Computer Architecture

Lecture 11 — Multithreading and Multicore
(Thread-level Paraliel)

Tian XIA

Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren



http://gr.xjtu.edu.cn/web/pengjuren

Agenda

* Multithreading (Multi-/Many-core Motivation)
" Fine Grain Multithreading

= Course Grain Multithreading

= Simultaneous Multithreading



Performance vs. VAX-11/780

100,000

10,000

1,000

100

10

Recap: Processor Performance

40 years of Processor Performance

.....

2

VAX- 11/780 5 MHz

| Intel i7-7700k, 4.2 GHz (boosts tol4.5 GHz)

tel Core i7-6700k 4 cores, 4.0 GHz (boosts to 4.2 GHz) \

I\/Iulltcore or MarnyyEeaE Lo s e o b ez o0 o

Intel C

Intel Xeon

Intel'Xeon 4 coresy

Intel Core i7 Extreme 4 cores, 3.2 G
Intel Cofe Duo Extreme

Intel Core 2 Extreme 2 cores¥

(boosts to 3.5 GHz)
res, 3.0 GHz
9 GHz

........................................................................

AMD Athlon 64, 2.8 GHz"
AMD Athlon, 2.6
Intel Xeoh EE 3.2 GHz

Intel D850EMVR motherboard Pentium 4 processor ‘Wlth hyper-threading), 3.06 GHz
IBM Power4, 1.3 GHz

Intel VC820 motherboard Pentium Il processor, 1.0 GHz

Professional Workstation XP1000 21264A, 667 MHz
........... ‘. - .. .. .Digital AlphaServer 8400.6/575 21264,.575 MHz .

AlphaServer 4000 5/600 21164, 600 MHz
Digital Alphastation 5/500, 500.MHz

Digital Alphastation 5/300, 300 MHz
Digital Aphastatioh 4/266, 266 MHz

IBM POWERSstation lpO, 150 MHz

! Digital 3000 aXP/500, 150 MHz

RISC

IBM RS6000/540, 30 MHz @
'S M2000, 25 MHz

HP 9000/750, 66 MHz

;52%/year§

VAX-11/785

ntel Xeon 4 cares, 3.6 GHz (boosts to 4.0 GHz)
i7 4 cores, 3.4 GHz (boosts to 3.8 GHz)
ores, 3.3 GHz (boosts to 3.6 GHz)

.3 GHz (boosts to 3.6 GHz)

oosts o4 6 GHz)

.............

[ Hennessy & Patterson, 2017 ]

P TR S O I W 0 W |

| | | | |
1980 1985 1990 1995 2000 2005

year

|
2010

2015



Distributed Memory (Message Passing)

(Loosely coupled multiprocessors)

Machine A I Machine B
task 0 task 1
g o |
send() recv()
network
task 2 task 3
recv() send()

B Each processors have their own local memory, and operates
independently.

B \When a processor needs access to data in another processor, it is
usually the task of the programmer to explicitly define how and
when data is communicated.

B Message Passing Interface (MPI) is the "de facto" industry standard
for message passing

MPI tutorial: hpc-tutorials.linl.gov/mpi/ 4



https://hpc-tutorials.llnl.gov/mpi/

Shared Memory (Symmetric & unsymmetric)
(Tightly coupled multiprocessors)

Bus Interconnect

Uniform Memory Access (UMA): Non-Uniform Memory Access (NUMA):
B Most commonly represented today W Often made by physically linking two
by Symmetric Multiprocessor or more SMPs
(SMP) machines B One SMP can directly access memory
of another SMP

M |dentical processors .
B Processors have non-equal access time

to different memories

B Sometimes called CC-UMA (Cache B Memory access across link is slower
Coherent UMA). Cache coherency B [f cache coherency is maintained, then
is accomplished at by hardware. may also be called CC-NUMA (Cache

Coherent NUMA)

B Equal latency when access memory



Distributed vs. Shared (A Concept View)

B Appearance of memory to software (Programmer view
point)
Q: Can processors communicate directly via memory?

