
Computer Architecture

Lecture 11 – Multithreading and Multicore

(Thread-level Parallel)

Tian XIA
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjurenRen
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

http://gr.xjtu.edu.cn/web/pengjuren

Agenda

▪Multithreading (Multi-/Many-core Motivation)

▪ Fine Grain Multithreading

▪ Course Grain Multithreading

▪ Simultaneous Multithreading

2

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Recap: Processor Performance

3

[
H

e
n

n
e

ss
y

&
 P

at
te

rs
o

n
, 2

0
1

7
]

RISC

Mulitcore or ManyCore

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Distributed Memory (Message Passing)
(Loosely coupled multiprocessors)

4

◼ Each processors have their own local memory, and operates
independently.

◼When a processor needs access to data in another processor, it is
usually the task of the programmer to explicitly define how and
when data is communicated.

◼Message Passing Interface (MPI) is the "de facto" industry standard
for message passing

MPI tutorial: hpc-tutorials.llnl.gov/mpi/

NI

NI

NI

NI

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

https://hpc-tutorials.llnl.gov/mpi/

Shared Memory (Symmetric & unsymmetric)
(Tightly coupled multiprocessors)

5

Uniform Memory Access (UMA):

◼ Most commonly represented today
by Symmetric Multiprocessor
(SMP) machines

◼ Identical processors

◼ Equal latency when access memory

◼ Sometimes called CC-UMA (Cache
Coherent UMA). Cache coherency
is accomplished at by hardware.

Non-Uniform Memory Access (NUMA):
◼ Often made by physically linking two

or more SMPs
◼ One SMP can directly access memory

of another SMP
◼ Processors have non-equal access time

to different memories
◼ Memory access across link is slower
◼ If cache coherency is maintained, then

may also be called CC-NUMA (Cache
Coherent NUMA)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Distributed vs. Shared (A Concept View)

6

◼Appearance of memory to software (Programmer view
point)
Q: Can processors communicate directly via memory?
– Distributed (message passing): no, communicate via messages
– Shared (shared memory): yes, communicate via load/store

◼Appearance of shared memory to hardware (Architecture
view point)
Q: Memory access latency uniform for Shared Memory?
– Uniform Memory Access(UMA): yes, doesn’t matter where data
goes
– Non-Uniform Memory Access(NUMA): no, makes a big differenceRen

 Pen
gju

 an
d X

ia
Tian

@
XJT

U 20
23

Threads (A Concept View)

7

◼ Appearance of execution to Software
(Programmer view point, Software Thread):
– Example: using 1 or 100 threads to conduct the sum
of 1,000,000
– An abstraction of hardware to make multi-
processing possible, the smallest unit of processing
assigned and scheduled by operating system(OS)

◼ Appearance of execution to Hardware
(Architect view point, Hardware Thread) :
– Can be thought of as the physical/logical CPU or
cores.
– Example: iPhone 6 core/6 thread; Laptop i7 CPU
with 4 core/8 thread; Lab Server Xeon CPU with 24
core/48 thread
– One hardware thread can run many software
threads by time-slicing by the OS.

Software Workload

with Multiple Threads

Operating System

CPU

REG

MEM

CPU

REG

MEM

CPU

REG

MEM

CPU

REG

MEM

Core Core

Hardware Resource

as Multiple Threads

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Terminology (Program & Process)

8

◼ Program: An executable task
– Example: Calculating the sum of 1,000,000 number

◼ Process: An instance of a running program or portion of
program
– Example a running instance of sum of 1,000,000

CPU Core
Registers

Memory

Stack

Heap

Code

Data

◼ Process provides each program with two key
abstractions:

Logical control flow：Each process seems to have
exclusive use of the CPU

Private address space(Virtual Mem)：Each process
seems to have exclusive use of main memory. Ren

 Pen
gju

 an
d X

ia
Tian

@
XJT

U 20
23

Thread as the subset of a process
(a.k.a the lightweight process)

9

◼ Sequential flow of instructions that performs some task, each
thread has:
- Dedicated PC (program counter)
- Separate registers

- Private variables (local stack variables)
- Accesses the shared memory (static variables, global heap)

◼ Threads communicate implicitly by writing/reading shared
variables (next lecture!)

