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Abstract—Reducing the energy consumption and improving
the energy efficiency of energy-intensive production systems are
of significant importance. In the literature, for Bernoulli and ge-
ometric lines, the energy consumption optimization problem has
been largely studied, while for more practical, e.g., exponential,
reliability models, it is barely studied. This paper is intended
to investigate the energy consumption optimization for two-
machine synchronous exponential lines. Specifically, first, similar
for the Bernoulli and geometric lines, this problem is formulated
as a constrained nonlinear programming; then, two optimality
equations for solving the nonlinear programming are derived;
finally, based on the properties of the nonlinear optimality
equations, an algorithm is designed to solve the solution of
the optimality equations, which is the unique optimal solution
of the energy consumption optimization problem. Extensive
numerical experiments show that the algorithm is effective and
computationally efficient for solving the energy consumption
optimization problem.

Index Terms—Production rate, nonlinear programming, opti-
mality equations, monotonicity, sensitivity analysis.

I. INTRODUCTION

PRODUCTION systems consume a huge amount of en-
ergy. It is reported by the National Bureau of Statistics

of China that, in 2020, the manufacturing sector accounts
for 84.07% energy consumption of the industrial production
in China and 84.10% of the energy comes from the fossil
fuel such as coal, oil, and natural gas [1]. In addition to the
intensive energy consumption, most manufacturing systems
are energy-inefficient. These energy-intensive and energy-
inefficient systems are unfavorable for carbon emission reduc-
tion. Hence, reducing the energy consumption and improving
the energy efficiency of such systems are of great significance.

In the past several decades, the production systems, usually
consisting of unreliable machines and finite buffers, have been
extensively studied [2]. The performance metrics interested
in most researches are productivity, work-in-process, and
production lead time and the energy-related measures have
been paid much less attention. Recent years, as more and
more concerns are focused on green manufacturing, the energy
consumption and energy efficiency have become a new kind
of important performance metrics of production systems. By
elaborately optimizing efficiencies of the unreliable machines,
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the energy consumption (or energy efficiency) of the system
is reduced (correspondingly, improved) while some traditional
metrics such as productivity are ensured.

For two-machine serial lines, in general, the traditional per-
formance metrics of the system can be analytically expressed.
In the seminal work [3], the energy consumption optimization
problem for two-machine Bernoulli line is formulated as a
nonlinear programming. Although qualitative relationships be-
tween the optimal solution and system parameters are analyzed
based on extensive numerical experiments, no algorithms are
developed to solve the optimal solution. For this purpose, in
[4], the structural characteristics of the nonlinear programming
and mathematical properties of some important functions
are analyzed, and based on these derived characteristics and
properties, an effective and efficient dichotomy algorithm
is designed. This work has been extended to some more
practical production systems. First, considering that machine
efficiencies are usually confined in a subset of (0, 1] due to
the physical limitations, in [5], the energy consumption opti-
mization problem is re-formulated and its optimal solution is
constructed based on the results obtained in [4]. Then, consid-
ering that the demand-side response is important for reducing
energy cost, the energy consumption optimization problem is
investigated under the time-of-use electricity pricing in [6].
Finally, in [7], the energy consumption optimization problem
for the Bernoulli line is also extended to lines with geometric,
which is a more practical, reliability model. In addition, the
energy consumption optimization problem for Bernoulli and
geometric lines is investigated in [8] and [9], respectively.
Different from the previous researches, the energy consumed
by a machine in setup and idle time is considered. The energy
consumption optimization problem for a Markovian system is
formulated and analyzed in [10], where the setup time, as the
machine up- and downtime, is modeled as a random variable
following the geometric distribution.

As for long lines with multiple machines, the energy con-
sumption optimization problem has also been investigated and
only Bernoulli lines have been studied so far. In [11], for
small systems, i.e., systems with machines not more than four
and buffer capacities not more than two, the optimal solution
of the energy consumption optimization problem is solved
by an enumeration method; for large systems, the problem
is solved by commercial softwares or a heuristic algorithm,
which cannot guarantee the optimality of the solution. To solve
the optimal solution, a recursive algorithm based on the ones
developed in [4] and [5] for two-machine lines is designed in
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[12]. Although the recursive algorithm numerically solves the
optimal solution, it is very time-consuming. To alleviate the
computational burden, by using the aggregation method in [2],
the energy consumption optimization problem for long lines is
decomposed into a series of two-machine problems and based
on algorithms in [4] and [5], a divide-and-conquer algorithm
is developed in [13].

Although the energy consumption optimization problem
has been largely studied for Bernoulli and geometric lines,
for more practical reliability models, it is barely studied.
For this purpose, as a starting point, this paper is devoted
to investigate the energy consumption optimization for two-
machine synchronous exponential lines as shown in Fig. 1.
The methods for analysis and algorithm design for Bernoulli
and geometric lines are extended to the exponential lines.
Since the problem for the exponential lines has some unique
characteristics, the extension is non-trivial.

Fig. 1: Two-machine serial line

The rest of the paper is organized as follows. Section II
models the two-machine synchronous exponential line and
addresses the energy consumption optimization problem in-
vestigated in this paper. Section III mathematically formulates
the problem as a nonlinear programming and derives its two
optimality equations. Section IV analyzes properties of the
optimality equations and based on the properties, designs an
effective and efficient algorithm to solve the problem. The
conclusions and topics for future work are provided in Section
V. Proofs of theorems are provided in the Appendix.

II. PRODUCTION SYSTEM MODELING AND PROBLEM
STATEMENT

In this section, the two-machine synchronous exponential
serial line is formally modeled and the energy consumption
optimization problem is addressed in Subsections II-A and
II-B, respectively.

A. System Model

The model of the two-machine serial line in Fig. 1 is
assumed as follows:

(i) The system consists of two machines m1 and m2, and
an intermediate buffer b between the machines.

(ii) The production line is synchronous, i.e., these two
machines have identical cycle time (namely, processing
time), which is denoted by τ (in min).

(iii) Machine mi, i = 1, 2, obeys the exponential reliability
model, which is characterized by breakdown rate λi and
repair rate µi (both in 1/min). Specifically, if mi is up, it
will go down during each infinitesimal interval δt with
rate λi; if it is down, it will go up during δt with rate µi.
Herein, λi is fixed and µi can be selected in (0,+∞).
Note that for mi, i = 1, 2, its efficiency is ei = µi

λi+µi
.

(iv) The buffer capacity is N , which is an integer and 0 <
N < +∞.

(v) The flow model [2] is assumed, i.e., infinitesimal quan-
tity of parts, produced during an infinitesimal time
interval, are transferred to and from the buffer. If m1

breaks down and the buffer is empty, m2 is starved; if
m2 breaks down and the buffer is full, m1 is blocked.
Machine m1 is never starved and m2 never blocked.
Machine failures are time-dependent [2], i.e., a machine
can be down even if it is starved or blocked.