— Distributed (message passing): no, communicate via messages
— Shared (shared memory): yes, communicate via load/store

B Appearance of shared memory to hardware (Architecture

view point)
Q: Memory access latency uniform for Shared Memory?
— Uniform Memory Access(UMA): yes, doesn’t matter where data

goes
— Non-UniformMemory Access(NUMA): no, makes a big difference



Threads (A Concept View)

Software Workload
with Multiple Threads

B Appearance of execution to Software

(Programmer view point, Software Thread):
— Example: using 1 or 100 threads to conduct the sum
of 1,000,000

— An abstraction of hardware to make multi-
processing possible, the smallest unit of processing
assigned and scheduled by operating system(OS)

B Appearance of execution to Hardware

(Architect view point, Hardware Thread) :
— Can be thought of as the physical/logical CPU or
cores.

— Example: iPhone 6 core/6 thread; Laptop i7 CPU
with 4 core/8 thread; Lab Server Xeon CPU with 24
core/48 thread

— One hardware thread can run many software
threads by time-slicing by the OS.

Operating System

Hardware ResOyrce
as Multiple Threa

4 N Y4

CPU || CPU
REG || REG
MEM || MEM

- AN AN

Y4

CPU || CPU
REG || REG

MEM || MEM

AN

~

J

Core

Core




Terminology (Program & Process)

B Program: An executable task
— Example: Calculating the sum of 1,000,000 number
B Process: An instance of a running program or portion of

program
— Example a running instance of sum of 1,000,000

B Process provides each program with two key | Memory

abstractions: Stack
Logical control flow. Each process seems to have I;Z?:
exclusive use of the CPU Code
Private address space(Virtual Mem). Each process
CPU Core

seems to have exclusive use of main memory.

Registers




Thread as the subset of a process
(a.k.a the lightweight process)

Single-threaded Process Multi-threaded Process

Threads of
Execution -5 é
+2

3
Single Instruction Stream \ / Multiple Instruction Stream

Common

B Sequential flow of instructions that performs some task, each

thread has:

- Dedicated PC (program counter)

- Separate registers

- Private variables (local stack variables)

- Accesses the shared memory (static variables, global heap)

B Threads communicate implicitly by writing/reading shared
variables (next lecture!)

B Threads coordinate by synchronizing on shared variables (next
lecture!)



Processes Execution

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data ooe Data
Code Code Code

CPU Core CPU Core CPU Core

Registers Registers Registers

" Processor runs many processes simultaneously
— Applications for one or more users
 Web browsers, email clients, editors, ...

— Background tasks
* Monitoring network & I/O devices



Process on Single core Processor

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
: Saved Saved
reqgisters reqgisters

CPU Core

Registers

® Single core executes multiple processes concurrently
— Process executions interleaved (multi-tasking)

— Address spaces managed by virtual memory system
— Register values (context) for non-executing processes saved

in memory 11



Process on Single core Processor

Memory

Stack Stack Stack

Heap Heap Heap

Data Data Y Data

Code Code Code

Saved Saved Saved

reqisters reqgisters reqgisters
.l CPU Core |:
: Registers :

® (OS saves current registers in memory



Process on Single core Processor

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Y Data
Code Code Code
Saved Saved Saved
registers reqgisters reqgisters
.l CPU Core |:
: Registers :

® OS loads saved registers and switches address
space (context switch)




Process on Single core Processor

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Y Data
Code Code Code
Saved Saved
registers reqgisters
.l CPU Core |:
: Registers :

® OS schedules next process for execution



Process on Multicore Processor

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved
reqgisters
:( CPU Core |: | CPU Core |:
: Registers ' 3 Registers :

" Multicore processors
—Multiple CPUs on single chip
—Share main memory (and some lower level caches)

—Each can execute a separate process
* OS Scheduling of process onto CPU cores



Context Switching

® Control flow passes from one process to another via
a context switch, that conducted by Operating
System (OS)

|
Process A! Process B

user code
context

switch

|
:
|
: kernel code }
|

Time

user code
context

kernel code } switch

user code

16



Recap: Terminology

Program: An executable task
— Example: Calculating the sum of 1,000,000 number, could partition a single
problem into multiple related tasks (threads) through parallel programming

Process: An instance of a running program or portion of program
— Example a running instance of sum of 1,000,000

Software Thread (Programmer View-point): it is an abstraction to
the hardware to make multi-processing possible, the smallest unit
of processing assigned and scheduled by operating system(OS)

— Example: using 100 threads to conduct the sum of 1,000,000

Hardware Thread (Architecture View-point) : Can be thought of as
the physical/logical CPU or cores. hardware thread can run many
software threads by time-slicing by the OS.