◼ Threads coordinate by synchronizing on shared variables (next
lecture!)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

10

Processes Execution

▪ Processor runs many processes simultaneously

– Applications for one or more users

• Web browsers, email clients, editors, …

– Background tasks

• Monitoring network & I/O devices

CPU Core
Registers

Memory

Stack

Heap

Code

Data

CPU Core
Registers

Memory

Stack

Heap

Code

Data …

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Process on Single core Processor

11

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

⚫ Single core executes multiple processes concurrently
– Process executions interleaved (multi-tasking)
– Address spaces managed by virtual memory system
– Register values (context) for non-executing processes saved

in memory

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Process on Single core Processor

12

⚫ OS saves current registers in memory

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

13

Process on Single core Processor

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

⚫ OS loads saved registers and switches address

space (context switch)
Ren

 Pen
gju

 an
d X

ia
Tian

@
XJT

U 20
23

14

Process on Single core Processor

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

⚫ OS schedules next process for executionRen
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Process on Multicore Processor

15

▪ Multicore processors
–Multiple CPUs on single chip
–Share main memory (and some lower level caches)
–Each can execute a separate process

• OS Scheduling of process onto CPU cores

CPU Core
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

CPU Core
Registers

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Context Switching

16

Process A Process B

user code

kernel code

user code

context
switch

Ti
m

e

kernel code

user code

context
switch

⚫ Control flow passes from one process to another via
a context switch, that conducted by Operating
System (OS)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Recap: Terminology

17

◼ Program: An executable task
– Example: Calculating the sum of 1,000,000 number, could partition a single
problem into multiple related tasks (threads) through parallel programming

◼ Process: An instance of a running program or portion of program
– Example a running instance of sum of 1,000,000

◼ Software Thread (Programmer View-point): it is an abstraction to
the hardware to make multi-processing possible, the smallest unit
of processing assigned and scheduled by operating system(OS)

– Example: using 100 threads to conduct the sum of 1,000,000

◼ Hardware Thread (Architecture View-point) : Can be thought of as
the physical/logical CPU or cores. hardware thread can run many
software threads by time-slicing by the OS.

– Example: Your Laptop i7 CPU with 4 core/8 thread; Lab Server Xeon CPU with
24core/48 thread

Thread models : two very different implementations POSIX Threads and OpenMP.

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Thread-Level Parallelism（TLP）

▪ Many workloads can make use of thread-level parallelism (TLP)

– TLP from multiprogramming (run one job faster using parallel
threads)

– TLP from multithreaded applications (run independent
sequential jobs)

▪ Multi-threading:

– uses TLP to improve utilization of a single processor

▪ Multi-/Many-core:

– Duplicated Processors, it plays a major role from the low end to
the high end

▪ Modern CPU do both

– Multiple or tens of cores with multiples threads per core

18

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Thread-parallel programming

19

Software View-point:

⚫ All threads based on the same program that starts as a single thread
process

⚫ Software threads share the same VA but with private PC, Reg File
and Stacks

⚫ Different threads run concurrently on different cores or interleaved

What’s the difference using
single Sum for all children or
Psum/Child?

How about uneven workload
distribution?

Can this problem be solved N
times faster ?

No

Idle threads

Threads stall for

cache coherence
Ren

 Pen
gju

 an
d X

ia
Tian

@
XJT

U 20
23

20

Caveat!
Amdahl’s
Law

Challenges of Parallel Processing

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Amdahl’s Law

21

Amdahl's Law states that potential program speedup is defined
by the fraction of code (P) that can be parallelized

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝑷/𝑵 + 𝑺

It soon becomes obvious that there are limits to the scalability of parallelism:

Insufficient parallelism and long-latency remote communication are
the two biggest performance challenges in using multiprocessors.

