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Abstract—Reducing energy consumption and raw material
waste in manufacturing systems processing perishable products
are of significant importance. While there has been extensive
research on yield analysis, control, and energy consumpiton
optimization in serial lines, studies considering both yield assur-
ance and energy consumption optimization are relatively scar
This paper aims to investigate energy consumption optimiza
in two-machine Bernoulli lines with constraints on product
rate and yield. Specifically, a chance constrained programimi
model for the problem is first formulated. Next, we 1
properties of opportunity constraints and simplify %

ro

Finally, based on the structural characteristics of t , we

propose optimality conditions and design a numericalNalgorithm
to obtain the unique optimal solution. 1ve, numerical
experiments demonstrate the effectiveness gorithm in

solving the energy consumption optimizs 'l m.

Index Terms—Production rate, yield, lea
strained programming, monotonicity.

time, chance con-

Production sy
during operation.Wakidg semiconductor production lines as an
example, statistical d@ta from 27 semiconductor corporations
worldwide indicates that the total energy consumption of these
semiconductor companies in 2021 was 1.49 x 10! kWh[1].
In addition to energy consumption, many production systems
that porcess perishable products impose high requirements on
the lead time (i.e. residence time, waiting time, flow time or
sojourn time) of parts in the buffer, and incur significant ¢
to handle parts with excessively long lead time. These hi
energy-consumption and material-wasting production s
are not conducive to reducing carbon emissions and@@hsetvi
resources. Therefore, reducing the energy cons iop of
these systems while minimizing waste is ofygreag practical
significance.

For some production lines, the leadgtime 'of ptaducts, which
defined as the time taken for a part to and Jeave a buffer,
is limited, and the quality of product§ deteridrates with increas-
ing lead time. These types of pr ion systems are referred
to as systems prosessing peri products and are common
in industries such as se ucters, food, chemicals, and
steel. Next, we will rowi earch on production systems
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for perishaducts from two perspectives: performance

analysi Serttrol strategies.

Ingter performance analysis, some scholars have stud-
e part lead time in production systems composed of unre-

achines and limited buffers. The average lead time in

arkovian-machine (i.e., machines following Bernoulli,

eometric, or exponential reliability models) serial lines is
ovided in [2]. The part lead time distribution in two-machine
geometric serial lines has been investigated and derived in
[3] and [4]. The latter also proposed a numerical algorithm
for computing the part lead time distribution of two-machine
serial lines with general Markovian machines. Other scholars
have analyzed the performence of Ber i and geometric
serial production lines with lead ti traints in [5] and
[6], respectively. Furthermore, sofie St ocus on reducing
product wastage by designing T cities [7] or control
strategies [8] in production systems?

The above studies primarily focus on part lead time, produc-
tion rate, and yield, wit less attention given to energy-
related indicators. reducing the energy consump-
tion of manufacturi ems, Yan et al. established a math-
ematical model fof” optimizing energy consumption in two-
machine Be@; serial lines in [9] and designed an effective

liab

numeric m to obtain theoretical optimal solutions.

Considerj practical application where machine efficiency

2
rangdes (0,1), [10] addressed the two-machine Bernoulli
optithization problem with machine efficiency constraints.

Q!O’

complex energy consumption optimization problems for
wo-machine geometric serial lines were investigated in [11]

d [12].

For the energy consumption optimization in longer serial
lines, in [13], the method is applicable to longer production
lines but can only obtain optimal solutions for small-scale
problems (i.e., systems with no more than 4 machines and
2 buffer capacities). To obtain the optimal solution for the
energy consumption optimization problem in long Bernoulli
serial lines, recursive and divide-and-conquer methods were
proposed in [14] and [15], respectively. Compared to the
former, the latter significantly improves the efficiency of
computing solution.

While there is extensive research on the analysis, evaluation,
and control of the lead time, as well as energy optimization
for unreliable serial lines, there is relatively less research
on energy optimization under the premise of ensuring yield,
which is a function of part lead time. Although [16] considered
the average lead time constraint, the yield constraint holds



more practical significance. To address this gap, we investigate
the energy optimization problem for two-machine Bernoulli
serial lines processing perishable products, as illustrated in
Fig. 1.

The following is the outline of the subsequent content. In
section II, a model for two-machine Bernoulli serial lines
processing perishable products is established and the energy
optimization problem is addressed. In Section III, by deriving
the expression and properties of the part lead time distribution,
the problem is mathematically formulated as a nonlinear
programming. Then we deduce the optimality conditions and
develop an effective algorithm to solve the problem in Section
IV. The proof of lemmas and theorems are provided in the
appendix.

II. PRODUCTION SYSTEM MODELING AND PROBLEM
STATEMENT

In this section, the two-machine Bernoulli serial line
formally modeled and the energy consumption optimiZati

problem is addressed in Subsections II-A and B¢ r
tively.

A. System Model Q
g ¢

The model of the two-machine Berrﬂ al line in Fig.