— Example: Your Laptop i7 CPU with 4 core/8 thread; Lab Server Xeon CPU with
24core/48 thread

Thread models : two very different implementations POSIX Threads and OpenMP. 17



Thread-Level Parallelism (TLP)

= Many workloads can make use of thread-level parallelism (TLP)

— TLP from multiprogramming (run one job faster using parallel
threads)

— TLP from multithreaded applications (run independent
sequential jobs)

" Multi-threading:
— uses TLP to improve utilization of a single processor
= Multi-/Many-core:

— Duplicated Processors, it plays a major role from the low end to
the high end

* Modern CPU do both
— Multiple or tens of cores with multiples threads per core

18



Thread-parallel programming
Software View-point:

® All threads based on the same program that starts as a single thread
process

® Software threads share the same VA but with private PC, Reg File
and Stacks

® Different threads run concurrently on different cores or interleaved

How about uneven workload

- 2 = distribution?
3 Idle threads
fork s~ - _ _ _ What’s the difference using

Threads stall for
Ny _-- cache coherence

Can this problem be solved N

As = (2r)? = 4r? .
A = mxt, % times faster ?

RS- No 19

= JO h , single Sum for all children or
[«J] O =
g5 9T = Psum/Child?




Challenges of Parallel Processing

100 (o] =
1
~ Performance =—1
increase ratio x4 ’;X 2 g
x: Ratio of code that must be SHi (6501 (6801 660 2 l-f ~—0%
executed sequentially core | | core | |cora | | core 2nm
<] N: Number of CPU cores ceu | [cpul [cpul [cru AN
S core | |(core | |cCore | |core
b
3
g
o 10
Q
=
=
(®]
5
a
CPU
core X=50% Caveat!
= (i) y
Amdahl’s

90nm

P

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig 3 Amdahl’s Law an Obstacle to Improved Performance Performance will not rise in

the same proportion as the increase in CPU cores. Performance gains are limited by the ratio

of software processing that must be executed sequentially. Amdahl’s Law is a major obstacle

in boosting multicore microprocessor performance. Diagram assumes no overhead in parallel

processing. Years shown for design rules based on Intel planned and actual technology. Core 20
count assumed to double for each rule generation.

No significant throughput improvement if ratio L
of code that can be executed in parallel is low aw




Amdahl’s Law

Amdahl's Law states that potential program speedup is defined
by the fraction of code (P) that can be parallelized

Speedup =
P/N +S
It soon becomes obvious that there are limits to the scalability of parallelism:
Time speedup
N P=.50 P= .90 P= .95 P = .99
Para_IIeI _________________________________
portion 10 1.82 5.26 6.89 9.17
i 100 1.98 9.17 16.80 50.25
eria
bortion 1,000 1.99 9.91 19.62 90.99
12 345 100,000 1.99 9.99 19.99 99.90
Number of Processors |

Insufficient parallelism and long-latency remote communication are
the two biggest performance challenges in using multiprocessors.

21



Scalability

Strong scaling:
B The total problem size stays fixed as more processors are
added.
B Goal is to run the same problem size faster
B Perfect scaling means problem is solved in 1/P time (compared
to serial execution)

Weak scaling:

B The problem size per processor stays fixed as more processors
are added.

B The total problem size is proportional to the number of
processors used.

B Goalis torun'larger problem in same amount of time

B Perfect scaling means problem XP runs in same time as single
processor run

22



Software Thread vs. Hardware Thread (An Example)

(Want to learn more, welcome to my class for graduate students)

Parent and Child acting as software-threads 3?

cntrl cntrl cntrl cntrl

oo oo o o e o mm Em Em Em Em Em o .

