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SISD、MIMD、SIMD and MIMD (Flynn’s Taxonomy)

2

Data Streams

Single Multiple

Instruction 

Streams

Single SISD: Intel Pentium 4 SIMD: SSE of x86

Multiple MISD: No example today MIMD: Intel Core i7

SISD: Single Instruction stream, Single Data Stream
MIMD: Multiple Instruction streams, Multiple Data Streams
SIMD: Single Instruction stream, Multiple Data Streams
MISD: Multiple Instruction streams, Single Data Stream
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Agenda

▪ Vector Processors

▪ Single Instruction Multiple Data (SIMD)

▪ Instruction Set Extensions （Neon, SVE@ARM, AVX@Intel, etc.)
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Modern SIMD Processors

4

SIMD architectures can exploit significant data-level parallelism for:
➢ Matrix-oriented scientific computing
➢ Media-oriented image and sound processors
➢ Machine Learning Algorithms

Most modern CPUs have SIMD architectures
➢ Intel SSE and MMX, AVX, AVX2 (Streaming SIMD Extension, Multimedia 

extensions、Advanced Vector extensions)
➢ ARM NEON, MIPS MDMX

These architectures include instruction set extensions which allow 
both sequential and parallel instructions to be executed
Some architectures include separate SIMD coprocessors for 
handling these instructions
ARM NEON

➢ Included in Cortex-A8 and Cortex-A9 processors

Intel SSE and AVX
➢ Introduced in 1999 in the Pentium III processor
➢ AVX512 currently used in Xeon Core series
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Instruction Set Extension (ARM)
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SVE2

Scalable Vector Extension

(SVE)

NEON

SVE
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Instruction Set Extension (Intel/AMD x86)
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Vector Processor

7

◼ Basic idea:
– Load sets of data elements into “vector registers”
– Operate on those registers
– Disperse the results back into memory

◼ Registers are controlled by compiler
– Used to hide memory latency
– Leverage memory bandwidth

◼ Overcoming limitations of ILP: 
– Dramatic reduction in fetch and decode bandwidth. 
– No data hazard between elements of the same vector. Data hazard logic is 
required only between two vector instructions.
– Heavily interleaved memory banks. Hence latency of initiating memory 
access versus cache access is amortized. 
– Since loops are reduced to vector instructions, there are no control hazards.
– Good performance for poor localityRen
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RV64V Extension (RISC-V Vector Extension)

8

◼ Vector Register：32x64bit (16 
read and 8 write ports)

◼ Vector Functional Units：Each 
unit is fully Pipelined

◼ Vector Load/Store Unit

◼ Scalar register: normal 31 
general-purpose registers
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Vector Programming Model (RISC-V)
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Scalar Registers

x0

x31
Vector Registers

v0

v31

[0] [1] [2] [MAXVL-1]

VLVector Length Register

Dynamic data type: If a vector register has 2048-bit width, 
then it can hold:

⚫ 128 16-bit elements (e.g. 128 Int16 numbers) 
⚫ 32 64-bits elements (e.g. 32 Double-Float numbers)
⚫ ……
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Vector Programming Model (RISC-V)

10

+ + + + + +

[0] [1] [VL-1]

Vector Arithmetic Instructions
vadd(.i).vv v3,v1,v2

v3

v2
v1

⚫ Vector Arithmetic Instructions can use both vector and
scalar registers

⚫ They are followed with Suffix:
⚫ .vv = both operand are vector 
⚫ .vs = second operand is a scalar
⚫ .sv = first operand is a scalar register.

