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Agenda

▪Multithreading (Multi-/Many-core Motivation)

▪ Fine Grain Multithreading

▪ Course Grain Multithreading

▪ Simultaneous Multithreading
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Recap: Processor Performance
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Distributed Memory (Message Passing)
(Loosely coupled multiprocessors)

4

◼ Each processors have their own local memory, and operates 
independently. 

◼When a processor needs access to data in another processor, it is 
usually the task of the programmer to explicitly define how and 
when data is communicated. 

◼Message Passing Interface (MPI) is the "de facto" industry standard 
for message passing

MPI tutorial: hpc-tutorials.llnl.gov/mpi/

NI

NI

NI

NI
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Shared Memory (Symmetric & unsymmetric)
(Tightly coupled multiprocessors)

5

Uniform Memory Access (UMA):

◼ Most commonly represented today 
by Symmetric Multiprocessor 
(SMP) machines

◼ Identical processors

◼ Equal latency when access memory

◼ Sometimes called CC-UMA (Cache 
Coherent UMA). Cache coherency 
is accomplished at by hardware.

Non-Uniform Memory Access (NUMA):
◼ Often made by physically linking two 

or more SMPs
◼ One SMP can directly access memory 

of another SMP
◼ Processors have non-equal access time 

to different memories
◼ Memory access across link is slower
◼ If cache coherency is maintained, then 

may also be called CC-NUMA (Cache 
Coherent NUMA)
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Distributed vs. Shared (A Concept View)

6

◼Appearance of memory to software (Programmer view 
point)
Q: Can processors communicate directly via memory?
– Distributed (message passing): no, communicate via messages
– Shared (shared memory): yes, communicate via load/store

◼Appearance of shared memory to hardware (Architecture 
view point)
Q: Memory access latency uniform for Shared Memory?
– Uniform Memory Access(UMA): yes, doesn’t matter where data 
goes
– Non-Uniform Memory Access(NUMA): no, makes a big differenceRen

 Pen
gju

 an
d X

ia 
Tian

@
XJT

U 20
23



Threads (A Concept View)

7

◼ Appearance of execution to Software 
(Programmer view point, Software Thread): 
– Example: using 1 or 100 threads to conduct the sum 
of 1,000,000
– An abstraction of hardware to make multi-
processing possible, the smallest unit of processing 
assigned and scheduled by operating system(OS)

◼ Appearance of execution to Hardware 
(Architect view point, Hardware Thread) : 
– Can be thought of as the physical/logical CPU or 
cores. 
– Example: iPhone 6 core/6 thread; Laptop i7 CPU 
with 4 core/8 thread; Lab Server Xeon CPU with 24 
core/48 thread
– One hardware thread can run many software 
threads by time-slicing by the OS.

Software Workload

with Multiple Threads

Operating System

CPU

REG

MEM

CPU

REG

MEM

CPU

REG

MEM

CPU

REG

MEM

Core Core

Hardware Resource

as Multiple Threads

Ren
 Pen

gju
 an

d X
ia 

Tian
@

XJT
U 20

23



Terminology (Program & Process)

8

◼ Program: An executable task
– Example: Calculating the sum of 1,000,000 number

◼ Process: An instance of a running program or portion of 
program
– Example a running instance of sum of 1,000,000 

CPU Core
Registers

Memory

Stack

Heap

Code

Data

◼ Process provides each program with two key 
abstractions:

Logical control flow：Each process seems to have 
exclusive use of the CPU

Private address space(Virtual Mem)：Each process 
seems to have exclusive use of main memory. Ren
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Thread as the subset of a process
(a.k.a the lightweight process)

9

◼ Sequential flow of instructions that performs some task, each 
thread has:
- Dedicated PC (program counter)
- Separate registers

- Private variables (local stack variables)
- Accesses the shared memory (static variables, global heap)

◼ Threads communicate implicitly by writing/reading shared 
variables (next lecture!)