(vi) When machine mi, i = 1, 2, is up, the power it
consumes is Pi; when mi is down, it doesn’t consume
any power. Herein, 0 < Pi < +∞.

B. Problem Statement

In this subsection, the problem of reducing the total energy
consumed by machines of the exponential line defined by
model (i)-(vi) will be addressed. To be specific, by elaborately
selecting a pair of machine repair rates, (µ1, µ2), the total
energy consumption is minimized and meanwhile, the system
productivity is maintained at a level not less than a required
production rate, PRr. To mathematically formulate the prob-
lem, the production rate, PR, of the two-machine synchronous
exponential line, is reviewed in the following.

The performance of the two-machine synchronous expo-
nential line has been comprehensively analyzed in [14] and
[2]. Specifically, the production rate of the two-machine syn-
chronous exponential line is

PR = e2

[
1−Q(τ, λ1, µ1, λ2, µ2, N)

]
. (1)

The Q-function in (1), which is abbreviated as Q, is expressed
as

Q =

{
(1−e1)(1−φ)

1−φ exp(−βN) , if λ1
µ1
6= λ2

µ2
,

(λ1+λ2)(1−e1)
2

Nτλ1λ2+(λ1+λ2)(1−e1)
, if λ1

µ1
= λ2

µ2
,

(2)

where

ei =
µi

λi + µi
, i = 1, 2,

φ =
e1(1− e2)

e2(1− e1)
,

β =
τ(λ1 + λ2 + µ1 + µ2)(λ1µ2 − λ2µ1)

(λ1 + λ2)(µ1 + µ2)

=
τλ1λ2(e2 − e1)

[
λ1(1− e2) + λ2(1− e1)

]

(1− e1)(1− e2)(λ1 + λ2)
[
λ1e1(1− e2) + λ2e2(1− e1)

] .

(3)

Let (τ, λ1, µ1, λ2, µ2, N) denote the two-machine syn-
chronous exponential line defined by model (i)-(vi). Now we
examine the production rate of two lines, (τ, λ1, µ1, λ2, µ2, N)
and (1, λ1τ, µ1τ, λ2τ, µ2τ, N). From (1)-(3), it is easy to
check that both production lines have identical ei, φ,
and β, and thus, have identical Q and PR. In other
words, for any two-machine synchronous exponential line
(τ, λ1, µ1, λ2, µ2, N), there exists a “production rate equiv-
alent” line, of which the machine cycle time is the unit time.
To simplify the analysis, without loss of generality, in the
following, we focus on the energy consumption optimiza-
tion of line (1, λ1, µ1, λ2, µ2, N), of which the breakdown
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and repair rates have been adapted accordingly. Meanwhile,
Q(1, λ1, µ1, λ2, µ2, N) is rewritten as Q(λ1, µ1, λ2, µ2, N).

For Q(λ1, µ1, λ2, µ2, N) in (2), the expression for λ1
µ1

= λ2
µ2

can be derived from the one for λ1
µ1
6= λ2

µ2
. In fact, for λ1

µ1
6= λ2

µ2
(i.e., e1 6= e2), we have

lim
e2→e1

(1− e1)(1− φ)

1− φ exp(−βN)
=

(λ1 + λ2)(1− e1)
2

Nλ1λ2 + (λ1 + λ2)(1− e1)
, (4)

which implies that the expression of Q-function for λ1
µ1
6= λ2

µ2

could be regarded as a general form and the one for λ1
µ1

= λ2
µ2

as its special case. In this case, to facilitate the analysis in
the following, the expression of Q-function for λ1

µ1
6= λ2

µ2
is

used if not otherwise specified. It should be pointed out that
Q(λ1, µ1, λ2, µ2, N), which represents the probability of part
shortage and takes value on (0, 1), is strictly decreasing in µ1

and strictly increasing in µ2, and PR is strictly increasing in
µ1 and µ2 (and thus, in e1 and e2), respectively (see [2] for
details).

III. PROBLEM FORMULATION AND ANALYSIS

In this section, first, the energy consumption optimization
problem for the two-machine synchronous exponential serial
line is mathematically formulated in Subsection III-A, and
then, two nonlinear optimality equations for solving the energy
consumption optimization problem is derived in Subsection
III-B.

A. Problem Formulation and Transformation

Considering the expression of the production rate in (1)
and the analysis in Subsection II-B, the energy consumption
optimization problem for the two-machine synchronous expo-
nential line is mathematically formulated as follows:

(P1) min z =
2∑

i=1

Piei (5)

s.t.: e2

[
1−Q(λ1, µ1, λ2, µ2, N)

]
> PRr, (6)

µi > 0, i = 1, 2, (7)

where PRr is the required production rate.
In problem (P1), machine breakdown rates λ1 and λ2

are fixed, and machine repair rates µ1 and µ2 are decision
variables. Noting the expression of machine efficiency in (3),
(P1) can be rewritten as

(P1’) min z =
2∑

i=1

Piei (8)

s.t.: e2

[
1−Q(e1, e2, N ;λ1, λ2)

]
> PRr, (9)

0 < ei < 1, i = 1, 2, (10)

where e1 and e2 are decision variables and the Q-function and
β have been rewritten as a function of ei, i = 1, 2. Considering
that λ1 and λ2 are fixed, unless otherwise specified, in
the following, the Q-function in (9) will be abbreviated as
Q(e1, e2, N) or Q. Note that, since ei, i = 1, 2, is strictly
increasing in µi and µi ∈ (0,+∞), it could take any value
on (0, 1), which is expressed as constraint (10). Furthermore,
considering that PR is a strictly increasing function of µi (and

thus of ei), i = 1, 2, it is easy to check that the production
rate PR in (1) could take any value on (0, 1) as well.

To facilitate to solve (P1’), similar to the Bernoulli and
geometric lines, a new problem is introduced as follows:

(P2) min z =
2∑

i=1

Piei (11)

s.t.: e2

[
1−Q(e1, e2, N)

]
= PRr, (12)

0 < ei < 1, i = 1, 2. (13)

The only difference between (P2) and (P1’) is the production
rate constraint. The monotonicity of the optimal objective
value of (P2) is analyzed. As a result, we have:

Theorem 3.1: The optimal objective value, z∗, of (P2), is
strictly increasing in PRr.

Proof: See the Appendix.
Theorem 3.1 connects problems (P1’) and (P2). Specifically,

the relationship between (P1’) and (P2) is as follows.
Corollary 3.1: Problem (P1’) is essentially equivalent to

(P2). In other words, constraint (9) in (P1’) can be replaced
by (12) in (P2).