+ + + + + +

[0] [1] [VL-1]

Vector Arithmetic Instructions
vadd(.i).vs v3,v1,x2

v3

x2
v1

Ren
 Pen

gju
 an

d X
ia 

Tian
@

XJT
U 20

23



Vector Programming Model (RISC-V)

11

v1
Vector Load Store Instructions
vls v1,(x1),x2

Base, x1 Stride, x2

Memory

Vector Register

Scalar Registers

⚫ Access a contiguous block of memory (Continuous load/store)

⚫ Access memory in a fixed stride pattern  (Strided load/store)

v1vlsx v1,(x1),v2

Base, x1

Memory

v2

⚫ Access a group of arbitrary addresses in memory 
⚫ Gather (load) and Scatter (store)Ren

 Pen
gju

 an
d X

ia 
Tian

@
XJT

U 20
23



Vector Code Example

12

# Scalar Code

li x4, 64

li x6, a

loop:

fld f1, 0(x1)

fld f2, 0(x2)

fmul.d f3,f1,x6

fadd.d f4,f1,f2

fsd f4, 0(x3)

addi x1, 8

addi x2, 8

addi x3, 8

subi x4, 1

bnez x4, loop

# C code

for (i=0; i<64; i++)

C[i] = a*A[i]+B[i];

# Vector Code

li x4, 64

li x6, a

setvl x4

vld v1, x1

vld v2, x2

vmul.d.vs v3,v1,x6

vadd.d.vv v4,v3,v2

vst v4, x3

⚫ Less code lines: 640+ Instructions → 8 Instructions

⚫ Explicit independency: less dependency checks

⚫ Programming-friendly: maintain classical code styles.
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Vector Instruction Set Advantages

▪ Compact
– one short instruction encodes N operations

▪ Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in same pattern as previous instructions
– access a contiguous block of memory

(unit-stride load/store)
– access memory in a known pattern 

(strided load/store) 

▪ Scalable
– can run same code on more parallel pipelines (lanes)

13
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Vector Arithmetic Execution

14

• Use deep pipeline (=> fast clock) to 
execute element operations

• Simplifies control of deep pipeline 
because elements in vector are 
independent (=> no hazards!) 

• No data hazards

• No bypassing needed

v1 v2 v3

v3 <- v1 * v2

Six-stage multiply pipeline
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Vector Processor Optimization

15

How can a vector processor execute a single vector faster than one 
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle
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Vector
Register

Elements 
0, 4, 8, …

Elements 
1, 5, 9, …

Elements 
2, 6, 10, …

Elements 
3, 7, 11, …

Vector Unit Structure- Multiple Lanes

16

Lane

Functional Unit

Memory Subsystem
The same element position in the input and output registers is referred to as a lane.
There cannot be a carry or overflow from one lane to another

FP add FP add FP add FP add

FP Mul FP Mul FP Mul FP Mul
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T0 Vector Microprocessor (UCB/ICSI, 1995)

17

LaneVector register 
elements striped 
over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]
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Vector Instruction Execution

18

vmul vc, va, vb

Execution using 
one pipelined 

functional unit

Execution using 
four pipelined 

functional units

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

… …

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

… …

C[1]

C[5]

C[9]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

… …

C[2]

C[6]

C[10]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

… …

C[3]

C[7]

C[11]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

… …

(Vector length=32)

Latency = 32 +2 cycles Latency = 32/4 +2 = 10 cyclesRen
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Vector Chaining

19

▪ Vector version of register bypassing
– Chaining allows vector operation to start as soon as the individual 

elements of its vector source operand become available

▪With Vector Chaining, vadd waits for 2 cycles

Memory

V1

Load 
Unit

Mult.

V2 V3

Add

V4 V5

Chain

vld v1

vmul v3,v1,v2

vadd v5, v3,v4

(Vector length=32, Lane=4)

Have to wait 10 cycles ? Chain
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Vector Instruction Parallelism
▪ Can overlap execution of multiple vector instructions

– example machine has 32 elements per vector register and 8 lanes

20

load

load
mul

mul

add

add

Load Unit (1 cycle) Multiply Unit (2-cycle) Add Unit (1-cycle)

ti
m

e

Instruction 
issue

⚫ Complete 24 operations/cycle
⚫ Issuing 3 vector instruction/4 cycles

(Vector length=32, Lane=8)
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Vector Chaining Advantage

21

• With chaining, can start dependent instruction as soon as first 
result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction
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Vector Processor Optimization

22

How can a vector processor execute a single vector faster than one 
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector 
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (Strip Mining)
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Vector Strip mining

Problem: What happens if the length is not matching the 
length of the vector registers?