CPU: 2 core, 1 thread/core CPU (SMT): 2 core, 2 thread/core
hardware-threads: 2 hardware-threads: 4
(# Physical Core = 2) (# Physical Core = 2, # logical Core =4) 23



Multi-/Many-Core @ Intel, AMD, ARM, ...

Today general-purpose “multicore” processors implement NUMA
(not SMP) on a single chip is everywhere, Server, Laptop and
Mobile Phone.

CPU CORE CPU CORE

8MB

SHARED DATA
CPU CORE ; CPU CORE

24MB

= ]
)
o
7m-‘z.’.<.
H=
i)
U
n =
>
0| |

PER CORE DATA
| CPU CORE j CPU CORE

LPDDR4x

Intel Xeon AMD Zen3 fa] BB
Ice Laker (Gen10)@10nm EPYC@7nm (&K 710@5nm
#Core: 8740 #Threads: 16780 #Core: 6764 #Threads: 12~128 128 Core

24



Multithreading
How to guarantee no dependencies between instructions
in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

t0 t1 t2 t3 t4 5 16 17 .t8 . t9

T1:1D x1,0(x2) |F|DIXIMWEL——— "o e onin e

T2:ADD x7,x1,x4 _ D X MW: completes write-back
T3:XORI x5,x4,12 : |FIDIX MW: : : beforenextinstruction
T4:SD 0 (x7) ,x5 P FID X Mw//nsame thread reads
T1:LD x5,12(x1) ! - |F D’fmwg register file

25



Simple Multithreaded Pipeline

~ = I X :\ _
] {13 :IR:GPRl‘uJA 11 LJU
AN s A - v[TL~ & ([D$ ‘
< A > >
T 1 .
—u 2 Thread select |A| 2 |A|

(Round-Robin)
" Have to carry thread select down pipeline to ensure correct state
bits read/written at each pipe stage

" Appears to software (including OS) as multiple, albeit slower, CPUs

26



Multithreading Costs for Modern Machine

" Each thread requires its own user state
— Program Counter (PC)
— General Purpose Registers
— Renaming Table, etc.

" Also, needs its own system state
— Virtual-memory page-table-base register (PTBR)
— Exception-handling registers (e.g. Exception Entry Register)

" Other overheads:
— Additional cache/TLB conflicts from competing threads
— (or add larger cache/TLB capacity)

— More OS overhead to schedule more threads (where do all
these threads come from?)

27



Thread Scheduling Policies
= Fixed interleave (CDC 6600 PPUs, 1964)
— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble
— Can potentially remove bypassing and interlocking logic

» Software-controlled interleave (7/ ASC PPUs, 1971)
— OS allocates S pipeline slots amongst N threads (S>>N)

— Hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

N

=" Hardware-controlled thread scheduling (HEP, 1982)
— Hardware keeps track of which threads are ready to go

— Picks next thread to execute based on hardware priority
scheme

— Coarse-grained multithreading

28



IBM PowerPC RS64-1V (2000)

=" Commercial Coarse-Grain Multithreading CPU

=" Based on PowerPC with quad-issue in-order five-stage
pipeline

= Each physical CPU supports two virtual CPUs

" On L2 cache miss, pipelineis flushed and execution
switches to second thread

—short pipeline minimizes flush penalty (4 cycles),
small compared to memory access latency

—flush pipeline to simplify exception handling

29



100

o

Hi

-
=

=
=

Percent of Total Issue Cycles
= LA
= =

Lad
=

20

10

alvinn

For most apps, most execution units lie

idle in an 000 superscalar
Theoretlcally, why is it faster?

doduc
egniot
CSPICSS0

fpppp
hydr2d

PR

bk

2
4'!'-"'!-'.-* L

mdljdp2

mdljsp2

Applications

2 AN |

nase? [N T T

ora

su2eor

SWIm

tomedaty

PR NN |

For an 8-way superscalar.

E memory conflict
E long fp

shaort {p

long Integer

E short inleger
load delays

I:l control hazards
branch misprediction
E deache rmss

[III icache miss

E aub miss

B iut miss

. processor busy

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995.