Corollary 3.1 can be proved by contradiction. Due to space
limitations, the proof is omitted here.

Corollary 3.1 indicates that (P1) and (P2) are equivalent to
each other, which implies that (P1) and (P2) have identical
optimal solution. In the following subsections, (P2) is further
analyzed and an algorithm to solve the optimal solution is
developed.

B. Nonlinear Optimality Equations

Similar to the analysis approach developed for the Bernoulli
and geometric lines, for the two-machine synchronous expo-
nential line, two optimality equations that the optimal solution
of (P2) satisfies are derived in this section.

Based on the insights gained from the two-machine
Bernoulli and geometric lines in [4] and [7], respectively, one
of the optimality equations of (P2) is (12). Clearly, (12) can
be regarded as a contour of the production rate, on which
the relationship between e1 and e2 is characterized. Since the
production rate is strictly increasing in e1 and e2, for a fixed
PRr, e2 can be regarded as an implicit decreasing function of
e1. The behavior of the implicit function e2 with respect to e1

for different PRr, N , and λi’s is shown in Fig. 2.

(a) λ1 = 0.1, λ2 = 10 (b) λ1 = λ2 = λ (PRr = 0.5)

Fig. 2: Implicit function e2 with respect to e1

Based on the optimality equation (12), the feasible region
of e1 and e2 can be analyzed. From the results in [2], it
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follows that Q ∈ (0, 1), which, combining with (12), implies
that e2 > PRr. Taking into account the reversibility of the
production line [2], we have e1 > PRr. Combining the above
two inequalities with (13), we have:

PRr < ei < 1, i = 1, 2. (14)

As for the other optimality equation, it is derived by the
Lagrange multiplier method employed in [4] and [7]. For this
purpose, we first solve ē, which is the solution of equation

ē
[
1−Q(ē, ē, N)

]
= PRr. (15)

Clearly, (ē, ē) is the point that e1 = e2 on the production rate
contour e2

[
1 − Q(e1, e2, N)

]
= PRr. Re-writing (15) and

re-arranging the terms, we have

ē3 − ē2 −
( Nλ1λ2

λ1 + λ2
+ PRr

)
ē + PRr

( Nλ1λ2

λ1 + λ2
+ 1

)
= 0. (16)

Theorem 3.2: For Equation (16), it has a unique solution
on (0, 1). Specifically, this solution is expressed as

ē = ω2 3

√
−q

2
+
√

∆ + ω 3

√
−q

2
−
√

∆ +
1
3
, (17)

where

∆ =
(q

2
)2 +

(p

3
)3

,

p =− Nλ1λ2

λ1 + λ2
− PRr − 1

3
,

q =
(
PRr − 1

3
) Nλ1λ2

λ1 + λ2
+

2
3
PRr − 2

27
,

ω =
−1 +

√
3i

2
,

(18)

and i =
√−1 is the imaginary unit of complex numbers.

Proof: See the Appendix.
Now we derive the second optimality equation. As a result,

we have:
Theorem 3.3: The other optimality function that the optimal

solution of (P2) satisfies is

f(e1) =
P1

P2
, (19)

where f(e1) is a positive continuous function expressed as

f(e1) =

{
fn(e1)
fd(e1)

, if e1 6= ē,

f(ē), if e1 = ē,
(20)

and

fn(e1) =e2(1− e2)
2(e2

1 − e2)(1− e1)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

+ Ne1e2λ1λ2(e1 − e2)(1− e2)
2

· [λ2
1(1− e2)(e

2
1 + e2 − 2e1e2)

+ 2λ1λ2(1− e1)e2(1− e2) + λ2
2(1− e1)

2e2

]

+ (1− e1)
3e2

2(1− e2)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

exp(βN),

(21)

fd(e1) =e1(1− e1)
2(e2

2 − e1)(1− e2)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

+ Ne1e2λ1λ2(1− e1)
2(e2 − e1)

· [λ2
1e1(1− e2)

2 + 2λ1λ2e1(1− e1)(1− e2)

+ λ2
2(1− e1)(e1 − 2e1e2 + e2

2)
]

+ e2
1(1− e1)(1− e2)

3(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

exp(−βN),

(22)

f(ē) =
B

A
,

A =λ2
1ē(1− ē)(3PR2

r − 5PRr ē2 − PRr + 4ē3 − ē2)

+ λ1λ2N(PRr − ē)2
[
λ1(3ē− 1) + λ2(ē− 1)

]

+ 2λ1λ2(1− ē)(3PR2
r ē− PR2

r − 5PRr ē3 + PRr ē2

+ 4ē4 − 2ē3) + λ2
2(1− ē)(3PR2

r ē− 2PR2
r

− 5PRr ē3 + 2PRr ē2 + PRr ē + 4ē4 − 3ē3),

B =λ2
2ē(1− ē)(3PR2

r − 5PRr ē2 − PRr + 4ē3 − ē2)

+ λ1λ2N(PRr − ē)2
[
λ2(3ē− 1) + λ1(ē− 1)

]

+ 2λ1λ2(1− ē)(3PR2
r ē− PR2

r − 5PRr ē3 + PRr ē2

+ 4ē4 − 2ē3) + λ2
1(1− ē)(3PR2

r ē− 2PR2
r

− 5PRr ē3 + 2PRr ē2 + PRr ē + 4ē4 − 3ē3).

(23)

Proof: See the Appendix.
Since function f(e1) is derived from the Lagrangian func-

tion of the energy consumption optimization problem (P2), it
is called the energy consumption characteristic function. The
energy consumption characteristic function of the two-machine
synchronous exponential line for various PRr, N , and λi’s is
shown in Fig. 3.

(a) λ1 = 0.5, λ2 = 2 (b) λ1 = 2, λ2 = 0.5

(c) λ1 = 0.05, λ2 = 0.05 (d) λ1 = 0.5, λ2 = 0.5

(e) λ1 = 1, λ2 = 1 (f) λ1 = 2, λ2 = 2

Fig. 3: The behavior of function f(e1)
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In the next section, an effective and efficient algorithm will
be designed to solve the optimality equations (12) and (45).

IV. SOLUTION METHODOLOGY

In this section, a method for solving the optimality equations
(12) and (45) (and thus, solving the optimal solution of
problem (P2)) is proposed. Specifically, in Subsection IV-A,
mathematical properties of f(e1) are further explored; in
Subsection IV-B, based on the properties of f(e1), an effective
and efficient algorithm is designed to solve the optimality
equations.

A. Properties of the Energy Consumption Characteristic
Function

Clearly, to solve problem (P2), it is necessary to solve
the optimality equations (12) and (45). Considering that the
energy consumption characteristic function f(e1) is critical for
solving the optimality equations, its mathematical properties
are explored in this subsection.