1 is assumed as follows:
ines mj and ms, and

een the machines.

s the Bernoulli reliabil-
ity model, which ctenzed by its efficiency p;.
Specificall y e time, m; is up with probabil-
ity p; and %l 1—p;. Herein, p; can be selected in
(0,1]. Both nes have identical cycle time (namely,
processing time), which is denoted by 7.

The time is divided in to equal time slots of 7. The
status of a machine (i.e., up or down) is determined at
the beginning of each time slot, and the state of the
buffer (i.e., the occupancy) is determined at the end of
each time slot. Transportation time from m to b
that from b to mo are ignored.
The buffer capacity is /N, which is an integer an
N < H4o0.
(v) Blocking before service is assumed. Speci , if*the
buffer is empty at the beginning of a t t, ma
is starved; if buffer b is full of parts % fails to
take a part from it, then m; is oc ine m is
never starved, and ms is never €d

= s p,'the power it
consumes is P;; when m; '%@n 1t doesn’t consume
any power. Herein, 0 i
The yield is define action of effective parts
delivered by th %‘ef ective rate of parts within

the lead ti j—1,LT}), denoted as ~y; for
eases as the lead time increases.
Here1n 0 Ys—1 < - <7y =1.

To avoid confusion, performance metrics related to the two-
machine Bernoulli line in Fig.1 are defined. These metrics are

(i) The system consists of
an intermediate buffer
(ii)) Machine m;, i =

(iii)

@iv)

(vi)

When machine m;, 1

(vii)

o

my b

Fig. 1: Two-machine Bernoulli serial lines processing perish-
able products

all measured when CStem is in a steady state. Specifically,

they are:

ratio of effective parts produced by ms to
umber of parts produced during a cycle.
ion rate PR: The average number of parts pro-
ced by mo during a cycle.
o )Scrap rate SR: The average number of scrapped parts at
ms during a cycle. Herein, SR = PR(1 —Y).

B. Problem Statement

In this subsection, the problem of reducing energy con-
sumption in two-machine Bernoulli serial lines defined by
models (i)-(vii) is addressed. Specificall selecting appro-
priate machine parameters (i.e. p; a Qis article aims
to minimize system energy con '\%' hile maintaining
system production rate and yia@% ven thresholds PR,
and Y,, respectively. In the following, with the intention
of mathematically formulating the problem, the preformance
metrics (i.e. production v%! yield) are reviewed separately.

The steady-state 43, pasice of the two-machine Bernoulli

lines has been compfehensively analyzed in [2]. Specifically,
the production ratgfof the two-machine Bernoulli line is

PR@Q(?ZaPlaN” (1)
% Q (p1,p2. N,

l—gz if & =
N, ifr=y,
tise oo 2
(1 —y)
a=""7 3)
y(1 —x)

The domain, range and continuity of the (@Q-function are
explored in [9]. Based on [9], for the sake of simplicity, we
denote Q(p1,p2, N) as Q. In the following, ) and « are
expressed as follows, if not otherwise specified:

p2—p
QZQ(PMP%N):m» 4
p1(1—p2)
N it 7 5
p2(1—p1) ©)

Apart from production rate, the yield of production lines
processing perishable products has also been investigated in-
tensively. Based on [4] and [5], we further extend the definition
of yield. Specifically, the yield is defined as the weighted sum



of the effective rate of products with different lead time, which
is expressed as:

Y =) vP{Li1 <LT < L;}. (6)

where LT is part lead time in two-machine Bernoulli serial
lines.

It is worth noting that when S = 1 and 73 = 1, Y =
P{LT < L;}, consistent with the definition in the [4]. In the
following section, based on previous research [3] and [5], an
analytical expression for Y is provided, and its properties are
proposed and analyzed.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, the energy consumption optimization prob-
lem with production rate and yield constraints mentioned in
Section II is formulated, analyzed, and transformed. Speci
cally, in III-A, the probability mass function and cumulati
distribution function of part lead time distribution in

machine Bernoulli serial lines are derived, and the p:
of the functions are analyzed. In III-B, the energy c@'
e

optimization problem is formulated and transf an
equivalent problem based on its structural ¢ teristics.
A. Derivation and Analysis of Part $ pstribution

For the purpose of deriving the st - probability mass
function, we adopt a similar app ﬁo that presented in [3].
Some random variables and gvengs defined to accurately
describe the state of the ine system. It is widely
adopted that s;(t) = 0 0 1'= 1,2, indicates machine
m; is down or u ate ning of time slot ¢ and H(t)
is the occupancyf of thewbuftfer at the end of time slot ¢. The
event that the refésencg part is added to the buffer at the end
of time slot ¢ is defined as A(t). The time slots a part spends
in the buffer under the condition that it arrives at time ¢ is
denoted as T'(t).

