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Abstract—Manufacturing systems consume a tremendous
amount of energy and contribute about a quarter of greenhouse
gas emissions. To achieve the sustainable production, it is vital
to reduce the total energy consumption and improve the energy
efficiency of manufacturing systems, especially energy-intensive
manufacturing systems. In this paper, the energy consumption
optimization problem for a two-machine geometric line is investi-
gated. Specifically, it is formulated as a nonlinear programming
which minimizes the energy consumption of the system while
maintaining a required production rate. For this nonlinear
programming with complex constraints, two optimality equations
are explored and their mathematical properties are analyzed.
Based on these properties, an effective and computationally
efficient algorithm is developed to solve the optimal solution
of the energy consumption optimization problem. In addition,
the sensitivity of the optimal solution with respect to system
parameters is analyzed. Finally, several extensions of the problem
with an alternative objective and more practical considerations,
are addressed as well.

Note to Practitioners—For energy-intensive manufacturing sys-
tems, reducing the energy consumption and improving the energy
efficiency are of both economic and ecological significance. In
the literature, almost all existing related researches assume that
machines obey the Bernoulli reliability model, which is not
applicable for modeling some production lines. In this paper,
we extend the problem formulation and solution methodology
for the two-machine line with Bernoulli reliability model to that
with geometric model, which has wider applications in practical
systems. However, the extension is non-trivial since it is much
more complicated to solve the energy consumption optimization
problem for geometric lines and more insights on the results are
gained. Although the line studied is short, as a step stone, this
research will be extended to long geometric lines and production
lines with more practical, e.g., exponential and non-exponential,
reliability models.

Index Terms—Productivity, nonlinear programming, optimal-
ity equations, monotonicity, sensitivity analysis.

I. INTRODUCTION

MANUFACTURING systems consume a tremendous
amount of energy every year with massive greenhouse

gas emissions. According to the U.S. Department of En-
ergy, the industry sector accounts for 24% of greenhouse
gas emissions in 2020, nearly 1.5 billion metric tons [1].
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With worldwide concerns on climate change and urgent needs
of environmental protection, green manufacturing (or inter-
changeably, sustainable manufacturing), which advocates to
optimize, control, and redesign the manufacturing systems to
reduce emissions and minimize energy use, is proposed [2].

In the last several decades, abundant efforts have been
devoted to performance analysis and optimization of manufac-
turing systems, most of which focus on performance metrics
such as productivity, work-in-process, production lead time,
and makespan, etc. (see books [3]–[5] and reviews [6]–[8]).
These studies have encompassed diverse types of production
systems with various machine reliability models, including
Bernoulli [9], [10], geometric [11], [12], exponential [13], and
non-exponential [14], models. Recent years, as the sustainable
manufacturing is paid more and more attention, the energy
consumption and energy efficiency have become important
and indispensable measures and been studied extensively for
different types of manufacturing systems, e.g., for single
equipments [15], workshops [16], and flexible production lines
[17], among others.

Depending on whether system structures or production pro-
cesses are changed, researches on energy savings and emission
reduction in manufacturing systems can be divided into two
main categories: one is redesign of the production systems
or innovation of processing technologies, the other is system
optimization and control.

System redesign and process improvement for energy saving
and emission reduction, have been studied extensively. It is
reported in [18] that an energy recovery system with energy
efficiency being a key measure is installed in the early layout
of production systems. In [19], the life cycle assessment to
evaluate environmental impacts of automobile paint shops is
applied and suggestions at the process and plant level are
provided. Apart from upgrading the whole system, buffer
design is a viable alternative for sustainable manufacturing. In
[20], by redesigning the repair capacity of automotive paint
process, the number of repainted jobs is reduced so that the
energy use is saved. In [21], by appropriately conducting
the buffer allocation, the energy efficiency of the system is
improved. Besides, upgrading production processes can also
achieve low-carbon manufacturing [22], [23].

In addition to system redesign and process upgrades, system
optimization and control, which reduce energy consumption
without changing system structures and manufacturing tech-
nologies, are major alternatives to achieve energy-efficient
production. For most manufacturing enterprises, redesigning
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the system or upgrading the production process is costly in
both capital and technologies. Thus, system optimization and
control methods are preferable and have been extensively
studied.

Control and scheduling are two typical methods to reduce
energy consumption of manufacturing systems. The main idea
of control methods is cutting back the energy consumption
by switching machines ON/OFF according to the state of pro-
duction systems (i.e., machine status and/or buffer occupancy)
[24]–[28]. Different from the control methods, the main con-
cept of scheduling methods is saving energy consumption by
adjusting machine operation schedules or task assignments. In
[29], the energy consumption reduction problem of Bernoulli
serial lines is formulated and effectively solved by scheduling
the on-off time of machines. In [30] and [31], the total energy
consumption in flexible manufacturing systems is reduced
through effectively allocating production tasks.