First, the domain and range of f(e1) are analyzed. From
(14), it is easy to check that for both problem (P2) and f(e1),
e1 and e2 take values on (PRr, 1), which can be observed in
Fig. 3 as well. In addition, considering that

lim
e1→PRr

f(e1) = +∞, lim
e1→1

f(e1) = 0 (24)

and taking into account the continuity of f(e1), we conclude
that f(e1) takes value on (0,+∞), which can be observed in
Fig. 3.

From Fig. 3, one can also observe that f(e1) is strictly
decreasing in e1. Although it is very hard to prove the
monotonicity, the numerical method is adopted to justify it.
To do that, 1000 test cases with parameters randomly and
equiprobably selected from the following sets are constructed:

λi ∈ (0, 10), i = 1, 2, PRr ∈ (0, 1),
N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. (25)

For all test cases, e1 is selected as PRr + 0.01k(1 − PRr),
k = 1, 2, . . . , 99, and ∆f(e1) = f(e1 + ∆e1) − f(e1) is
calculated for each e1, where ∆e1 = 10−4. As a result, we
have:

Numerical Fact 4.1: For all of the 1000 test cases thus
constructed, ∆f(e1) is always negative for all values of e1,
which implies that f(e1) is strictly decreasing in e1.

Based on Theorem 3.3 and the analysis in the current
subsection, we conclude that similar to the Bernoulli and
geometric reliability models, the energy consumption charac-
teristic function for the synchronous exponential line is also of
good mathematical properties such as positiveness, continuity,
and strict monotonicity. On the basis of these properties, an
algorithm for solving the optimality equations is designed in
the next subsection.

B. Algorithm Design

From the previous sections, it is concluded that f(e1) is a
strictly decreasing function on (PRr, 1) and takes values on
(0,+∞). Due to the monotonicity of functions e2(e1) and

f(e1), for any P1
P2

, the optimality equations (12) and (45)
always have a unique solution (e∗1, e

∗
2). It is not difficult to

check that this unique solution is the optimal solution of
(P2). Based on the value of P1

P2
, the qualitative relationship

between e∗1, e∗2, and ē is as follows: if P1
P2

= f(ē), then
e∗1 = e∗2 = ē; if P1

P2
< f(ē) (or P1

P2
> f(ē)), then e∗2 < ē < e∗1

(and correspondingly, e∗1 < ē < e∗2), where ē and f(ē) are
expressed in (17) and (23), respectively. In the following, a
method is proposed to effectively and efficiently solve (e∗1, e

∗
2)

for P1
P2
6= f(ē).

Clearly, it is almost impossible to provide the closed-form
expression of the optimal solution (e∗1, e

∗
2) for P1

P2
6= f(ē).

In this case, a bisection algorithm is proposed to numerically
solve (e∗1, e

∗
2). Specifically, if P1

P2
< f(ē) (or P1

P2
> f(ē)), a

bisection search is performed on (ē, 1) (and correspondingly,
(PRr, ē)) to solve e∗1. Taking the case of P1

P2
< f(ē) as

an example, let eL
1 = ē and eU

1 = 1 denote the initial
lower- and upper-endpoint of the bisection interval, respec-
tively. Let ê1 = eL

1 +eU
1

2 , solve ê2 from the implicit function
ê2

[
1−Q(ê1, ê2, N)

]
= PRr, and by using (ê1, ê2), calculate

f(ê1) based on (20), (21), and (22). If |f(ê1) − P1
P2
| < ε

(where ε is a predefined small enough positive real number),
then (e∗1, e

∗
2) = (ê1, ê2) and the search ends. Otherwise, if

f(ê1) > P1
P2

(or f(ê1) < P1
P2

), eL
1 is set to ê1 and eU

1

remains unchanged (or correspondingly, eU
1 is set to ê1 and

eL
1 remains unchanged). The bisection process is repeated

until |f(ê1) − P1
P2
| < ε is satisfied. Similarly, for the case

of P1
P2

> f(ē), initializing eL
1 = PRr and eU

1 = ē and
performing the above bisection search will obtain (e∗1, e

∗
2).

The flowchart of the bisection search algorithm for solving
(P2) with P1

P2
< f(ē) is shown in Fig. 4.

Fig. 4: Flowchart of the algorithm for solving (P2) with P1
P2

<
f(ē)

On the basis of the developed bisection search algorithm,
extensive numerical experiments for various PRr, N , P1

P2
, λ1,

and λ2 have been conducted. Some of the test cases and their
optimal solutions are shown in Table I, where, without loss
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of generality, the optimal objective value z∗ is provided for
P2 = 1.

TABLE I: Optimal solution of (P2) for various test cases (P2 =
1)

No. P1
P2

N PRr λ1 λ2 e∗1 e∗2 z∗

1 0.5 1 0.5 0.5 0.5 0.7589 0.5498 0.9292
2 0.5 1 0.5 0.5 2 0.7134 0.5419 0.8986
3 0.5 1 0.5 2 0.5 0.7099 0.5522 0.9072
4 0.5 1 0.5 2 2 0.6250 0.5363 0.8488
5 0.5 1 0.9 0.5 0.5 0.9341 0.9071 1.3742
6 0.5 1 0.9 0.5 2 0.9249 0.9060 1.3685
7 0.5 1 0.9 2 0.5 0.9247 0.9062 1.3686
8 0.5 1 0.9 2 2 0.9121 0.9037 1.3597
9 0.5 2 0.5 0.5 0.5 0.6880 0.5465 0.8905
10 0.5 2 0.5 0.5 2 0.6476 0.5347 0.8585
11 0.5 2 0.5 2 0.5 0.6411 0.5442 0.8647
12 0.5 2 0.5 2 2 0.5763 0.5243 0.8124
13 0.5 2 0.9 0.5 0.5 0.9210 0.9056 1.3661
14 0.5 2 0.9 0.5 2 0.9146 0.9042 1.3615
15 0.5 2 0.9 2 0.5 0.9145 0.9043 1.3615
16 0.5 2 0.9 2 2 0.9066 0.9021 1.3554
17 1 1 0.5 0.5 0.5 0.6369 0.6369 1.2739
18 1 1 0.5 0.5 2 0.6270 0.6043 1.2313
19 1 1 0.5 2 0.5 0.6043 0.6270 1.2313
20 1 1 0.5 2 2 0.5732 0.5732 1.1464
21 1 1 0.9 0.5 0.5 0.9184 0.9184 1.8369
22 1 1 0.9 0.5 2 0.9141 0.9138 1.8279
23 1 1 0.9 2 0.5 0.9138 0.9141 1.8279
24 1 1 0.9 2 2 0.9072 0.9072 1.8143
25 1 2 0.5 0.5 0.5 0.6054 0.6054 1.2108
26 1 2 0.5 0.5 2 0.5905 0.5757 1.1662
27 1 2 0.5 2 0.5 0.5757 0.5905 1.1662
28 1 2 0.5 2 2 0.5459 0.5459 1.0917
29 1 2 0.9 0.5 0.5 0.9120 0.9120 1.8240
30 1 2 0.9 0.5 2 0.9086 0.9085 1.8171
31 1 2 0.9 2 0.5 0.9085 0.9086 1.8171
32 1 2 0.9 2 2 0.9040 0.9040 1.8080
33 2 1 0.5 0.5 0.5 0.5498 0.7589 1.8584
34 2 1 0.5 0.5 2 0.5522 0.7099 1.8144
35 2 1 0.5 2 0.5 0.5419 0.7134 1.7972
36 2 1 0.5 2 2 0.5363 0.6250 1.6976
37 2 1 0.9 0.5 0.5 0.9071 0.9341 2.7483
38 2 1 0.9 0.5 2 0.9062 0.9247 2.7372
39 2 1 0.9 2 0.5 0.9060 0.9249 2.7369
40 2 1 0.9 2 2 0.9037 0.9121 2.7194
41 2 2 0.5 0.5 0.5 0.5465 0.6879 1.7809
42 2 2 0.5 0.5 2 0.5442 0.6411 1.7295
43 2 2 0.5 2 0.5 0.5346 0.6476 1.7169
44 2 2 0.5 2 2 0.5243 0.5763 1.6248
45 2 2 0.9 0.5 0.5 0.9056 0.9210 2.7321
46 2 2 0.9 0.5 2 0.9043 0.9145 2.7231
47 2 2 0.9 2 0.5 0.9042 0.9146 2.7230
48 2 2 0.9 2 2 0.9021 0.9066 2.7108