A conditional probability model is formulated to calculate
the conditional probability of the time spent by a part from
arriving the buffer to leaving it, given the system state. Based
on assumption(ii), the states of my at time slot £ and ¢+ 1
independent. Consequently, the definition of P{T'(t) = k
[3] is rewritten as:

min{k,N}

>

h=1

PAT(t) =k} = [P{T(t) = k| H(

-P{H(t ) = h
To avoid recursion, the event {7(t) = h,A(t)}
is construed as two simultaneous infep t events. One of
them is processing h —1 parts in time slots (from ¢ to ¢+
k —1). The other is that the refercce part is processed by m
at time slot ¢ + k. Consistegffith™the findings in [5], {T'(¢) =
k|H(t) = h, A(t)} follgy egative binomial distribution,
NB(h, p2). Then e ©btain following expression:

PAT(t) =N H(f) = h, A1)}

GRS p)k T it k> h, (®)
0, if k < h,

Subsequently, we turn our attention to the event that the
reference part arrives at the buffer. When the system is in
steady state, the probability mass functioglof buffer occupancy
do not change with ¢. The probabliy™e t) = h occuring

when the reference part arrives af t ifffer in steady state
has been proposed in [5]. It is réWgitten as

<
P{H(t) = h|A(t) W <h <N, (9)
where () and « a% in (4) and (5), respectively.

Based on (7), ( and the law of total probability, we

draw the fo conclus1on
Lemma e steady-state probability mass function of

part le formulated as
}
p2(1=p2)*~'Q :
( ) ] G-pri-ar gy IS ESN 0
p2(1—p2)*'Q -1 (*3Y)pi ifk>N+1

A=p1)1-aNQ) 10 (1—p1)"”

and the cumulative distribution function is formulated as
P{T < k}
o peQ kel (I-po)’
(1—171)(21 aN Q) Zz 0 (1=p: )1,1f 1<k<N,

N—1 (1—ps

p2Q
= (1- Pl)(l QNQ){Z
+Zj N (]‘ _p2)

which is denoted as Fopr(p1, pe, k, N).

Proof: See the Ap .
Additonally, th of the cumulative distribution
function are analyz conclusions are as the following.

Lemma 3.2: Fo, 1, Fopr(p1,p2,k, N) is a constant
] ~ d an strictly increasing function of ps.

e Appendix
Lem%, or N >1and k < N, Fepr(p1,p2,k, N) is
reasing function of p; and an strictly increasing
f p2-
roof See the Appendix.
ue to the complexity of Fopp(p1,p2,k,N) for N > 1
d k > N, we adopted a numerical method to explore the
monotonicity of Fepr(p1,p2, k, N) with respect to p; and
P2, respectively. To do that, we constructed 1000 test cases
with parameters selected randomly and equiprobably from the
following sets,

Ne{2,3,---,10},k € {N+1,N+2,N+3,--- , N+10}.

(12)

For all test cases, (p1,p2) are set as (0.01v1,0.01ve),v1 =
1,2,3,--,99,0, = 1,2,3,---,99, & = Fepr(pi +
107, pa, k, N) = Fepr (p1, p2, k, N) and 62 = Fepr(p1, p2 +
1074, k,N) — Fcopr(p1,p2,k, N) are calculated for each
(p1,p2). As a result, we have:

Numerical Fact 3.1: For all of 1000 cases constructed
above, Fepr(p1,p2,k, N) is strictly decreasing in p; and
strictly increasing in ps.



Theorem 3.1: For any k and N, provided £ > 1 and N >
1, Fepr(p1,p2, k, N) is a diffenertiable function defined on
0 < p; < 1,i = 1,2. Specifically, Fepr(p1,p2,k,N) is a
strictly decreasing function (or a constant function) of p; for
N > 1 (or N =1, correspondingly) and strictly increasing in
p2.

Proof: Theorem 3.1 is the summary of Lemma 3.2,
Lemma 3.3 and Numerical Fact 3.1.
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B. Problem Formulati ransformation

Considering the ex on of the production rate in (1)
and the expressiomf the yield in (6), the energy consumption
optimization problem for the two-machine Bernoulli line is
mathematically formulated as follows:

2
(P1) min z = ZPZ-pZ-
i=1
st p2[1—Q(p1,p2, N)| > PR,

13)

s
Y=Y 7P{Li1<LT<L}2>Y,
i=1
0<pi<1,i=1,2,
where PR, and Y, are the required pro

X Q
10my, rate and
required yield, respectively.

From problem (P1), it can be obsgrved % e objective
function is a weighted sum of macl* iencies which
indicates that the goal of (P1) is tgmininize the total energy
used by machines during a produéti cle. It should be noted
that machines m; and my have,the same cycle time, 7, which
has been omitted in the ohfjeCtive function.