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Scalability

22

Strong scaling:
◼ The total problem size stays fixed as more processors are

added.
◼ Goal is to run the same problem size faster
◼ Perfect scaling means problem is solved in 1/P time (compared

to serial execution)

Weak scaling:
◼ The problem size per processor stays fixed as more processors

are added.
◼ The total problem size is proportional to the number of

processors used.
◼ Goal is to run larger problem in same amount of time
◼ Perfect scaling means problem ×P runs in same time as single

processor run

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

23

Parent and Child acting as software-threads

Software Thread vs. Hardware Thread (An Example)
（Want to learn more, welcome to my class for graduate students)

ALU

data

cntrl cntrl

ALU

data

cntrl cntrl

CPU (SMT): 2 core, 2 thread/core
hardware-threads: 4

(# Physical Core = 2, # logical Core = 4)

C
o
re

 1

C
o
re

 2

ALU ALU

data data

cntrl cntrl

CPU: 2 core, 1 thread/core
hardware-threads: 2
(# Physical Core = 2)

C
o

re
 1

C
o
re

 2

cntrl cntrl

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Multi-/Many-Core @ Intel, AMD, ARM, …

24

Intel Xeon

Ice Laker (Gen10)@10nm

#Core: 8~40 #Threads: 16~80

AMD Zen3

EPYC@7nm

#Core: 6~64 #Threads: 12~128

阿里

倚天 710@5nm

128 Core

Today general-purpose “multicore” processors implement NUMA
(not SMP) on a single chip is everywhere, Server, Laptop and
Mobile Phone.

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Multithreading

How to guarantee no dependencies between instructions
in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

25

T1:LD x1,0(x2)

T2:ADD x7,x1,x4

T3:XORI x5,x4,12

T4:SD 0(x7),x5

T1:LD x5,12(x1)

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a
thread always
completes write-back
before next instruction
in same thread reads
register fileRen

 Pen
gju

 an
d X

ia
Tian

@
XJT

U 20
23

Simple Multithreaded Pipeline

▪Have to carry thread select down pipeline to ensure correct state
bits read/written at each pipe stage

▪Appears to software (including OS) as multiple, albeit slower, CPUs

26

PC

1
PC

1
PC

1
PC

1

I$ IR
GPR1GPR1GPR1GPR1

X

Y D$

+1

2 Thread select

(Round-Robin)

2

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Multithreading Costs for Modern Machine

▪ Each thread requires its own user state

– Program Counter (PC)

– General Purpose Registers

– Renaming Table, etc.

▪ Also, needs its own system state

– Virtual-memory page-table-base register (PTBR)

– Exception-handling registers (e.g. Exception Entry Register)

▪Other overheads:

– Additional cache/TLB conflicts from competing threads

– (or add larger cache/TLB capacity)

– More OS overhead to schedule more threads (where do all
these threads come from?)

27

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Thread Scheduling Policies
▪ Fixed interleave (CDC 6600 PPUs, 1964)

– Each of N threads executes one instruction every N cycles

– If thread not ready to go in its slot, insert pipeline bubble

– Can potentially remove bypassing and interlocking logic

▪ Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads (S>>N)

– Hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

▪ Hardware-controlled thread scheduling (HEP, 1982)
– Hardware keeps track of which threads are ready to go

– Picks next thread to execute based on hardware priority
scheme

– Coarse-grained multithreading 28

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

IBM PowerPC RS64-IV (2000)

▪ Commercial Coarse-Grain Multithreading CPU

▪ Based on PowerPC with quad-issue in-order five-stage
pipeline

▪ Each physical CPU supports two virtual CPUs

▪On L2 cache miss, pipeline is flushed and execution
switches to second thread

– short pipeline minimizes flush penalty (4 cycles),
small compared to memory access latency

– flush pipeline to simplify exception handling

29

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

For most apps, most execution units lie
idle in an OoO superscalar

30

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995.

For an 8-way superscalar.
Theoretically, why is it faster?

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

SuperScalar Machine Efficiency

31

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Vertical Multithreading

32

▪ Cycle-by-cycle (one or several clocks) interleaving removes vertical
waste, but leaves some horizontal waste (fine-grained multithread)

Issue width

Time

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Second thread interleaved
cycle-by-cycle

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Chip Multiprocessing (CMP)

33

▪What is the effect of splitting into multiple processors?
– reduces horizontal waste,
– leaves some vertical waste, and
– puts upper limit on peak throughput of each thread.

Issue width

Time

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

34

▪ Interleave multiple threads to multiple issue slots
with no restrictions

Issue width

Time

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

▪ Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously (entering execution on same clock cycle).
Gives better utilization of machine resources.

▪Utilize wide out-of-order superscalar issue queue to find
instructions to issue from multiple threads

▪OOO instruction window already has most of the circuitry
required to schedule from multiple threads

▪ Theoretically, any single thread can utilize whole machine

35

Simultaneous Multithreading (SMT)
for OoO Superscalars

◼ Is this true in real implemented processors?