From the optimization perspective, recently, a novel idea for
energy savings in unreliable production systems has emerged.
It minimizes the energy consumption of the production sys-
tems by elaborately optimizing efficiencies of all unreliable
machines. Specifically, in [32], the energy consumption opti-
mization problem for a two-machine Bernoulli serial line is
formulated. Based on a large number of numerical experi-
ments, the qualitative relationship between the optimal solu-
tion of the problem and system parameters are investigated,
but no algorithms are developed to solve the optimal solu-
tion. On this basis, an effective and computationally efficient
algorithm, which numerically solves the optimal solution of
the energy consumption optimization problem, is designed
in [33]. Moreover, for the two-machine Bernoulli serial line,
this problem is extended to broader scenarios, including that
machine efficiencies are limited in a given range [34], energy
cost minimization under time-of-use electricity pricing [35],
and energy consumption reduction with machine’s setup and
idleness considered [36].

Meanwhile, the energy consumption optimization for long
production lines with more than two machines has also been
studied. Specifically, in [37], the energy consumption opti-
mization problem for long Bernoulli serial lines is math-
ematically formulated and solved by commercial softwares
or heuristic algorithms. Due to the lack of effective and
computationally efficient algorithms, in [38], this problem
is comprehensively analyzed and a solution method is pro-
posed to numerically solve the optimal solution. The solution
method, which is time-consuming for long lines with lots of
machines, is improved in [39], where the algorithm developed
is much more computationally efficient.

Although the energy consumption optimization for
Bernoulli serial lines has been comprehensively studied and
optimally solved, for lines with more practical reliability, e.g.,
geometric, exponential, and non-exponential, models, this
problem is far from being well studied. Among the limited
related researches, article [40] focuses on the energy savings
of a two-machine Markovian serial line with setups, and
formulates an integrated problem which minimizes the system
energy consumption while maximizing the productivity.
Some qualitative properties of the problem are analyzed

and the Pareto frontier is obtained, but no algorithms are
provided. The energy consumption optimization problem
for a two-machine geometric line with machine’s setup and
idleness is investigated in [41], where the formulation and
solution method in [36] is extended to the geometric lines.

To comprehensively study the energy consumption opti-
mization for geometric serial lines, as a step stone, this paper
focuses on the two-machine lines show in Fig. 1. The solu-
tion methodology, which is based on rigorous mathematical
derivations and first developed in [33], is extended to solve
the problem in the current paper. Specifically, for the energy
consumption optimization problem, i.e., a nonlinear program-
ming with complex constraints, first, two optimality equations
are explored and their mathematical properties are elaborately
analyzed. Then, based on the properties, an effective and
efficient algorithm is designed to solve the optimal solution
of the problem. Finally, the sensitivity of the optimal solution
with respect to system parameters is analyzed. On the basis
of the solution, some extended problems with more practical
considerations are discussed and solved as well. It should
be pointed out that although the Bernoulli reliability model
could be regarded as a special case of the geometric model,
the extension of the solution method is non-trivial since it is
much more complicated to solve the problem for geometric
lines and more insights on the results are gained. It should
also be pointed out that although the problem formulation and
solution approach have been preliminarily presented in [42],
the current paper extensively analyzes properties of the energy
consumption characteristic function, carries out the sensitivity
analysis of the optimal solution, and extends the results of the
fundamental energy consumption optimization model to more
general and practical models.

Fig. 1: Two-machine serial line

The rest of this paper is organized as follows. In Section II,
the two-machine geometric serial line in Fig. 1 is formalized
and the energy consumption optimization problem is formu-
lated. In Section III, two optimality equations of the energy
consumption optimization problem is explored. In Section
IV, an effective and efficient algorithm is proposed to solve
the optimality equations and thus, solve the optimal solution
of the energy consumption optimization problem. In Section
V, sensitivity analysis of the optimal solution is conducted.
In Section VI, some extended problems are discussed. The
conclusions and topics for future work are presented in Section
VII. All proofs are provided in the Appendix.

II. PRODUCTION SYSTEM MODELING AND PROBLEM
FORMULATION

In this section, the two-machine geometric line shown
in Fig. 1 is modeled in Subsection II-A, and the energy
consumption optimization problem investigated in this paper
is formulated and transformed in Subsection II-B.
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A. System Model

To formulate the energy consumption problem, the model
of the two-machine production line in Fig. 1 is formalized as
follows:

(i) The system consists of two machines and an inter-
mediate buffer, which are denoted as m1, m2, and b,
respectively.

(ii) Both machines have identical cycle time (i.e., processing
time), which is denoted by τ . The time is slotted with
slot duration τ . The status of a machine (i.e., up or
down) is determined at the beginning of each time
slot, and the state of the buffer (i.e., the occupancy) is
determined at the end of each time slot.