In (P1), constraint ( 1 linear and constraint (15) is a

complicated changesc int» For the purpose of simplifing
exp on of yield in (15) is rewirtten as

the constraint, t
s

Y =Y (v —%ip1) P{LT < Li},
=1

K2

a7

Y
. 40 . . 406 08 1 Q
" " = (vi = Yi+1) Fepr(p1,p2,ni, N).
(a) p2 = 0.6 (b) p2 = 0.8 ;

where v511 = 0. Note that L;,¢ = 1,2,--- S is a positive

real number, while the part lead time in twg-machine Bernoulli
lines is an integer multiple of 7, we deﬁ% =1,2,---,8

as
Liq, if L i%
n, =
’ |Li], if L is not avinteger,
=

(18)

T

where | £ | is the maxi integer not larger than L2, which
T T

suggests n;7 < L b . That is, the event {LT < L;}
is equivalent to { i . Consequently, we rewritten the
expression of yieyas

— Yiy1) P{T < ni}
(19)

ased on the assumption (vii), v; — ¥;4+1 1S a positive real
mber on (0,1). Considering Theorem 3.1, we have the
following.

Corollary 3.1: 'Y is a differentiable function defined on
0 < p; < 1,9 =1,2. Specifically, Y is a strictly decreasing
function (or a constant function) of p; for N > 1 (or N =1,
correspondingly) and strictly increasing i .

In problem (P1), p; and p, are deci@riables. In the
following, the function of producti ate and yield with
respect to p; and po will be abbfevi as Fpr(p1,p2) and
Fy (p1,p2), respectively. Therefore\problem (P1) is rewritten

as
2
(PI’) min z = V) (20)
=
st. Fpr(ppp¥ = PR,, 2D
@)hpz) =Y., (22)
S <1 i=1,2. (23)

te to solve (P1°), similar to the energy consump-

%ization problem with sole prodution rate constraint
( in ovian lines (namely, Bernoulli and geometric lines) [9]
a

11], a new theorem is introduced as follows:

Theorem 3.2: The optimal objective value, z*, of (P1’), is
non-decreasing in PR, and Y., respectively. For 0 < PR, <
PR.s <1land 0 <Y,y < Y2 <1, 2*(PRy2,Y,2) is larger
than z* (PRTl, le).

Proof: See the Appendix.

Corollary 3.2: Let (p},p5) denote the optimal solution of

(P1’), at least one of the two equations,

Fpr(py.p3) = PR, (24)

and

Fy(pl,p3) =Y,

is true.

Corollary 3.2 can be proved by contradiction. The proof is
omitted because of space limitation.

Equation (24) and (25) in Corollary 3.2 determine two
implicit functions, which are denoted as Fy pr(p1; PR,) and

(25)



Fry(p1;Y,), respectively. The efficiency of mo, given the
efficiency of m; and required production rate, PR,, (or
required yield, Y;.) can be computed using Fr pr(p1; PR;) (or
Fry(p1;Y;), correspondingly). In the following, the proper-
ties of Fy pr(p1; PR,) and Fry (p1;Y,) will be investigated.
The continuity of the function Fj pr(p1; PR,) can be
inferred from F'pr. From the results in [9], it follows that
PR, < p; < 1 when Fpr(p1,p2) = PR, is true. Specifically,
when p; approaches PR, (or 1), pa approaches 1 (or PR,,
correspondingly). Since the function Fpg is strictly increasing
in p; and po, function F7 pg is a decreasing function of p;.
However, the properties of F y (p1;Y,) are quite different.
Based on (11) and (19), F; y is a positive continuous function.
Additionally, according to Corollary 3.1, the function F7y is
an increasing function (or a constant function) of p; for N > 1
(or for N = 1, correspondingly). Based on the supremum
and infimum principle and the monotonicity of Fry (p1;Y..),
the supremum and infimum of Fjy (p1;Y;) exist, which
denoted as P2y masr = lim,, ,1- Fry(p1;Y;) and pa y
limy, o+ F7,y (p1;Y:), respectively. %
the  ué-
Let

In the following, we will further investiga
lationship between Fr pr(p1; PR,) and Fjy/pi;
Faif(p1) denote Fr pr(pi; PR,) — Fry (0iNG)NFais(p1)
is a continuous function on (PR,,1), 198 clear that

%imp1 Loprt Faiy (p1) > O. Consiffezin monot(?nic-
ity of Fr pr(p1;PR,) and Fryfpi3 Fiir(p1) is a
decreasing function. If lim,, Faz 1) = 0, (e.

ositive function (i.e.
. Addtionally, we have

PR, > p2,Ymaw)’ Fdif(pl)
Frpr(p1; PR:) > Fry(p
Fy (p1, Fr,pr(p1; PR;)) 1, Fry(p1;Yr)) Y.,
which suggests that gy peifits of curve Fpg(p1,p2)
PR, satisfy th 2). If lim,, - Faip(p1) <
0, based on the\ zerg) point theorem and the monotonic-
ity of Fyr(p1), only zero of Fgy(p1), denoted as
p1, is on (PR,,1). When p; is on (PR,,p1), Faif(p1) is
positive (i.e. Fr pr(pi; PR:) > Fry(p:1;Y:)). The points
of curve Fpgr(p1,p2) = PR.,PR. < p1 < p; satisfy
the constraint (22). When p; is on (p1,1), Faif(p1) is
negative (i.e. Fy pr(p1;PR,) < Fry(p1;Y;)). We have