◼ Threads coordinate by synchronizing on shared variables (next 
lecture!)
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Processes Execution

▪ Processor runs many processes simultaneously

– Applications for one or more users

• Web browsers, email clients, editors, …

– Background tasks

• Monitoring network & I/O devices

CPU Core
Registers

Memory

Stack

Heap

Code

Data

CPU Core
Registers

Memory

Stack

Heap

Code

Data …

CPU Core
Registers

Memory

Stack

Heap

Code

Data
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Process on Single core Processor

11

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved 

registers

Stack

Heap

Code

Data

Saved 

registers

…

⚫ Single core executes multiple processes concurrently
– Process executions interleaved (multi-tasking) 
– Address spaces managed by virtual memory system
– Register values (context) for non-executing processes saved 

in memory

Ren
 Pen

gju
 an

d X
ia 

Tian
@

XJT
U 20

23



Process on Single core Processor

12

⚫ OS saves current registers in memory

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Saved 

registers

Stack

Heap

Code

Data

Saved 

registers

Stack

Heap

Code

Data

Saved 

registers

…
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13

Process on Single core Processor

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Saved 

registers

Stack

Heap

Code

Data

Saved 

registers

Stack

Heap

Code

Data

Saved 

registers

…

⚫ OS loads saved registers and switches address 

space (context switch)
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Process on Single core Processor

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Saved 

registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved 

registers

…

⚫ OS schedules next process for executionRen
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Process on Multicore Processor 

15

▪ Multicore processors
–Multiple CPUs on single chip
–Share main memory (and some lower level caches)
–Each can execute a separate process

• OS Scheduling of process onto CPU cores

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved 

registers

…

CPU Core
Registers
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Context Switching

16

Process A Process B

user code

kernel code

user code

context 
switch

Ti
m

e

kernel code

user code

context 
switch

⚫ Control flow passes from one process to another via 
a context switch, that conducted by Operating 
System (OS)
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Recap: Terminology

17

◼ Program: An executable task
– Example: Calculating the sum of 1,000,000 number, could partition a single 
problem into multiple related tasks (threads) through parallel programming

◼ Process: An instance of a running program or portion of program
– Example a running instance of sum of 1,000,000 

◼ Software Thread (Programmer View-point): it is an abstraction to 
the hardware to make multi-processing possible, the smallest unit 
of processing assigned and scheduled by operating system(OS)

– Example: using 100 threads to conduct the sum of 1,000,000

◼ Hardware Thread (Architecture View-point) : Can be thought of as 
the physical/logical CPU or cores. hardware thread can run many 
software threads by time-slicing by the OS.

– Example: Your Laptop i7 CPU with 4 core/8 thread; Lab Server Xeon CPU with 
24core/48 thread

Thread models : two very different implementations POSIX Threads and OpenMP.
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Thread-Level Parallelism（TLP）

▪ Many workloads can make use of thread-level parallelism (TLP)

– TLP from multiprogramming (run one job faster using parallel 
threads)

– TLP from multithreaded applications (run independent 
sequential jobs)

▪ Multi-threading:

– uses TLP to improve utilization of a single processor

▪ Multi-/Many-core: 

– Duplicated Processors, it plays a major role from the low end to 
the high end

▪ Modern CPU do both

– Multiple or tens of cores with multiples threads per core

18
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Thread-parallel programming

19

Software View-point: 

⚫ All threads based on the same program that starts as a single thread 
process

⚫ Software threads share the same VA but with private PC, Reg File
and Stacks

⚫ Different threads run concurrently on different cores or interleaved

What’s the difference using 
single Sum for all children or 
Psum/Child?

How about uneven workload 
distribution?

Can this problem be solved N
times faster ?

No

Idle threads

Threads stall for 

cache coherence
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20

Caveat!
Amdahl’s
Law

Challenges of Parallel Processing
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Amdahl’s Law

21

Amdahl's Law states that potential program speedup is defined 
by the fraction of code (P) that can be parallelized

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝑷/𝑵 + 𝑺

It soon becomes obvious that there are limits to the scalability of parallelism:

Insufficient parallelism and long-latency remote communication are 
the two biggest performance challenges in using multiprocessors.
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Scalability

22

Strong scaling:
◼ The total problem size stays fixed as more processors are 

added.
◼ Goal is to run the same problem size faster
◼ Perfect scaling means problem is solved in 1/P time (compared 

to serial execution)

Weak scaling:
◼ The problem size per processor stays fixed as more processors 

are added. 
◼ The total problem size is proportional to the number of 

processors used.
◼ Goal is to run larger problem in same amount of time
◼ Perfect scaling means problem ×P runs in same time as single 

processor run
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Parent and Child acting as software-threads

Software Thread vs. Hardware Thread (An Example)
（Want to learn more, welcome to my class for graduate students)

ALU

data

cntrl cntrl

ALU

data

cntrl cntrl

CPU (SMT): 2 core, 2 thread/core
hardware-threads: 4

(# Physical Core = 2, # logical Core = 4)