A vector-length register (VLR) contains the number of 
elements used within a vector

Solution: “Strip mining” split a large loop into loops less 
or equal the maximum vector length (MVL)

23

+ ++

1st Loop 2nd Loop 3rd Loop

VLR

C

A

B
MVL2*MVL
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Vector Strip mining: Example 1

24

andi x1,xN,63 # N mod 64

setvl x1 # Do remainder

loop:

vld v1,(xA)

sll x2,x1,3   # Multiply by 8      

add xA,x2     # Bump A pointer

vld v2,(xB)

add xB,x2 # Bump B pointer

vadd v3,v1,v2

vst v3,(xC)

add xC,x2     # Bump C pointer

sub xN,x1 # Subtract elements

li x1,64

setvl x1 # Reset full length

bgtz xN,loop # Continue if xN>0

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder
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Vector Strip mining: Example 2

25

loop:

setvl xN,64   # vl=min(xN,64)

vld v1,(xA)

sll x2,x1,3   # Multiply by 8      

add xA,x2     # Bump A pointer

vld v2,(xB)

add xB,x2 # Bump B pointer

vadd v3,v1,v2

vst v3,(xC)

add xC,x2     # Bump C pointer

sub xN,xN,64  # Subtract elements

bltz xN,loop # Any more to do?

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder
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Vector Processor Optimization

26

How can a vector processor execute a single vector faster than one 
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector 
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF-ELSE statement inside the code to 
be vectorized ?

⚫ Predicate Registers: vector-mask control
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Vector Conditional Execution

27

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)

if (A[i]>0) then

A[i] = B[i];

Solution: Add vector mask registers:
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions:
– vector operation becomes bubble (“NOP”) at elements 

where mask bit is zero
Code example:

cvm # Turn on all elements(clear vector masks)

vld v1,(x1)     # Load entire A vector

Vmgt.vi v0,v1,0 # Set bits in mask register where A>0

vld v2,(x2)     # Load B vector into A under mask

vst v2,(xA),v0.t# Store A back to memory under maskRen
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Masked Vector Instructions

28

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable?

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off 

result writeback according to mask
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Vector Processor Optimization

29

How can a vector processor execute a single vector faster than one 
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector 
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF statement inside the code to be 
vectorized ?

⚫ Predicate Registers: vector-mask control

What does a vector processor need from the memory system ?
⚫ Memory banks: supplying bandwidth for vector Load/Store Units
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Interleaved Vector Memory System
▪ Memory system must be designed to support high bandwidth for 

vector loads and stores
– E.g. 16 Banks, each has 4-cycle latency between two responses

30

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator

▪ Spread accesses across multiple banks
– Control bank addresses independently
– Load or store non sequential words (need independent bank addressing)
– Support multiple vector processors sharing the same memory
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Vector Processor Optimization

31

How can a vector processor execute a single vector faster than one 
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector 
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF statement inside the code to be 
vectorized ?

⚫ Predicate Registers: vector-mask control

What does a vector processor need from the memory system ?
⚫ Memory banks: supplying bandwidth for vector Load/Store Units

How does a vector processor handle multiple dimensional matrices ?
⚫ Data structure must vectorize
⚫ Auto-vectorizing
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Stride: Handling Multidimensional Arrays 

32

Problem: Want to vectorize rows/columns
for (i=0; i<100; i++)

for (j=0; j<100; j++){

A[i][j] = 0.0

for (k=0; k<100; k++) 

A[i][j]=A[i][j]+B[i][k]*D[k][j];

Solution: nonunit strides

Access non-sequential memory locations and to reshape them into a 
dense structure is one of the major advantages of a vector architecture.

RV64V: VLDS (load vector with stride)
VSTS (store vector with stride)

Row Column
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Automatic Code Vectorization

33

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time 
reordering of operation sequencing
 requires extensive loop-dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Ti
m

e
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Vector Reductions
Problem: Loop-carried dependence on reduction variables

sum = 0;

for (i=0; i<N; i++)

sum += A[i];  # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform reduction

# Rearrange as:

sum[0:VL-1] = 0         # Vector of VL partial sums

for(i=0; i<N; i+=VL)    # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

# Now have VL partial sums in one vector register

do {

VL = VL/2;           # Halve vector length

sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

34

A[0:N-1]A[0:N-1] + +Ren
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Vector Processor Optimization

35

How can a vector processor execute a single vector faster than one 
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector 
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF statement inside the code to be 
vectorized ?