Fpr(p1, Fry(p1;Yr)) > Fpr(p1, F1 pr(p1; PR;))
which suggests that the points of curve Fy (p1,p2) =

satisfy the constraint (21). Consequently, we define
function,

Fy (p1,p2) — and f,

Fpr(p1,p2) — PRy, gthe

As depicted in Fig. 3, the points of cur\wl . p2) = 0 satisfy
both (21) and (22).
Herein, we introduce a new

F(Pl»Pz) =

if PR, < &
Q@, 6)

(P2) min z = Z sz (27)
s.t.: F(p1 ) (28)
0<pAS 1)i=1,2. (29)

The only difference between (P2) and (P1’) is constraint.
Based on Corollary 3.2, (P2) is equivalent to (P1), which

5
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Fig. 3: The behavi
]., Yo = 0]., ny =

b1
(b) PR, =0.6,Y; =0.9

2 =29

suggest @’) and (P2) have identical optimal solution.
In t bsection, the optimality conditions of (P2) is

f n d analyzed.

In this section, a method for solving the optimal solution
of problem (P2) is proposed. Specifically, in Subsection IV-A,
optimality conditions of (P2) are further explored; in Sub-
section IV-B, based on the properties of Fr pr(p1; PR,) and
Fry(p1;Y,), an effective and efficient algorithm is designed

to solve the optimal solution. Q

For the purpose of solving (P fectively, the optimality
condition that the optimal solution of (P2) satisfies are derived
in this section.

From the insig 'r@ym solving the energy consump-
tion optimizatiorz%'\ in two-machine Bernoulli serial
lines F(pl,pg) () optimality function of (P2). Based

Subsection III-B, ps can be regard as an

@ of p1, which is derived from F(p1,p2) = 0.
uhction is defined as

IV. SOLUTION METHODOLOGY

A. Optimality Conditions

if PRT’ < P2,y maz

F Y,
I,Y(pla r), and py < py < 1

(p 13 P Rra Y )
Fr,pr(p1; PR,), otherwise.
(30
The domain of the differentiable function, Fy(p1, PR,,Y,), is
(PR,,1). Additionally, we define the function f(p;) as:
ar;

filpn) =~

€1y

If PR, < pa2,ymas and p1 < p1 < 1, we have fr(p1) =

dg“z L. Otherwise, we have fi(p1) = f(p1) = _dI;ITPR
which has been derived in [9]. Let
_ (N+1)PR,
= N+PR, 32
P="N¥pPr (32)
f(py) is expressed as
5
f(p1) = (33)

-2,
P



for N =1 and where sgn(x) is defined as

]-, if b1 = ﬁ, — 1
f(p1) = {Pz(l—Pz)(Pz—PRr)(pl—P) if p1 #£p (34 1, itz <0,
pr(I—p1)(p1—PR)(p—p2)> " PL7 P segn(r) =<0, ifz=0, (41)
for N > 1. Let 1, if x > 0.
1,if ,/ < PR,, If Fy(p),pd) — Y, =0or p!/ —pf <, where € (namely,
o 1+ \/m PR " precision) is a predefined small positive real number, then
p1= —( TTPR. ,if min (\/ o/ ﬁf) > PR, p1 = pM and the alggrit ds. Otherwise, if Fy(p{”,pé”)—
PR, if /% < PR,, Y, >U 0 (or. F Y, < 0), pl is set to pM
and py remains un d (or correspondmgly, p¥ remams
(335) unchanged and ”w set to pM) and then pM = i "2”’1
for N = 1 and p; equals the solution of f(p;) = & o for Bisecting rval, (p1 ,pl) and selecting the submterval
N > 1, we have the following. is repe Fy (M, p) —Y, =0 or pV/ —pl < eis
Theorem 4.1: The optimal solution of (P2) (i.e. (p7,p3) satis
satisfies hart of the bisection algorithm for solving

PP ) = 0 is shown in Fig. 4.
pi = min(p1, p1), &

Do = FI,PRT (pla PRT)a Start
for PR, < p2.ymas and
L

_ = PR,
p; = D1, ) b
* * pr =1
ps = Fier, (%, PRy), \Q (39) - | |
for PR, > p2ymaa ¢ Q La pnif EEay . V=i
n 3 = P =
Proof: See the Appendix. ;ase;"ofg 4) roa
In the next subsection, an effectl ficient algorithm 7y
will be designed to solve p] and Th orem 4.1.
Fy (pi",p")—Y, =0

or p! —pl<e?
B. Algorithm Design

Based on Theorem 4.1, lut on of (P2) can be divided
into three steps. The 1nvolves determining the rela-
tionship between PR, D2,Ymaz- In the second step, we
solve for p;. Th&algerithm for solving f(p;) = % was
designed in [9]. If PR, < p2ymas, in the third step, we /
solve for p;. Otherwise, the third step can be skipped. In the Fig. @vchart of the algorithm for solving p;
following, we will design an algorithm for solving p;.