C
o
re

 1

C
o
re

 2

ALU ALU

data data

cntrl cntrl

CPU: 2 core, 1 thread/core
hardware-threads: 2
(# Physical Core = 2)

C
o

re
 1

C
o
re

 2

cntrl cntrl
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Multi-/Many-Core @ Intel, AMD, ARM, …

24

Intel Xeon 

Ice Laker (Gen10)@10nm 

#Core: 8~40 #Threads: 16~80

AMD Zen3 

EPYC@7nm

#Core: 6~64 #Threads: 12~128

阿里

倚天 710@5nm 

128 Core

Today general-purpose “multicore” processors implement NUMA 
(not SMP) on a single chip is everywhere,  Server, Laptop and 
Mobile Phone.
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Multithreading

How to guarantee no dependencies between instructions 
in a pipeline?

One way is to interleave execution of instructions from 
different program threads on same pipeline

25

T1:LD x1,0(x2)

T2:ADD x7,x1,x4

T3:XORI x5,x4,12

T4:SD 0(x7),x5

T1:LD x5,12(x1)

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a 
thread always 
completes write-back 
before next instruction 
in same thread reads 
register fileRen
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Simple Multithreaded Pipeline

▪Have to carry thread select down pipeline to ensure correct state 
bits read/written at each pipe stage

▪Appears to software (including OS) as multiple, albeit slower, CPUs

26

PC

1
PC

1
PC

1
PC

1

I$ IR
GPR1GPR1GPR1GPR1

X

Y D$

+1

2 Thread select 

(Round-Robin)

2
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Multithreading Costs for Modern Machine

▪ Each thread requires its own user state

– Program Counter (PC) 

– General Purpose Registers 

– Renaming Table, etc.

▪ Also, needs its own system state

– Virtual-memory page-table-base register (PTBR)

– Exception-handling registers (e.g. Exception Entry Register)

▪Other overheads:

– Additional cache/TLB conflicts from competing threads

– (or add larger cache/TLB capacity)

– More OS overhead to schedule more threads (where do all 
these threads come from?)

27
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Thread Scheduling Policies
▪ Fixed interleave (CDC 6600 PPUs, 1964)

– Each of N threads executes one instruction every N cycles

– If thread not ready to go in its slot, insert pipeline bubble

– Can potentially remove bypassing and interlocking logic

▪ Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads (S>>N)

– Hardware performs fixed interleave over S slots, executing 
whichever thread is in that slot

▪ Hardware-controlled thread scheduling (HEP, 1982)
– Hardware keeps track of which threads are ready to go

– Picks next thread to execute based on hardware priority 
scheme

– Coarse-grained multithreading 28
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IBM PowerPC RS64-IV (2000)

▪ Commercial Coarse-Grain Multithreading CPU

▪ Based on PowerPC with quad-issue in-order five-stage 
pipeline

▪ Each physical CPU supports two virtual CPUs

▪On L2 cache miss, pipeline is flushed and execution 
switches to second thread

– short pipeline minimizes flush penalty (4 cycles), 
small compared to memory access latency

– flush pipeline to simplify exception handling

29
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For most apps, most execution units lie 
idle in an OoO superscalar

30

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995.

For an 8-way superscalar.
Theoretically, why is it faster?
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SuperScalar Machine Efficiency

31

Issue width

Time

Completely idle cycle 
(vertical waste)

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)
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Vertical Multithreading

32

▪ Cycle-by-cycle (one or several clocks) interleaving removes vertical 
waste, but leaves some horizontal waste (fine-grained multithread)

Issue width

Time

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)

Second thread interleaved 
cycle-by-cycle
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Chip Multiprocessing (CMP)

33

▪What is the effect of splitting into multiple processors?
– reduces horizontal waste, 
– leaves some vertical waste, and 
– puts upper limit on peak throughput of each thread.

Issue width

Time
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Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

34

▪ Interleave multiple threads to multiple issue slots 
with no restrictions

Issue width

Time
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▪ Add multiple contexts and fetch engines and allow 
instructions fetched from different threads to issue 
simultaneously (entering execution on same clock cycle).  
Gives better utilization of machine resources.