V. CONCLUSIONS AND FUTURE WORK

The energy consumption optimization problem for the two-
machine synchronous exponential serial lines has been investi-
gated in this paper. Although this problem has been analyzed
and solved for Bernoulli and geometric lines, it is the first
time that it is formulated and solved for production lines with
continuous reliability models (i.e., continuous probability dis-
tributions characterizing the reliability of machines). Similar
to the Bernoulli and geometric lines, the energy consumption
optimization problem for the two-machine synchronous expo-
nential line is mathematically formulated and analyzed, and
an effective and efficient algorithm is designed to solve its
optimal solution.

In the future, the research results of this paper will be
extended to more complex lines including, but not limited
to, two-machine asynchronous exponential serial lines, long
exponential serial lines and assembly systems with multiple
machines, production lines with non-Markovian, e.g., Weibull,
gamma, and log-normal, reliability models, and re-entrant lines
for semiconductor manufacturing.

APPENDIX

PROOFS OF THEOREMS

A. Proof of Theorem 3.1

Proof: Re-writing (1) as

PR = e2

[
1−Q(e1, e2, N)

]
(26)

and taking into account that the Q-function is continuous, it is
concluded that PR is a continuous function of both e1 and e2

and takes values on (0, 1). Therefore, for any PRr ∈ (0, 1),
(P2) always has at least one feasible solution and thus, has the
optimal solution.

To prove the theorem, we choose PRr1 and PRr2 such
that 0 < PRr1 < PRr2 < 1, and let (P2’) and (P2”)
denote (P2) with PRr replaced by PRr1 and by PRr2,
respectively. In addition, denote the optimal solutions of (P2’)
and (P2”) as (e∗1,r1, e

∗
2,r1) and (e∗1,r2, e

∗
2,r2), respectively, and

their corresponding optimal values as z∗r1 and z∗r2. Construct
a solution (e∗1,r2, ê2,r1) of (P2’) which satisfies PRr1 =
ê2,r1

[
1−Q(e∗1,r2, ê2,r1, N)

]
. Considering that the production

rate of (e∗1,r2, e
∗
2,r2) is PRr2 and taking into account the

monotonicity of PR with respect to e2, we have

0 < ê2,r1 < e∗2,r2 < 1. (27)

Clearly, (27) shows that 0 < ê2,r1 < 1, which indicates
that (e∗1,r2, ê2,r1) is a feasible solution of (P2’). Thus, for
the optimal solution (e∗1,r1, e

∗
2,r1) and the feasible solution

(e∗1,r2, ê2,r1) of (P2’), and the optimal solution (e∗1,r2, e
∗
2,r2)

of (P2”), taking into account (27), we have

z∗r1 =
2∑

i=1

Pie
∗
i,r1 6 P1e

∗
1,r2 + P2ê2,r1

<
2∑

i=1

Pie
∗
i,r2 = z∗r2,

(28)

which completes the proof.

B. Proof of Theorem 3.2

Proof: Let

g(x) = x3 − x2 −
( Nλ1λ2

λ1 + λ2
+ PRr

)
x + PRr

( Nλ1λ2

λ1 + λ2
+ 1

)
.

(29)

Clearly, ē is one of the solutions of g(x) = 0.
To solve ē, the solutions of g(x) = 0 should be compre-

hensively analyzed. Obviously, g(x) = 0 is a univariate cubic
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equation and has three roots in the field of complex numbers.
For function g(x), it is easy to obtain

lim
x→−∞

g(x) = −∞, g(0) = PRr

( Nλ1λ2

λ1 + λ2
+ 1

)
> 0,

lim
x→+∞

g(x) = +∞, g(1) = (PRr − 1)
Nλ1λ2

λ1 + λ2
< 0,

(30)

which, based on the zero-point existence theorem, implies that
g(x) = 0 has at least one root in each of sets (−∞, 0), (0, 1),
and (1,+∞). Considering that g(x) = 0 has three roots in the
field of complex numbers, it is concluded that it has three real
roots, which are, respectively, located in (−∞, 0), (0, 1), and
(1,+∞). Clearly, ē is the one located in (0, 1).

According to Cardano’s formula for solving the cubic
equations, it is not difficult to derive the expression of ē in
(17).

C. Partial Derivatives

Before proving the following theorem, we need to derive the
partial derivatives of PR with respect to e1 and e2, respectively
(see the expression of PR in (1)).

First, we derive the partial derivatives of β, which is
expressed in (3), with respect to e1 and e2, respectively.
Let βn and βd denote the numerator and denominator of β,
respectively, then

βn =λ1λ2(e2 − e1)
[
λ1(1− e2) + λ2(1− e1)

]
,

βd =(1− e1)(1− e2)(λ1 + λ2)
· [λ1e1(1− e2) + λ2e2(1− e1)

]
.