From the previous sections, when PR, < p2 ymaz, P1 18 % cveloped algorithm, extensive numerical experi-

o f

the zero of Fy;;(p1) which is a strictly decreasing function. ﬁ various i N, PR,, and Y, have been conducted.
S

Although we 'COUId directly solve Fyif(p1) = 0 using exist- the test cases and their optimal solutions are shown
ing mathematical software (such as MATLAB) or numer ble I, where the optimal objective value z* is provided

methods (such as the bisection method), given the complex rPy=1,7 =1 v =01, L =2 and L, = 4.
of the expression for function Fy;r, we devised an ifdi
approach, which is on the basis of the bisectidh€'me ,

. . . . V. CONCLUSIONS AND FUTURE WORK
to solve this equation. Specifically, the bisection

The energy consumption optimization problem for two-

and upper endpoints for the bisection metf during each machine Bernoulli serial lines processing perishable products
iteration, respectively. Clearly, we hav®pF Myand pl = 1 is proposed and sovled in this paper. Specifically, we derive
as the initial endpoints. Let pM —a? v solve oM from and analyze analytical expressions and mathematical proper-
P ) P1 ’ P2 ties of yield and establish a mathematical model. To solve
g Fiy(p1;Yy), on the -

) with respect to this problem, we analyze the structural characteristics of the
P P2 odel and derive the optimality conditions, based on which

we design an effective and efficient numerical algorithm to

Fr.pr(pY; PR,). To avoid com
basis of the monotonicity of Fyyp;
we have the following:

N

Sgn(Fdi f(Pl)) =sgn ; PRy) — Fry (p1; Yr)) find the optimal solution.
o Y, Fr.pr(py; PRT)) Ih the realm of energy optimizetion for systems processing
< ’ (40) perishable products, there are still many valuable research
Y(pl,FLy(pl;Kn))) topics. In the future, we will extend the findings of this

paper to long Bernoulli serial lines and to more practical
=sgn (F Y (p1, Fr pr(p1; P Rr)) - Yr) ) production systems, for example, re-entrant lines and assembly



TABLE I: Optimal solution of (P2) for various test cases (P =
1,’}/1 = 1,’)/2 = 0.17L1 = 2,L2 = 4)

No. % N PR, Y, Pl P 2*
T |05 1 06 06 ] 09053 06402 1.0928
2 |05 1 06 09| 0858 0.6687 1.0956
3 105 1 09 0.6 | 10000 0.9000 1.4000
4 105 1 09 09| 10000 09000 1.4000
5 105 3 06 0606369 07075 1.0259
6 |05 3 06 0906039 09900 12919
7 105 3 09 0609292 09177 13823
8 |05 3 09 090930 09616 14131
9 2 1 06 06| 06402 09053 2.1857
10| 2 1 06 0906402 09053 2.1857
11| 2 1 09 0609000 10000 28000
12| 2 1 09 090900 10000 2.8000
13| 2 3 06 06106350 07112 19812
4 | 2 3 06 0906039 099500 2.1977
15| 2 3 09 0609100 09414 27613
16 | 2 3 09 0909030 09616 27675

not limited to geometric models, exponential models, a

Markovian models. &
s:. '

systems, with more practical reliability models, includin§

APPENDIX
o

PROOFS OF THEOR

A. Proof of Lemma 3.1

Proof:
Based on (7), (8) and GQ ha¥e
PIT = k) 0
min{k,N} OzhilQ

= Y (h B 1)1)3(1 —P2)k7h(1 —p1) (1 - aNQ)

h=1
_ -prQ RV (k-1 phat
- (1-p)(1-aNQ) Z (h—1>(1—272)h

h=1
min{k,N}

For k < N, on the basis of Binomial theorem,

N A
D (h— 1) (I—-p)—t (1

h=1

(43)

Considering (42) and (43), the
mass function is (10).
From (10)), for 1 < k

ave:

K|«
)&ssion of the probability

and for k > N, we have:

P{T'<k}=P{T' < N}+

which completes y

Q '

B. Pro mma 3.2
Praof* From (2), we have:
1 —
<P17P27 1) — ﬂ (46)
P2 +p1 — pP1p2

ased on (46), the expression of Fopr (p1, pe, k, 1) is rewritten
as follows:

Fepr(p1,p2,k,1) =1 — (1 — po).

Clearly, it can be observed that Fopr(p1, pe, k, 1) is a constant
function of p;. Taking the partial deriv@of Fepr with

respect to pa, we have

indicating that Fepp(p1,p2, k, 1) is dn increasing function of
D2.