(iii) Machine mi, i = 1, 2, obeys the geometric reliability
model, which is characterized by breakdown probability
pi and repair probability ri. Specifically, as shown in
Fig. 2, if mi is up, in the next production cycle, it will
be down with probability pi and up with 1− pi, where
pi ∈ (0, 1); if it is down, it will be up with probability
ri and down with 1 − ri. Herein, pi is fixed and ri

can be selected in (0, 1]. Note that for mi, i = 1, 2, its
efficiency is ei = ri

pi+ri
.

(iv) The repair resources are sufficient so that any machine
can be repaired in one cycle time (correspondingly, the
repair probability is 1). In other words, the cost of repair
resources is ignored and by elaborately adjusting the
repair resources, repair probability ri, i = 1, 2, can take
any value in (0, 1].

(v) The capacity of buffer b is N , which is an integer and
0 < N < +∞.

(vi) The blocking mechanism is assumed to be blocking
before service. Specifically, at the beginning of a time
slot, if the buffer is empty, m2 is then starved; if the
buffer is full and m2 fails to take a part from it for
processing, m1 is then blocked. Machine m1 is never
starved and m2 never blocked.

(vii) When machine mi, i = 1, 2, is up, the power it
consumes is Pi; when mi is down, it doesn’t consume
any power. Herein, 0 < Pi < +∞.

Fig. 2: State transition diagram of a machine with geometric
reliability model

Remark 2.1: In Assumption (iii), machines are assumed to
obey the geometric reliability model, which is commonly used
in lines of machining, heat treatment, washing, etc., where the
downtime of the machine is typically much longer than its
cycle time [5].

Remark 2.2: It should be pointed out that, if pi+ri = 1, i =
1, 2, the geometric reliability model degrades to the Bernoulli
model. In this case, the machine efficiency ei is equal to ri.

Remark 2.3: In Assumption (iii), the breakdown probability
is assumed to be a constant. It makes sense because malfunc-
tions, the intrinsic attribute of a machine, are governed by
physical and statistical laws, which implies that, in a relatively
long time, the breakdown probability is usually invariant.

Remark 2.4: To implement the optimal repair probability
r∗ in a practical production system, let Tdown,i, i = 1, 2, . . .,
be the ith required downtime randomly generated from a
geometric distribution with parameter r∗. Clearly, Tdown,i ∈
{τ, 2τ, . . .}. For example, Tdown,1 = 2τ , Tdown,2 = 3τ ,
Tdown,3 = τ , etc., as shown in Fig. 3, where the uptimes are
omitted and represented by ellipsis. Since the repair resources
are sufficient (see Assumption (iv)), for ith breakdown, by
elaborately adjusting the repair resources, the practical down-
time will be Tdown,i as desired.

Fig. 3: Repair times randomly generated according to the
optimal repair probability for a practical production system

B. Problem Formulation and Transformation

Based on model (i)-(vii), the problem investigated in this
paper is addressed in this subsection. Specifically, by elabo-
rately choosing the pair of machine repair probability, (r1, r2),
this paper intends to minimize the energy consumed by the
machines during a production cycle, while ensuring that the
productivity of the line is not less than a required production
rate, PRr. Considering that the production rate of the two-
machine geometric line is expressed as

PR = e2

[
1−Q(p1, r1, p2, r2, N)

]
(1)

and is increasing in r1 and r2, respectively (see [43] for
details), the energy consumption optimization problem is for-
mulated as follows:

(P1) min z =
2∑

i=1

Piei (2)

s.t.: e2

[
1−Q(p1, r1, p2, r2, N)

]
> PRr, (3)

0 < ri 6 1, i = 1, 2, (4)

where

ei =
ri

pi + ri
, (5)

Q(p1, r1, p2, r2, N) =

{
p1β2

(p1+r1)(r1+r2−r1r2)
, if N = 1,

p1α1α2β2
2(p2+r2)

A+B+C+D , if N 6= 1,
(6)



4

and

α1 =p1 + p2 − p1p2 − p2r1,

α2 =p1 + p2 − p1p2 − p1r2,

β1 =r1 + r2 − r1r2 − p1r2,

β2 =r1 + r2 − r1r2 − p2r1,

σ =
α2β1

α1β2
,

A =p1r2α1α2β2(p2 + β2),

B =p1r1r2α2

[
β2

2 + p2(α1 + β1)(α2 + 2β2)
]
,

C =
N−1∑

k=2

p1p2r1r2(α2 + β2)3σk−1,

D =p2r1α1β2

[
r2(α1 + β1) + α2(p1 + r1)

]
σN−1.

(7)

Note that α1, α2, β1, β2, σ, A, B, C, and D are always
positive. Specifically, for N = 1, we have

Q =
(1− e1)

[
p1e1(1− e2) + p2e2(1− e1)− p1p2e1

]

p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2

PR =e1e2 +
p1p2e1e2(1− e1)(1− e2)

p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2
.