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

SMT adaptation to parallelism type

36

For regions with high thread-level
parallelism (TLP), entire machine
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread-level
parallelism (TLP), entire machine
width is available for instruction-
level parallelism (ILP)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

37

Multithreaded Design Discussion (Pipeline Stages)

Reorder
Buffer

D$

Decode &
Rename

Rename Table1Rename Table1Rename Table1Rename Table1

Physical Reg. File

Branch
Unit

ALU MEM

Execution

Branch
Predict

BHT BTB

Target

Cache

RASRASRASRAS

I Buffer

I Buffer

I Buffer

I Buffer

Thread

Priority

Commit
Commit

Commit
CommitPC

1
PC

1
PC

1
PC

1

Fetch

I$

Store
Buf

Store
Buf

Store
Buf

Store
Buf

Shared

Per-Thread

⚫ Split resources may degrade

single-thread throughput.

⚫ Usually two-way SMT is enough

Address

Translation

PTBRPTBRPTBRPTBR

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Icount Choosing Policy

38

Icount

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

More instructions in flight ≈ more stalled conditions

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Pentium-4 Hyperthreading (2002)

▪ Hyper-threading = SMT (in Intel world)

▪ First commercial SMT design (2-way SMT)

▪ Logical processors share nearly all resources of the physical processor
– Caches, execution units, branch predictors

▪ Chip (Die) area overhead of hyper-threading ~ +5%

▪ When one logical processor is stalled, the other can make progress
– No logical processor can use all entries in queues when two threads are active

▪ Processor running only one active software thread at almost same
speed with or without hyper-threading

▪ Hyper-threading dropped on OoO P6 based follow on to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

▪ Intel Atom (in-order x86 core) has 2-way vertical multithreading
– Hyper-threading == (SMT for Intel OoO & Vertical for Intel InO)

39

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Initial Performance of SMT
▪ Pentium-4 Extreme SMT yields 1.01x speedup for SPECint_rate

benchmark and 1.07x for SPECfp_rate (with 5% extra die size)
– Pentium-4 is dual-threaded SMT (i.e. 2-way SMT)

– SPECRate requires that each SPEC benchmark be run against a vendor-selected
number of copies of the same benchmark

▪ Running on Pentium-4 each of 26 SPEC benchmarks paired with
every other (26*26 runs) speedup 0.90--1.58 (average 1.20x)

▪ Power-5 processor gets 1.23 faster for SPECint_rate with SMT, 1.16
faster for SPECfp_rate (with 25% extra die size)

▪ Power-5 running 2 copies of each app speedup 0.89--1.41
– Most gained some speedup

– Floating Point apps had most cache conflicts and least gains 40

TASK-0

TASK-1

TASK-n

…

Logical Core-0

Logical Core-1

Logical Core-n

…
v.s.

Physical

Core

(no SMP) T
A

S
K

-0

T
A

S
K

-1

T
A

S
K

-n

…

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

SMT Performance: Application Interaction

41

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

Not affected by other
programs

So long as they
aren’t banging on

the L2 too.

https://www.spec.org/cpu2000/CINT2000/181.mcf/docs/181.mcf.html

Mcf is
Constrained
by Cache

A
p

p
li
c
a

ti
o

n
 o

f
In

te
re

s
t

(S
u

b
je

c
t)

Application of Add-on (Competitor)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

https://www.spec.org/cpu2000/CINT2000/181.mcf/docs/181.mcf.html

SMT Performance: Application Interaction

42Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

Doesn’t
play nice

A
p

p
li
c
a

ti
o

n
 o

f
In

te
re

s
t

(s
u

b
je

c
t)

Application of Add-on (Competitor)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

43Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

SMT Performance: Application Interaction

Very sensitive to second programA
p

p
li
c
a

ti
o

n
 o

f
In

te
re

s
t

(s
u

b
je

c
t)

Application of Add-on (Competitor)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

SMT & Security

44

▪ Most hardware attacks rely on shared hardware resources to
establish a side-channel

– E.g. Shared outer caches, DRAM row buffers

▪ SMT gives attackers high-bandwidth access to previously
private hardware resources that are shared by co-resident
threads:

▪ TLBs: TLBleed (June, ‘18)

▪ L1 caches: CacheBleed (2016)

▪ Functional unit ports: PortSmash (Nov, ’18)

OpenBSD 6.4 → Disabled HT in BIOS, AMD SMT to followRen
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

Summary: Multithreaded Categories

45

Ti
m

e
(p

ro
ce

ss
o

r
cy

cl
e) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

⚫ Moderate benefits compared with extra die area (which is still in debate)

⚫ Potential risks of security attacks.