(31)

Taking the partial derivative of β with respect to e1 and e2,
respectively, we have

∂β

∂e1
=

∂βn

∂e1
βd − ∂βd

∂e1
βn

β2
d

,

∂β

∂e2
=

∂βn

∂e2
βd − ∂βd

∂e2
βn

β2
d

,

(32)

where

∂βn

∂e1
βd − ∂βd

∂e1
βn

=λ1λ2(1− e1)(1− e2)(λ1 + λ2)
· [λ1(1− e2) + λ2(1 + e2 − 2e1)

]

· [λ1e1(1− e2) + λ2e2(1− e1)
]

− λ1λ2(1− e2)(e1 − e2)(λ1 + λ2)
· [λ1(1− 2e1)(1− e2)− 2λ2e2(1− e1)

]

· [λ1(1− e2) + λ2(1− e1)
]

=− λ1λ2(1− e2)2(λ1 + λ2)

· [λ2
1(1− e2)(e2

1 + e2 − 2e1e2)

+ 2λ1λ2(1− e1)e2(1− e2) + λ2
2(1− e1)2e2

]
,

(33)

∂βn

∂e2
βd − ∂βd

∂e2
βn

=λ1λ2(1− e1)(1− e2)(λ1 + λ2)
· [λ1(1 + e1 − 2e2) + λ2(1− e1)

]

· [λ1e1(1− e2) + λ2e2(1− e1)
]

− λ1λ2(1− e1)(e1 − e2)(λ1 + λ2)
· [λ2(1− e1)(1− 2e2)− 2λ1e1(1− e2)

]

· [λ1(1− e2) + λ2(1− e1)
]

=λ1λ2(1− e1)2(λ1 + λ2)

· [λ2
1e1(1− e2)2 + 2λ1λ2e1(1− e1)(1− e2)

+ λ2
2(1− e1)(e1 − 2e1e2 + e2

2)
]
.

(34)

From (1)-(3), it is not difficult to obtain the following
expression:

PR =
e1e2

[
1− e1 − (1− e2) exp(−βN)

]

(1− e1)e2 − (1− e2)e1 exp(−βN)
. (35)

Similarly, let PRn and PRd denote the numerator and denom-
inator of PR, respectively, i.e.,

PRn =e1e2

[
1− e1 − (1− e2) exp(−βN)

]
,

PRd =(1− e1)e2 − (1− e2)e1 exp(−βN).
(36)

Then, the partial derivatives of PR with respect to e1 and e2

are derived as follows:

∂PR

∂e1
=

∂PRn

∂e1
PRd − ∂PRd

∂e1
PRn

PR2
d

,

∂PR

∂e2
=

∂PRn

∂e2
PRd − ∂PRd

∂e2
PRn

PR2
d

,

(37)

where

∂PRn

∂e1
PRd −

∂PRd

∂e1
PRn

=

[
e2(1− 2e1) + e2(1− e2)

(
− 1 + e1

∂β

∂e1
N

)
exp(−βN)

]

· [(1− e1)e2 − (1− e2)e1 exp(−βN)
]

−
[
− e2 + (1− e2)

(
− 1 + e1

∂β

∂e1
N

)
exp(−βN)

]

· e1e2

[
1− e1 − (1− e2) exp(−βN)

]

=(1− e1)2e2
2 +

[
e2(1− e2)(e2

1 − e2)

+ e1e2(1− e1)(1− e2)(e2 − e1)
∂β

∂e1
N

]
exp(−βN),

∂PRn

∂e2
PRd −

∂PRd

∂e2
PRn

=

{[
− e1(1− 2e2) + e1e2(1− e2)

∂β

∂e2
N

]
exp(−βN)

+ e1(1− e1)

}[
(1− e1)e2 − (1− e2)e1 exp(βN)

]

−
{

1− e1 + e1

[
1 + (1− e2)

∂β

∂e2
N

]
exp(−βN)

}

· e1e2

[
1− e1 − (1− e2) exp(−βN)

]

=exp(−βN)
[
e1e2(1− e1)(1− e2)(e2 − e1)

∂β

∂e2
N

+ e1(1− e1)(e2
2 − e1)

]
+ e2

1(1− e2)2 exp(−2βN).

(38)
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D. Proof of Theorem 3.3

Proof: To prove the theorem, construct the Lagrangian
function of (P2) as follows:

z =
2∑

i=1

Piei + η
[
e2(1−Q)− PRr

]
, (39)

where η is the Lagrangian multiplier. Taking the partial
derivative of z with respect to e1 and e2, respectively, and
noting that Q is continuously differentiable, we have

P1 − ηe2
∂Q

∂e1
= 0,

P2 + η

[
(1−Q)− e2

∂Q

∂e2

]
= 0,

(40)

which imply

P1

P2
=

e2
∂Q
∂e1

e2
∂Q
∂e2

− (1−Q)
. (41)

From (1), it follows

∂PR
∂e1

∂PR
∂e2

=
e2

∂Q
∂e1

e2
∂Q
∂e2

− (1−Q)
. (42)

Thus, combining the above two equations, we have

P1

P2
=

∂PR
∂e1

∂PR
∂e2

. (43)

Let

fn(e1) :=
∂PR
∂e1

PR2
d exp(βN)β2

d

(1− e1)(1− e2)(λ1 + λ2)

=

(
∂PRn

∂e1
PRd − ∂PRd

∂e1
PRn

)
exp(βN)β2

d

(1− e1)(1− e2)(λ1 + λ2)
,

fd(e1) :=
∂PR
∂e2

PR2
d exp(βN)β2

d

(1− e1)(1− e2)(λ1 + λ2)

=

(
∂PRn

∂e2
PRd − ∂PRd

∂e2
PRn

)
exp(βN)β2

d

(1− e1)(1− e2)(λ1 + λ2)
,

f(e1) :=
fn(e1)
fd(e1)

,

(44)

then we have the optimality equation

f(e1) =
P1

P2
(45)

and

fn(e1) =e2(1− e2)
2(e2

1 − e2)(1− e1)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

+ Ne1e2λ1λ2(e1 − e2)(1− e2)
2

· [λ2
1(1− e2)(e

2
1 + e2 − 2e1e2)

+ 2λ1λ2(1− e1)e2(1− e2) + λ2
2(1− e1)

2e2

]

+ (1− e1)
3e2

2(1− e2)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

exp(βN),

(46)

fd(e1) =e1(1− e1)
2(e2

2 − e1)(1− e2)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

+ Ne1e2λ1λ2(1− e1)
2(e2 − e1)

· [λ2
1e1(1− e2)

2 + 2λ1λ2e1(1− e1)(1− e2)

+ λ2
2(1− e1)(e1 − 2e1e2 + e2

2)
]

+ e2
1(1− e1)(1− e2)

3(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

exp(−βN).