(47)

(48)

||
C. Partial derivc?esb Fepr(p1,p2,k,N) for N > 1 and

1<k<N

Befor
tives o

f of the following lemma, the partial deriva-
p1,p2,k,N) for 1 <k < N (see in (11)) with
and po are derived.

réspec
Q}]QQ is a continous function, Fepp(p1,pa,k, N) is
0

. p(1 —p2)"1Q Z k-1 P?_l ntinous on 0 < p; < 1,7 =1,2. Based on (2) and (11), the
C (1-p)(1—-alQ) = h—1)(1—p)h- xpression of Fepp(p1,p2, k, N) for 1 < k < N is rewritten
B follows
& %7&‘ P1 = P2,

FCDF(plvavka) = (49)

1— (% a) k .
TH1—alN if p1 # pa.

To facilitate the derivation of derivatives, we adopt the expres-
sion of Fepr(p1,pe, k, N) for p; # ps as a general formula.
Let Fepr,n, and Fepr,q denote the numerator and denominator

of Fepr, respectively, then

Fepin =1— (ﬁ—ja)’“, (50)
Fepra=1—a™. (51)

Taking the partial derivatives of Fcpr,, and Fcprgq with
respect to p; and po, respectively, the results are as follows
k(1 —p2)*

NN Y

OFcprn
Op1




k— ; z
OFcprn _ k(1 —ps) 1’ (53 Considering (62) and “G4=rteert®)| = 0, Gepi pore ()
Op2 (1 —p1)* is strictly increasing (or strictly decreaging) on (0,1) (or
OFcpra _ Naov (54) correspondingly, (1, 4+00)) and it is negative on (0, 1)U(1, 00).
opr p(l—p1)’ Additionally, noting
OF Na¥ dG k—1
cond = : (55) a4 = x—QGderi part . (63)
Op2 p2(1—p2) dz (1 —2V) 7
Then the derivatives of Fopr with respect to p; and po are
obtained as

we obtain the sign of 4% follows

Fcpr,n _ OFcpF,a dG(z) ) if x =1,
T = FCDF’;éDF,dBM o (5 Lo @DULs) )
=[N (1 = o)V (1 = ) — kel (1= )Y rextti 5 expression of Fepp(p1,pe,k, N) can be
= NPT (1= o)V kY (1= o) | ,pz,k N)
. (1— o)t (3=22)Fopp(p1,p2. N.N), if 1<k <N, (65)
py (1—p yNTEHL 2 () Fepr (p1,p2, N, N), if k= N.

CDF,d
%‘ To obtain the monotonicity of Fepr(p1,p2, k, N),
0G(1=22)  0G(:=22)  9Fcpp(pi,p2,N.N)
and ! ; signs (J)\f . oo By o and
Fepr.a OFcpr (p1,p2,N,N)

OFcpr 3p2 Feprin pope g — apz Feppn g, T are explored as followls .
= First, taking partial derivatives of G/({=2 f) with respect to

Op2 F CDF,d % p1 and po, respectively, the results are
N+1 -
= [k (1 - )Y - —p2)" 9G(=2) 1 dG(a)
1 2 ’
P1

— kpapl) (1 - po)" + { I (-pP e (00
o and
. 5‘G 1
\d 57 @ ot ) (67)
D. Proof of Leniga 3. on the basis of (64~ < 0 and w >0
Proof: for p1 # po.

To prove this lemma, we construct an auxiliary function, Then, Wg to (56), the partial derivative of

G(x), as follows Fepr(p, ) with respect to p; and po are rewritten

a 1— 2k as foll

(x)_ l—l‘N’ (58) DF(pl7p27N7N)

where :1: is on (0,400) and 1 < k < N. Noting that the signs < ’ om
of 1—z* and 1 —z" are identical for > 0, G(x) is positly N(1—p)V { py 4 (-p)¥ 1} (68)
Taking derivative of G( ) with respect to x, we 0bta1 - R P ;SV P 12) ,

Kl 2k Nk by (1 —p1) Fépra

a_ (1_ ) [(k N)ZI: +Nf13 & aFCDF(pl,pQ,N,N)

0

For the purpose of investigating the sign o, define pi,_ LT (1N (69)
Gdem,part( ) as ' :N (1 _p2> [ ;N + (a— Pl)N - 1:|

Gde'r‘i,part<x) = (k - N) xN + Ns Jﬂ (60) V%1 pé\/'—l»l (]— p1)3N Fd2
Taking derivatives of G geri part we haVe Construct an auxiliary function F,.i(p2; W), which is de-

ACa. . () fined as

T N=R=L gk — 1) (6D PV (1= )W

r Fouzi (p2; W) 2 + -1 (70
Gderi,part(z) H pW (1 - )W
For 1 < kK < N, the crper can be inferred, 1 P
which is where W is a positive integer. Taking derivative of
I \ 1, ifo<z<l, Fouzi(p2; W), we have
deri,p xz . w
sgn | ——————= | =10, ifzxz=1, 62 AF i w 1-—
s < da > © =(W+1)]%—(W+1)(—p2) (71)

1, ifz> 1. dps P} 1-p)"’



and the sign of (71) is

-1,
1

if 0 < ps < p1,

. (72)
, if pp <ps <1.