⚫ Successful in commercial marketing.

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

46

Next Lecture：Cache Coherence and
Memory Consistency Model

(Thread-level Parallel)

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

47

Acknowledgements

▪ Some slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– David Patterson (UCB)

– David Wentzlaff (Princeton University)

▪ MIT material derived from course 6.823

▪ UCB material derived from course CS252 and CS 61C

Ren
 Pen

gju
 an

d X
ia

Tian
@

XJT
U 20

23

	幻灯片 1: Computer Architecture Lecture 11 – Multithreading and Multicore (Thread-level Parallel)
	幻灯片 2: Agenda
	幻灯片 3: Recap: Processor Performance
	幻灯片 4: Distributed Memory (Message Passing) (Loosely coupled multiprocessors)
	幻灯片 5: Shared Memory (Symmetric & unsymmetric) (Tightly coupled multiprocessors)
	幻灯片 6: Distributed vs. Shared (A Concept View)
	幻灯片 7: Threads (A Concept View)
	幻灯片 8: Terminology (Program & Process)
	幻灯片 9: Thread as the subset of a process (a.k.a the lightweight process)
	幻灯片 10: Processes Execution
	幻灯片 11: Process on Single core Processor
	幻灯片 12: Process on Single core Processor
	幻灯片 13: Process on Single core Processor
	幻灯片 14: Process on Single core Processor
	幻灯片 15: Process on Multicore Processor
	幻灯片 16: Context Switching
	幻灯片 17: Recap: Terminology
	幻灯片 18: Thread-Level Parallelism（TLP）
	幻灯片 19: Thread-parallel programming
	幻灯片 20: Challenges of Parallel Processing
	幻灯片 21: Amdahl’s Law
	幻灯片 22: Scalability
	幻灯片 23: Software Thread vs. Hardware Thread (An Example) （Want to learn more, welcome to my class for graduate students)
	幻灯片 24: Multi-/Many-Core @ Intel, AMD, ARM, …
	幻灯片 25: Multithreading
	幻灯片 26: Simple Multithreaded Pipeline
	幻灯片 27: Multithreading Costs for Modern Machine
	幻灯片 28: Thread Scheduling Policies
	幻灯片 29: IBM PowerPC RS64-IV (2000)
	幻灯片 30: For most apps, most execution units lie idle in an OoO superscalar
	幻灯片 31: SuperScalar Machine Efficiency
	幻灯片 32: Vertical Multithreading
	幻灯片 33: Chip Multiprocessing (CMP)
	幻灯片 34: Ideal Superscalar Multithreading [Tullsen, Eggers, Levy, UW, 1995]
	幻灯片 35: Simultaneous Multithreading (SMT) for OoO Superscalars
	幻灯片 36: SMT adaptation to parallelism type
	幻灯片 37: Multithreaded Design Discussion (Pipeline Stages)
	幻灯片 38: Icount Choosing Policy
	幻灯片 39: Pentium-4 Hyperthreading (2002)
	幻灯片 40: Initial Performance of SMT
	幻灯片 41: SMT Performance: Application Interaction
	幻灯片 42: SMT Performance: Application Interaction
	幻灯片 43: SMT Performance: Application Interaction
	幻灯片 44: SMT & Security
	幻灯片 45: Summary: Multithreaded Categories
	幻灯片 46
	幻灯片 47: Acknowledgements
	幻灯片 48: Multithreaded Design Discussion (Components)
	幻灯片 49: Coarse-Grain Multithreading
	幻灯片 50: MTA Pipeline
	幻灯片 51: MIT Alewife (1990)
	幻灯片 52: Oracle/Sun Niagara processors
	幻灯片 53: Oracle/Sun Niagara-3, “Rainbow Falls” 2009
	幻灯片 54: Parallel Computers
	幻灯片 55: Context-switch