(47)

Since PR is increasing in e1 and e2, respectively, it is clear
that fn(e1) > 0 and fd(e1) > 0. Note that if and only
if e1 = ē, fn(e1) = fd(e1) = 0. In other words, f(e1)
is a positive continuous function when e1 6= ē. Although
expressions in (44) define f(e1) only for e1 6= ē, they could
be regarded as the general definition of f(e1) and f(ē) be
derived by investigating lim

e1→ē
f(e1). Adopting this concept,

the expression of f(ē) is derived and the positiveness and
continuity of f(e1) at e1 = ē are proved in the following.

First, we derive the expression of f(ē) from expressions in
(44). Based on the optimality equation (12) and production
rate expression(1)-(3), we have

exp(βN) =
e1(1− e2)(e2 − PRr)
e2(1− e1)(e1 − PRr)

. (48)

To facilitate the derivation, re-denote fn(e1) and fd(e1) as
Gn(e1, e2) and Gd(e1, e2), respectively, and take into account
(48), then we have

Gn(e1, e2) =e2(1− e2)
2(e2

1 − e2)(1− e1)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

+ Ne1e2λ1λ2(e1 − e2)(1− e2)
2

· [λ2
1(1− e2)(e

2
1 + e2 − 2e1e2)

+ 2λ1λ2(1− e1)e2(1− e2) + λ2
2(1− e1)

2e2

]

+ (1− e1)
2e1e2(1− e2)

2(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2 e2 − PRr

e1 − PRr
,

(49)

Gd(e1, e2) =e1(1− e1)
2(e2

2 − e1)(1− e2)(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2

+ Ne1e2λ1λ2(1− e1)
2(e2 − e1)

· [λ2
1e1(1− e2)

2 + 2λ1λ2e1(1− e1)(1− e2)

+ λ2
2(1− e1)(e1 − 2e1e2 + e2

2)
]

+ e1e2(1− e1)
2(1− e2)

2(λ1 + λ2)

· [λ1e1(1− e2) + λ2e2(1− e1)
]2 e1 − PRr

e2 − PRr
.

(50)

Thus,

f(ē) = lim
e1→ē

f(e1) = lim
e1→ē

Gn(e1, e2)
Gd(e1, e2)

. (51)

Furthermore, it is easy to check that

Gn(ē, ē) = 0, Gd(ē, ē) = 0. (52)

To derive f(ē) using the Taylor expansion, partial deriva-
tives of bivariate functions Gn(e1, e2) and Gd(e1, e2) with
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respect to e1 and e2 are obtained as follows:

An1 =
∂Gn(e1, e2)

∂e1

∣∣∣∣
e1=e2=ē

=ē3(1− ē)4(λ1 + λ2)
2

·
[
(ē2 − PRr)(1− ē)(λ1 + λ2)

ē− PRr
+ Nλ1λ2

]
,

(53)

An2 =
∂Gn(e1, e2)

∂e2

∣∣∣∣
e1=e2=ē

=− ē3(1− ē)4(λ1 + λ2)
2

·
[
(ē2 − PRr)(1− ē)(λ1 + λ2)

ē− PRr
+ Nλ1λ2

]
,

(54)

Ad1 =
∂Gd(e1, e2)

∂e1

∣∣∣∣
e1=e2=ē

=− ē3(1− ē)4(λ1 + λ2)
2

·
[
(ē2 − PRr)(1− ē)(λ1 + λ2)

ē− PRr
+ Nλ1λ2

]
,

(55)

Ad2 =
∂Gd(e1, e2)

∂e2

∣∣∣∣
e1=e2=ē

=ē3(1− ē)4(λ1 + λ2)
2

·
[
(ē2 − PRr)(1− ē)(λ1 + λ2)

ē− PRr
+ Nλ1λ2

]
.

(56)

Clearly,

An1 = −An2 = −Ad1 = Ad2

=ē3(1− ē)4(λ1 + λ2)
2

·
[
(ē2 − PRr)(1− ē)(λ1 + λ2)

ē− PRr
+ Nλ1λ2

]

=ē3(1− ē)4(λ1 + λ2)
3

·
[

ē3 − ē2 − (Nλ1λ2
λ1+λ2

+ PRr)ē + PRr(
Nλ1λ2
λ1+λ2

+ 1)

PRr − ē

]
.

(57)

Taking into account (16), we have

An1 = An2 = Ad1 = Ad2 = 0. (58)

Since all first-order partial derivatives are 0, the second-
order partial derivatives of Gn(e1, e2) and Gd(e1, e2) are
derived. As a result, we have

Bn1 =
∂2Gn(e1, e2)

∂e2
1

∣∣∣∣
e1=e2=ē

=
[
λ2

1λ2N(ē− 1)(PRr − ē)2 + λ1λ
2
2N(3ē− 1)(PRr − ē)2

+ 2λ1λ2(1− ē)(3PR2
r ē− PR2

r − 5PRr ē
3 + PRr ē

2 + 4ē4 − 2ē3)

+ λ2
2ē(1− ē)(3PR2

r − 5PRr ē
2 − PRr + 4ē3 − ē2)

+ λ2
1(3PR2

r ē− 2PR2
r − 5PRr ē

3 + 2PRr ē
2 + PRr ē + 4ē4 − 3ē3)

· (1− ē)
]2ē2(ē− 1)3(λ1 + λ2)

(ē− PRr)2
,

(59)

Bn2 = 2
∂2Gn(e1, e2)

∂e1∂e2

∣∣∣∣
e1=e2=ē

=
[
λ2

1λ2N(5ē− 1)(PRr − ē)2 + λ1λ
2
2N(ē− 1)(PRr − ē)2

+ 2λ1λ2(1− ē)(2PR2
r ē− PR2

r − 4PRr ē
2 + 2PRr ē + ē4)

+ λ2
2(1− ē)(2PR2

r ē− 3PR2
r − 2PRr ē

2 + 4PRr ē + ē4 − 2ē3)

+ λ2
1(1− ē)(2PR2

r ē + PR2
r − 6PRr ē

2 + ē4 + 2ē3)
]

· 2ē2(ē− 1)3(λ1 + λ2)

(ē− PRr)2
,

(60)

Bn3 =
∂2Gn(e1, e2)

∂e2
2

∣∣∣∣
e1=e2=ē

=
[
2λ2

1λ2N(3ē− 1)(PRr − ē) + 2λ1λ
2
2N(2ē− 1)(PRr − ē)

+ λ2
1(5ē− 1)(ē− 1)(ē2 − PRr) + λ2

2(5ē− 3)(ē− 1)(ē2 − PRr)

− 2λ1λ2(5ē− 2)(1− ē)(ē2 − PRr)
]2ē2(1− ē)3(λ1 + λ2)