Sgn(Fauzi) = {
which suggests that Fq.i(pe; W) is strictly decreasing
on (0,p;) and strictly increasing on (pp,1). Consider-
ing Fayzi(p; W) 0, Fauzi(p2; W) is positive on
(0,p1) U (p1,1). Therefore, W is negative and
OFcpr (p1,p2,N,IN)

is positive which proves the monotonicity of

op
FCDF(pl,lpz,N,N) with respect to p; and ps for kK = N.
For 1 < k < N. based on the sign of 2C(=s) 96G=5)
or 1 < £ < IV, based on the sign o opr Ops

9Fcpr (p1,p2,N,N) and 9Fcpr (p1,p2,N,N)

I Ops , one can derive that
Fepr(p1,p2,k, N) is strictly decreasing in p; and strictly
increasing in po, which completes the proof.

E. Proof of Theorem 3.2

Proof: %
For a two-machine Bernoulli serial line wher@ a-

chines are reliable, the prodution rate and h 1.

%e
Therefore, for any PR, € (0,1) and Y. € (0 P1®) always
as optimal

has at least one feasible solution a
15 Rrg, le and

solution.
To prove the theorem, we choo

Y,o such that 0 < PR, %m < 1l and 0 <
Y1 < Y. < 1. Let (P (P1’-2) denote (P1’)
with PR, (and Y,) replacg@nb -1 (and correspondingly,
Y:1) and by PR,, (and s% pondingly, Y,s), respectively.
In addition, denote f ptignal solutions of (P1°-1) and
(P1°-2) as (p7, (P1 ;25 D3 o), respectively, and
their corresponding mal values as z); and z,. Construct
two solution (p7 ,1,p2,pPr,,) and (pi ,.1,p2y,,), which sat-
isfy Fpr(pi 1:p2.Pr,,) = PRy and Fy(p],1,p2y,.) =
Y1, respectively. Considering Fpr(pi ,2,p5,2) = PRr
and Fy(p} ,2,P5,2) = Yr2, and taking into account the
monotonicity of Fpr(p1,p2) with respect to po and that of
Fy (p1,p2) with respect to ps, we have

0 <p2,pPr,, <Piro <1,
0< D2y, < p;,r2 <L

Let po 1 denote max(ps pg,.,,P2,v,, )

we have &E
Fpr(py 2, P2,,1) = Fpr(p 12, P2,PR,, % (74)
Fy (p1 2, P2,1) = FY(erz,pz»l @

‘s arfeasible solu-
olution (pi ,.1,p3 1) and

1’-1), and the optimal
ing into account (73), we

Clearly, (74) indicates that (p} .
tion of (P1°-1). Thus, for the opti
the feasible solution (pj .o, P29 0
solution (p7 .5, P3 o) of (PL”
have

Zn —ZP< ®p1r2+P2p2rl

< Z Pipi,rQ = Z'r27

=1

(75)

-

For the cases of 0 < PR,; = PR, <1,0< Y, <Y <
lor0< PR,y < PR, <1,0<Y = < 1, employing
the same derivation process as above 1 the conclusion

that 2%, < 27y, which indicates tha iS\gpon-decreasing in
PR, and Y., respectively.

F. Proof of Theore

Proof:
Considering (2 , and (30), the objective function of

(P2), denote g , is rewritten as the following,
Z( 1+P2FI plaPRT’,Y) (76)

\%@;s that z is a function of p;. Based on (31), the
A%

¢ of z with respect to p; is expressed as

dz(p1

— Py fr(p1). )

For PR, < P2 ymaz, W€ investigated the optimal solution
of (P2) under the condition where p; < p; or p; > p; holds,
respectively. On the basis of the results in [9], we have

-1,
sgn(Pr — Pof(p1)) = 4 0,

if pr (78)
1, @ 1 < 1.
Since Fr,y (p1;Y;) is strictly increasing in p;, we have

ng into account (78) and (79), for

@wates that z(py) is strictly decreasing on (PR,,p1)
and Btrictly increasing on (pq, 1). Therefore, the minimum of

z(p1) and p} = pr. C0n31der1ng the definition of pq, we

if PRan< p1 < 1,

dF[)y

P - P (- (79)

for PR, < p1 <
p1 < P1, we havy

-1
L,

, if PR, < p1 <ﬁ1,

o (80)
if p1 <p1 <1,

ve p3 = Fr pr, (P}, PR:). For p1 > p1, we have
-1, ifPRT<p1<ﬁl7
dz(p1) _ . N
e g, ) = 0, if p1 = p, (8D
1, if pp <p; <1,

which indicates p; = p1 and pi = Fr pr,(p}, PR,). Conse-
quently, we have (36) and (37) for PR, < p; < 1.

For PR, > p2Yymaz, from the previous analysis, the
derivative of z with respect to p; is expressed as

dz(p1)

82
dp (82)

=P — P f(p1).

Considering (78), py is the global minimum point of z(p1).
Therefore, the optimal solution of (P2) for PR, > p2ymax
satisties (38) and (39).

]
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