30



SuperScalar Machine Efficiency

Instruction

Issue width

issue

Time

‘E

—Completely idle cycle

F
E

(vertical waste)

Partially filled cycle,
i.e., IPC< 4
(horizontal waste)

31



Instruction

issue

Vertical Multithreading

Issue width

—

_—Second thread interleaved

cycle-by-cycle

Time

Partially filled cycle,

i.e., IPC< 4
(horizontal waste)

= Cycle-by-cycle (one or several clocks) interleaving removes vertical
waste, but leaves some horizontal waste (fine-grained multithread)

32



Chip Multiprocessing (CMP)

Issue width
B
|

Time [ Z

=" What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— leaves some vertical waste, and

— puts upper limit on peak throughput of each thread. 23



Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]

Issue width

Time

" Interleave multiple t
with no restrictions

nreads to multiple issue slots

34



Simultaneous Multithreading (SMT)
for 00O Superscalars

* Add multiple contexts and fetch engines-and allow
instructions fetched from different threads to issue
simultaneously (entering execution on same clock cycle).
Gives better utilization of machine resources.

= Utilize wide out-of-order superscalar issue queue to find
instructions to issue from multiple threads

" 00O instruction window already has most of the circuitry
required to schedule from multiple threads

" Theoretically, any single thread can utilize whole machine
B Is this true in real implemented processors?

35



SMT adaptation to parallelism type

Issue width Issue width

Time Time

For regions with high thread-level For regions with low thread-level
parallelism (TLP), entire machine  parallelism (TLP), entire machine

width is shared by all threads width is available for instruction-

level parallelism (ILP)
36



Multithreaded Design Discussion (Pipeline Stages)

® Split resources may degrade

® Usually two-way SMT is enough

|

)

Commit |

PTBR ﬂ

\ 4

Address
Translation

Target
BHT || BTB | | Cache | | RAS single-thread throughput.
|
Thread :
Branch Priority |
Predict Rename Tablel
| Buffer ;N{ ¢
| | Buffer ; Decode&_.}Reorder
| Buffer — Rename Buffer
| Buffer =/
Physical Reg. File
Shared Bran.ch ALU
Unit
Il- Per-Thread Execution

IR




Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?

More instructions in flight = more stalled conditions

38



Pentium-4 Hyperthreading (2002)

» Hyper-threading = SMT (in Intel world)
" First commercial SMT design (2-way SMT)

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Chip (Die) area overhead of hyper-threading ~ +5%

= When one logical processor is stalled, the other can make progress
— No logical processor can use all entries in queues when two threads are active

" Processor running only one active software thread at almost same
speed with or without hyper-threading

" Hyper-threading dropped on OoO P6 based follow on to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

" Intel Atom (in-order x86 core) has 2-way vertical multithreading
— Hyper-threading == (SMT for Intel OoO & Vertical for Intel InO)

39



Initial Performance of SMT

= Pentium-4 Extreme SMT vyields 1.01x speedup for SPECint _rate
benchmark and 1.07x for SPECfp _rate (with 5% extra die size)

— Pentium-4 is dual-threaded SMT (i.e. 2-way SMT)

— SPECRate requires that each SPEC benchmark be run against a vendor-selected
number of copies of the same benchmark

®" Running on Pentium-4 each of 26 SPEC benchmarks paired with
every other (26*26 runs) speedup 0.90--1.58 (average 1.20x)

TASK-0 H Logical Core-0 Physical
TASK-1 = Logical Core-1 | y.§, | Core |€=

EER EENR (no SMP)
TASK-n H Logical Core-n

TASK-0
t
TASK-1
f
t
TASK-n

® Power-5 processor gets 1.23 faster for SPECint _rate with SMT, 1.16
faster for SPECfp rate (with 25% extra die size)
= Power-5 running 2 copies of each app speedup 0.89--1.41

— Most gained some speedup
— Floating Point apps had most cache conflicts and least gains 40



SMT Performance: Application Interaction

) Application of Add-on (Competitor)
Mcf is x 3

5 E x % 2ot

> O o™l T 5 @ ©
i Ss8efis8etssIseaiecER
Constrained Ne8EE3g88SNE33PeEEgEES
gmmvmhwmmmmcm‘—wmhmmwcx—
MM 00 OO W 1 N WwWwo O MMMMMMBMDOOODO O
byCaChe —————— Al A AL A A M e e e v v v v ~l N

gzi .Speedup>30%

175.vpr Speedup 25 to 30%
—~ 76.gcc Speedup 20 to 25%
Bmef  HIHTHNHEEEEEEEEETHENE "HEENE N speedup 15t020%