⚫ Predicate Registers: vector-mask control

What does a vector processor need from the memory system ?
⚫ Memory banks: supplying bandwidth for vector Load/Store Units

How does a vector processor handle multiple dimensional matrices ?
⚫ Data structure must vectorize

How does a vector processor handle sparse matrices ? 
⚫ Vector scatter/gather  ：indexed（gather) … = a[b[i]]

indexed  (scatter) a[b[i]]=…Ren
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Vector Scatter-Gather

36

▪ Consider:
for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];
▪ Use index vector K[] and M[]:

vsetdcfg 4*FP64 # 4 64b FP vector registers

vld v0, x7 # Load K[]

vldx v1, x5, v0 # Load A[K[]]

vld v2, x28 # Load M[]

vldx v3, x6, v2 # Load C[M[]]

vadd v1, v1, v3 # Add them

vstx v1, x5, v0 # Store A[K[]]

vdisable # Disable vector registers

Problem: Handling indirect index access
Solution: Gather-Scatter operations
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Compress/Expand Operations
▪ Compress packs non-masked elements from one vector register 

contiguously at start of destination vector register
– population count of mask vector gives packed vector length

▪ Expand performs inverse operation

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

B[3]

A[4]

A[5]

B[6]

A[7]

B[0]

A[1]

B[2]

Expand

A[7]

A[1]

A[4]

A[5]

Compress

A[7]

A[1]

A[4]

A[5]

0110

Used for density-time conditionals and also for general 
selection operations

26
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38

Example of Compress Operations
Compress an array (stream) of values

values =

into 
result =

3 0 4 1 0 0 3 1

3 4 1 3 1

0 1 1 2 3 3 3 4

3 4 1 3 1

3 0 4 1 0 0 3 1

•Step 2: Compute an exclusive add scan of flags to get index

•Step 3: “Scatter” values into result at index, masked by flags

Index = 

0 1 1 2 3 3 3 4

1 0 1 1 0 0 1 1

Values(v1):

Mask(vp1):

Index(v2):

Result (Mem):

•Step 1: Generate an array of 0/1 flags (mask) :

Flag = 1 0 1 1 0 0 1 1
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Summary Performance Optimizations

39

▪ Multiple Parallel Lanes, or Pipes
➢ Allows vector operation to be performed in parallel on multiple elements 

of the vector

▪ Strip Mining
➢ Generates code to allow vector operands whose size is less than or 

greater than size of vector registers

▪ Vector Chaining
➢ Equivalent to data forwarding in vector processors

➢ Results of one pipeline are fed into operand registers of another pipeline

▪ Increase Memory Bandwidth
➢ Memory banks are used to reduce load/store latency

➢ Allow multiple simultaneous outstanding memory requests

▪ Scatter and Gather
➢ Retrieves data elements scattered throughout memory and packs them 

into sequential vectors in vector registers

➢ Promotes data locality and reduces data pollutionRen
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Advantages of Vector Processors

40

▪ Require Lower Instruction Bandwidth 
➢ Reduced by fewer fetches and decodes

▪ Easier Strided Addressing of Main Memory
➢ Load/Store units access memory with known patterns

▪ Elimination of Memory Waste (good spatial locality)
➢ Unlike cache access, every data element that is requested by the 

processor is actually used – no cache misses

➢ Latency only occurs once per vector during pipelined loading

▪ Simplification of Control Hazards (less dependency)
➢ Loop-related control hazards from the loop are eliminated

▪ Scalable Platform
➢ Increase performance by using more hardware resources

▪ Reduced Code Size
➢ Short, single instruction can describe N operations
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41

Next Lecture：Multithreading and 
Multicore (Thread-level Parallel)
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