片 13: Speculating Both Directions?
	幻灯片 14: Dynamic Branch Prediction Learning based on past behavior
	幻灯片 15: Prediction based on Instruction
	幻灯片 16: Prediction based on PC
	幻灯片 17: One-Bit Branch History Predictor
	幻灯片 18: 1-Bit Saturating Counter
	幻灯片 19: 2-Bit Branch Prediction
	幻灯片 20: Pattern History Table (PHT)
	幻灯片 21: Prediction Based on Local Branch History
	幻灯片 22: Prediction Based on Local Branch History
	幻灯片 23: Two-Level Branch Predictor
	幻灯片 24: Two-Level Branch Predictor (Hash)
	幻灯片 25: Exploiting Spatial Correlation Yeh and Patt, 1992
	幻灯片 26: Two-Level Branch Predictor (Global history based prediction)
	幻灯片 27: Two-Level Branch Predictor (Hash) (Global history based prediction)
	幻灯片 28: Limitations of BHT/PHTs
	幻灯片 29: Branch Target Buffer (BTB)
	幻灯片 30: Combining BTB and BHT
	幻灯片 31: Absolute Address Jump/Branch with uses of Jump Register (JALR)
	幻灯片 32: Absolute Address Jump/Branch (Function calls and returns)
	幻灯片 33: Subroutine Return Address Stack (RAS)
	幻灯片 34: Absolute Branch Prediction with RAS
	幻灯片 35: Decode Call and Return Instructions
	幻灯片 36: Return Address Stack in Pipeline
	幻灯片 37: Return Address Stack in Pipeline
	幻灯片 38: Branch Prediction for CALL/Return
	幻灯片 39: Absolute Address Jump/Branch (Switch case, function pointer array, …)
	幻灯片 40: Absolute Branch Prediction with Target Cache
	幻灯片 41: Temporal and Spatial Correlation
	幻灯片 42: Tournament Branch Predictor (Alpha 21264)
	幻灯片 43: Tournament Branch Predictor (Alpha 21264)
	幻灯片 44: 2-Bit Choice Prediction
	幻灯片 45: In-Order vs. Out-of-Order Branch Prediction
	幻灯片 46: InO vs. OoO Mispredict Recovery
	幻灯片 47: Branch Misprediction in OoO Pipeline
	幻灯片 48: Rename Table Recovery
	幻灯片 49: Load-Store Queue Design
	幻灯片 50: Recap: I2OI (OoO superscalar)
	幻灯片 51: Speculative Store Buffer
	幻灯片 52: Load bypass from speculative store buffer
	幻灯片 53: Summary: a Full Branch Prediction method
	幻灯片 54
	幻灯片 55: Branch Address Cache (Yeh, Marr, Patt)
	幻灯片 56: Improving Instruction Fetch
	幻灯片 57: Increasing Taken Branch Bandwidth (Alpha 21264 I-Cache)
	幻灯片 58: Taken Branch Limit
	幻灯片 59: Fetching Multiple Basic Blocks
	幻灯片 60: Trace Cache
	幻灯片 61: Intel Meltdown & Spectre
	幻灯片 62: Brief Intro of Meltdown
	幻灯片 63: Brief Intro of Spectre
	幻灯片 64: Recap: What about Branches ?
	幻灯片 65: Acknowledgements
	幻灯片 66: Branch Misprediction in Pipeline
	幻灯片 67: Trace Cache