PRr − ē
,

(61)

Bd1 =
∂2Gd(e1, e2)

∂e2
1

∣∣∣∣
e1=e2=ē

=
[
2λ2

1λ2N(2ē− 1)(PRr − ē) + 2λ1λ
2
2N(3ē− 1)(PRr − ē)

+ λ2
1(5ē− 3)(ē− 1)(ē2 − PRr) + λ2

2(5ē− 1)(ē− 1)(ē2 − PRr)

− 2λ1λ2(5ē− 2)(ē− 1)(PRr − ē2)
]2ē2(1− ē)3(λ1 + λ2)

PRr − ē
,

(62)

Bd2 = 2
∂2Gd(e1, e2)

∂e1∂e2

∣∣∣∣
e1=e2=ē

=
[
λ2

1λ2N(ē− 1)(PRr − ē)2 + λ1λ
2
2N(5ē− 1)(PRr − ē)2

+ 2λ1λ2(1− ē)(2PR2
r ē− PR2

r − 4PRr ē
2 + 2PRr ē + ē4)

+ λ2
1(1− ē)(2PR2

r ē− 3PR2
r − 2PRr ē

2 + 4PRr ē + ē4 − 2ē3)

+ λ2
2(1− ē)(2PR2

r ē + PR2
r − 6PRr ē

2 + ē4 + 2ē3)
]

· 2ē2(ē− 1)3(λ1 + λ2)

(ē− PRr)2
,

(63)

Bd3 =
∂2Gd(e1, e2)

∂e2
2

∣∣∣∣
e1=e2=ē

=
[
λ2

1λ2N(3ē− 1)(PRr − ē)2 + λ1λ
2
2N(ē− 1)(PRr − ē)2

+ 2λ1λ2(1− ē)(3PR2
r ē− PR2

r − 5PRr ē
3 + PRr ē

2 + 4ē4 − 2ē3)

+ λ2
1ē(1− ē)(3PR2

r − 5PRr ē
2 − PRr + 4ē3 − ē2)

+ λ2
2(3PR2

r ē− 2PR2
r − 5PRr ē

3 + 2PRr ē
2 + PRr ē + 4ē4 − 3ē3)

· (1− ē)
]2ē2(ē− 1)3(λ1 + λ2)

(ē− PRr)2
,

(64)

which indicate

Bn1 + Bn2 + Bn3 = 0,

Bd1 + Bd2 + Bd3 = 0,

Bn1 + Bd1 −Bn3 −Bd3 = 0.

(65)

Let e1 = ē+∆e1 and e2 = ē+∆e2, the second-order Taylor
expansions of Gn(e1, e2) and Gd(e1, e2) at e1 = e2 = ē are,
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respectively,

Gn(e1, e2) =Gn(ē, ē) +
∂Gn(e1, e2)

∂e1

∣∣∣∣
e1=e2=ē

·∆e1

+
∂Gn(e1, e2)

∂e2

∣∣∣∣
e1=e2=ē

·∆e2

+
1
2

[
∂2Gn(e1, e2)

∂e2
1

∣∣∣∣
e1=e2=ē

·∆e2
1

+ 2
∂2Gn(e1, e2)

∂e1∂e2

∣∣∣∣
e1=e2=ē

·∆e1∆e2

+
∂2Gn(e1, e2)

∂e2
2

∣∣∣∣
e1=e2=ē

·∆e2
2

]

+ o(∆e2
1) + o(∆e1∆e2) + o(∆e2

2)

=
1
2
[
Bn1∆e2

1 + Bn2∆e1∆e2 + Bn3∆e2
2

]

+ o(∆e2
1) + o(∆e1∆e2) + o(∆e2

2),

(66)

Gd(e1, e2) =Gd(ē, ē) +
∂Gd(e1, e2)

∂e2

∣∣∣∣
e1=e2=ē

·∆e1

+
∂Gd(e1, e2)

∂e2

∣∣∣∣
e1=e2=ē

·∆e2

+
1
2

[
∂2Gd(e1, e2)

∂e2
1

∣∣∣∣
e1=e2=ē

·∆e2
1

+ 2
∂2Gd(e1, e2)

∂e1∂e2

∣∣∣∣
e1=e2=ē

·∆e1∆e2

+
∂2Gd(e1, e2)

∂e2
2

∣∣∣∣
e1=e2=ē

·∆e2
2

]

+ o(∆e2
1) + o(∆e1∆e2) + o(∆e2

2)

=
1
2
[
Bd1∆e2

1 + Bd2∆e1∆e2 + Bd3∆e2
2

]

+ o(∆e2
1) + o(∆e1∆e2) + o(∆e2

2).

(67)

Since e1 and e2 satisfy (12), taking into account (15), it
is clear that when ∆e1 → 0, ∆e2 → 0. Thus, from (51), it
follows

f(ē) = lim
e1→ē

f(e1)

= lim
∆e1→0

Bn1∆e2
1 + Bn2∆e1∆e2 + Bn3∆e2

2

Bd1∆e2
1 + Bd2∆e1∆e2 + Bd3∆e2

2

= lim
∆e1→0

Bn1 + Bn2
∆e2
∆e1

+ Bn3(∆e2
∆e1

)2

Bd1 + Bd2
∆e2
∆e1

+ Bd3(∆e2
∆e1

)2

= lim
∆e1→0

Bn1 + Bn2e
′
2 + Bn3(e′2)

2

Bd1 + Bd2e′2 + Bd3(e′2)2
.

(68)

To obtain f(ē), e′2 is derived. Specifically, taking the total
derivative of both sides of (12), we have

(1−Q)de2 − e2

[
∂Q

∂e1
de1 +

∂Q

∂e2
de2

]
= 0, (69)

which implies

e′2 =
de2

de1
= − e2

∂Q
∂e1

e2
∂Q
∂e2

− (1−Q)
. (70)

Taking into account (42) and (44), we have

e′2 = −f(e1). (71)

Thus, we obtain the equation of f(ē) as follows:

f(ē) =
Bn1 −Bn2f(ē) + Bn3f

2(ē)
Bd1 −Bd2f(ē) + Bd3f2(ē)

, (72)

which can be rewritten as

Bd3f
3(ē)− (Bd2 + Bn3)f2(ē)

+ (Bd1 + Bn2)f(ē)−Bn1 = 0.
(73)

Taking into account (65), we have

(f(ē) + 1)2(Bd3f(ē)−Bn1) = 0. (74)

Considering that f(e1) is positive, we have

f(ē) =
Bn1

Bd3
, (75)

which, by re-arranging terms, can be rewritten as (23). Clearly,
f(e1) is positive and continuous at e1 = ē as well, which
implies that f(e1) is a positive and continuous function and
completes the proof.
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