3]
% 186.crafty | Speedup 10 to 15%
(/3) 197.parser NOt affected by Other B speedup 5 to 10%
N 252.eon Approx same
*(7‘) 253.perlbmk p rog rams Slowdown 5 to 10%
8 254 .gap Slowdown 10 to 15%
8 255.vortex Slowdown 15 to 20%
< 256.bzip2 Slowdown > 20%
Y— 300.twolf
2 168.wupwise
o 171.swim
= 172.mgrid
g e So long as they
= 177.mesa ’ 1
= aren’t banging on
o 179.art
= 183equke the L2 too.
188.ammp
200.sixtrack
301.apsi

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”
https://www.spec.org/cpu2000/CINT2000/181.mcf/docs/181.mcf.html



https://www.spec.org/cpu2000/CINT2000/181.mcf/docs/181.mcf.html

SMT Performance: Application Interaction
Application of Add-on (Competitor)

[4)]
s -
W [1}]
— . [&]
>8 § Fo.Scgmzg EE8 _
%5.8"5%ESE%E%B%'Eg%gt%E‘Eg
D5 9EGA0Q0S0232E0EROT D W
ammvmhwmﬁmmcmwwmhmmwcx—
I~ M~ 6 00 O Wu W N WoO O MMMMMMMIENMSMDIODOOO O
— T e e - N AN ANNNM T T e (NM

164.9zip . Speedup > 30%
175.vpr | Speedup 25 to 30%
176.gcc | Speedup 20 to 25%
181mef  HIHHBNHEEEEEEEETHENE "HEENE N speedup 1510 20%

186.crafty oy | Speedup 10 to 15%
197.parser N Speedup 5 to 10%
252.eon . Approx same
253.perlbmk Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%

300.twolf
168.wupwise

171.swim " Doesn’t
172.mgrid )
173.applu play nice
177.mesa
179.art
183.equake
188.ammp
200.sixtrack
301.apsi

Application of Interest (subject)

EERNEN

\

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading” 42



SMT Performance: Application Interaction
Application of Add-on (Competitor)

[0}
x &~
(72} Q
e E o
>8 § Fo.Scgmzg EE8 _
S58cF 555N gEX 2
555ES300538253E0EG8G0na
ammvmhwmﬁmmcm‘—wmhmmwox—
MM~ 0 0 O W W N WO OMMMMNSDODODDOO
— — — — —— —— N AN AN NONM>— ™~ — +— — ©— +— N M

. Speedup > 30%
175.vpr | Speedup 25 to 30%
176.gcc | Speedup 20 to 25%
181mef  HHHBNHEEEEEEEETHENE "HEENE N speedup 1510 20%

186.crafty | Speedup 10 to 15%
197 .parser N Speedup 5 to 10%
252.eon Approx same

253.perlbmk Slowdown 5 to 10%
254.gap Slowdown 10 to 15%

255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%

300.twoli
168.wupwise
171.swim

172.mgrid W PN | N N [
173.applu L l
177.mesa '

179.art
183.equake i
ssammy VETY sensitive to second program
200.sixtrack

301.apsi

164.9zip

Application of Interest (subject)

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading” 43



SMT & Security

®= Most hardware attacks rely on shared hardware resources to
establish a side-channel

— E.g. Shared outer caches, DRAM row buffers

= SMT gives attackers high-bandwidth access to previously
private hardware resources that are shared by co-resident
threads:

= TLBs: TLBleed (June, ‘18)
= |1 caches: CacheBleed (2016)
* Functional unit ports: PortSmash (Nov, '18)

OpenBSD 6.4 = Disabled HT in BIOS, AMD SMT to follow

44



Summary: Multithreaded Categories

. _ Simultaneous
Superscalar  Fine-Grained Coarse-Grained Multiprocessing Multithreading

Q

Q = =

o O NN

= E

»n DO

QO

S EEE

< O NN

2 nm

o O

&

= = B
= N

l ] Thread 1

N Thread 2

w

7

N

N

I

NN

N

I

NN

Thread 3

Thread 4

EESS EES
DIENNE.
PR N
RN DI
W Nl
NY DEEE
N L
NENY ENLE
LN DI
] [ DININ
N [ ]
:S N
Thread 5
Idle slot

® Moderate benefits compared with extra die area (which is still in debate)
® Potential risks of security attacks.
® Successful in commercial marketing.