▪Utilize wide out-of-order superscalar issue queue to find 
instructions to issue from multiple threads

▪OOO instruction window already has most of the circuitry 
required to schedule from multiple threads

▪ Theoretically, any single thread can utilize whole machine

35

Simultaneous Multithreading (SMT) 
for OoO Superscalars

◼ Is this true in real implemented processors?
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SMT adaptation to parallelism type 

36

For regions with high thread-level 
parallelism (TLP), entire machine 
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread-level 
parallelism (TLP), entire machine 
width is available for instruction-
level parallelism (ILP)
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Multithreaded Design Discussion (Pipeline Stages)

Reorder
Buffer

D$

Decode &
Rename

Rename Table1Rename Table1Rename Table1Rename Table1

Physical Reg. File

Branch 
Unit

ALU MEM

Execution

Branch
Predict

BHT BTB

Target

Cache

RASRASRASRAS

I Buffer

I Buffer

I Buffer

I Buffer

Thread 

Priority

Commit
Commit

Commit
CommitPC

1
PC

1
PC

1
PC

1

Fetch

I$

Store
Buf

Store
Buf

Store
Buf

Store
Buf

Shared

Per-Thread

⚫ Split resources may degrade 

single-thread throughput.

⚫ Usually two-way SMT is enough

Address

Translation

PTBRPTBRPTBRPTBR
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Icount Choosing Policy

38

Icount

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

More instructions in flight ≈ more stalled conditions
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Pentium-4 Hyperthreading (2002)

▪ Hyper-threading = SMT (in Intel world)

▪ First commercial SMT design (2-way SMT)

▪ Logical processors share nearly all resources of the physical processor
– Caches, execution units, branch predictors

▪ Chip (Die) area overhead of hyper-threading  ~ +5%

▪ When one logical processor is stalled, the other can make progress
– No logical processor can use all entries in queues when two threads are active

▪ Processor running only one active software thread at almost same 
speed with or without hyper-threading

▪ Hyper-threading dropped on OoO P6 based follow on to Pentium-4 
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem 
generation machines in 2008.

▪ Intel Atom (in-order x86 core) has 2-way vertical multithreading
– Hyper-threading == (SMT for Intel OoO & Vertical for Intel InO)

39
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Initial Performance of SMT
▪ Pentium-4 Extreme SMT yields 1.01x speedup for SPECint_rate

benchmark and 1.07x for SPECfp_rate (with 5% extra die size)
– Pentium-4 is dual-threaded SMT (i.e. 2-way SMT)

– SPECRate requires that each SPEC benchmark be run against a vendor-selected 
number of copies of the same benchmark

▪ Running on Pentium-4 each of 26 SPEC benchmarks paired with 
every other (26*26 runs) speedup 0.90--1.58 (average 1.20x)

▪ Power-5 processor gets 1.23 faster for SPECint_rate with SMT, 1.16 
faster for SPECfp_rate (with 25% extra die size)

▪ Power-5 running 2 copies of each app speedup 0.89--1.41
– Most gained some speedup

– Floating Point apps had most cache conflicts and least gains 40

TASK-0

TASK-1

TASK-n

…

Logical Core-0

Logical Core-1

Logical Core-n

…
v.s.

Physical 

Core

(no SMP) T
A

S
K

-0
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A
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SMT Performance: Application Interaction

41

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

Not affected by other 
programs

So long as they 
aren’t banging on 

the L2 too. 

https://www.spec.org/cpu2000/CINT2000/181.mcf/docs/181.mcf.html

Mcf is 
Constrained 
by Cache
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SMT Performance: Application Interaction

42Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

Doesn’t 
play nice  
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43Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

SMT Performance: Application Interaction

Very sensitive to second programA
p
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SMT & Security

44

▪ Most hardware attacks rely on shared hardware resources to 
establish a side-channel

– E.g. Shared outer caches, DRAM row buffers 

▪ SMT gives attackers high-bandwidth access to previously 
private hardware resources that are shared by co-resident 
threads:

▪ TLBs: TLBleed (June, ‘18)

▪ L1 caches: CacheBleed (2016)

▪ Functional unit ports: PortSmash (Nov, ’18)

OpenBSD 6.4 → Disabled HT in BIOS,  AMD SMT to followRen
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Summary: Multithreaded Categories

45

Ti
m

e 
(p

ro
ce

ss
o

r 
cy

cl
e) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

⚫ Moderate benefits compared with extra die area (which is still in debate)

⚫ Potential risks of security attacks.

⚫ Successful in commercial marketing.
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Next Lecture：Cache Coherence and 
Memory Consistency Model

(Thread-level Parallel)
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