45



Next Lecture .. Cache Coherence and
Memory Consistency Model

(Thread-level Parallel)

46



Acknowledgements

= Some slides contain material developed and copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— David Patterson (UCB)
— David Wentzlaff (Princeton University)

= MIT material derived from course 6.823
= UCB material derived from course CS252 and CS 61C

47



	幻灯片 1: Computer Architecture   Lecture 11 – Multithreading and Multicore (Thread-level Parallel)
	幻灯片 2: Agenda
	幻灯片 3: Recap: Processor Performance
	幻灯片 4: Distributed Memory (Message Passing) (Loosely coupled multiprocessors)
	幻灯片 5: Shared Memory (Symmetric & unsymmetric) (Tightly coupled multiprocessors)
	幻灯片 6: Distributed vs. Shared (A Concept View)
	幻灯片 7: Threads (A Concept View)
	幻灯片 8: Terminology (Program & Process)
	幻灯片 9: Thread as the subset of a process  (a.k.a the lightweight process)
	幻灯片 10: Processes Execution
	幻灯片 11: Process on Single core Processor
	幻灯片 12: Process on Single core Processor
	幻灯片 13: Process on Single core Processor
	幻灯片 14: Process on Single core Processor
	幻灯片 15: Process on Multicore Processor 
	幻灯片 16: Context Switching
	幻灯片 17: Recap: Terminology
	幻灯片 18: Thread-Level Parallelism（TLP）
	幻灯片 19: Thread-parallel programming
	幻灯片 20: Challenges of Parallel Processing
	幻灯片 21: Amdahl’s Law
	幻灯片 22: Scalability
	幻灯片 23: Software Thread vs. Hardware Thread (An Example) （Want to learn more, welcome to my class for graduate students)
	幻灯片 24: Multi-/Many-Core @ Intel, AMD, ARM, …
	幻灯片 25: Multithreading
	幻灯片 26: Simple Multithreaded Pipeline
	幻灯片 27: Multithreading Costs for Modern Machine
	幻灯片 28: Thread Scheduling Policies
	幻灯片 29: IBM PowerPC RS64-IV (2000)
	幻灯片 30: For most apps, most execution units lie idle in an OoO superscalar
	幻灯片 31: SuperScalar Machine Efficiency
	幻灯片 32: Vertical Multithreading
	幻灯片 33: Chip Multiprocessing (CMP)
	幻灯片 34: Ideal Superscalar Multithreading [Tullsen, Eggers, Levy, UW, 1995]
	幻灯片 35: Simultaneous Multithreading (SMT)  for OoO Superscalars
	幻灯片 36: SMT adaptation to parallelism type 
	幻灯片 37: Multithreaded Design Discussion (Pipeline Stages)
	幻灯片 38: Icount Choosing Policy
	幻灯片 39: Pentium-4 Hyperthreading (2002)
	幻灯片 40: Initial Performance of SMT
	幻灯片 41: SMT Performance: Application Interaction
	幻灯片 42: SMT Performance: Application Interaction
	幻灯片 43: SMT Performance: Application Interaction
	幻灯片 44: SMT & Security
	幻灯片 45: Summary: Multithreaded Categories
	幻灯片 46
	幻灯片 47: Acknowledgements
	幻灯片 48: Multithreaded Design Discussion (Components)
	幻灯片 49: Coarse-Grain Multithreading
	幻灯片 50: MTA Pipeline
	幻灯片 51: MIT Alewife (1990)
	幻灯片 52: Oracle/Sun Niagara processors
	幻灯片 53: Oracle/Sun Niagara-3, “Rainbow Falls” 2009
	幻灯片 54: Parallel Computers
	幻灯片 55: Context-switch