(8)

In problem (P1), p1 and p2 are fixed, and r1 and r2

are decision variables. Taking into account the expression of
machine efficiency in (5), (P1) can be transformed into the
following problem with e1 and e2 being decision variables:

(P1’) min z =
2∑

i=1

Piei (9)

s.t.: e2

[
1−Q(e1, e2, N ; p1, p2)

]
> PRr, (10)

0 < ei 6 1
1 + pi

, i = 1, 2. (11)

Clearly, (P1’) is equivalent to (P1). It should be pointed out
that, with a slight abuse of notations, the Q-function in (P1’)
has been re-written as a function of ei, i = 1, 2. Since p1 and
p2 are fixed, in the following, the Q-function in (10) will be
abbreviated as Q(e1, e2, N) or Q if not otherwise specified. It
should also be pointed out that, since ei, i = 1, 2, is strictly
increasing in ri, it is easy to obtain the lower- and upper-bound
of ei as shown in (11). Furthermore, considering that PR is
a strictly increasing function of ri (and thus, of ei), i = 1, 2,
the maximum attainable production rate of the two-machine
geometric line is

PRmax =
1

1 + p2

[
1−Q

( 1
1 + p1

,
1

1 + p2
, N

)]
. (12)

Note that when N = 1, the maximum attainable production
rate can be re-written as

PRmax =
1 + p1p2

(1 + p1)(1 + p2)
. (13)

Thus, to ensure that (P1) and (P1’) have feasible solutions,
PRr should not be greater than PRmax, i.e.,

0 < PRr 6 PRmax. (14)

Similar to the analysis approach for the energy consumption
optimization problem in the two-machine Bernoulli line [33],
we present the following problem

(P2) min z =
2∑

i=1

Piei (15)

s.t.: e2

[
1−Q(e1, e2, N)

]
= PRr, (16)

0 < ei 6 1
1 + pi

, i = 1, 2, (17)

and analyze the monotonicity of its optimal objective value
with respect to PRr. As a result, we have:

Theorem 2.1: The optimal objective value, z∗, of (P2), is
strictly increasing in PRr.

Proof: See the Appendix.
Based on this theorem, the relationship between problems

(P1’) and (P2) is analyzed and concluded in the following.
Corollary 2.1: Problem (P1’) is essentially equivalent to

(P2). In other words, constraint (10) in (P1’) can be replaced
by (16) in (P2).

The proof is omitted since from Theorem 2.1, it is easy to
draw the above conclusion.

Based on Corollary 2.1 and taking into account that (P1)
and (P1’) are equivalent to each other, one can conclude that
solving (P2) leads to solving (P1). Since no direct properties
of (P2) can be used for algorithm design, in Section III, two
optimality equations will be derived and analyzed. Based on
properties of these optimality equations, an effective algorithm
for solving the optimal solution of (P2) will be developed in
Section IV.

III. OPTIMALITY EQUATIONS

Similar to the analysis approach in [33], in this section, two
optimality equations for solving (P2) are explored.

From the insights on the energy consumption optimization
for the two-machine Bernoulli line [33], one of the optimality
equations of (P2) is (16), which, being regarded as a contour
of the production rate, characterizes the relationship between
e1 and e2 on the contour. Specifically, since the production
rate is strictly increasing in e1 and e2, respectively [43], for
a fixed PRr, e2 can be regarded as an implicit decreasing
function of e1. The behavior of the implicit function e2 with
respect to e1 for different N and pi’s is shown in Fig. 4.
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Fig. 4: Implicit function e2 with respect to e1

Based on the optimality equation (16), the feasible region
of e1 and e2 can be analyzed. From the results in [43], it
follows that Q ∈ (0, 1), which, combining with (16), implies
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that e2 > PRr. Taking into account the reversibility of the
production line [5], we have e1 > PRr. Combining the above
two inequalities with (17), we have:

PRr < ei 6 1
1 + pi

, i = 1, 2. (18)

Based on the relationship between e2 and e1 analyzed
above, the feasible region of (P2) can be further specified.
Specifically, since e2 is a strictly decreasing function of e1 on
the production rate contour, it takes its minimum attainable
value when e1 takes its maximum, 1

1+p1
. Let e2,min denote

the minimum attainable value of e2, then it satisfies

e2,min

[
1−Q

( 1
1 + p1

, e2,min, N
)]

= PRr. (19)

It should be pointed out that e2,min > PRr. The argument is
as follows: if p1 = 0, then e1 = 1 and Q(e1, e2, N) = 0, thus
we have

PRr

[
1−Q(1, PRr, N)

]
= PRr. (20)

Taking into account that e2 is strictly decreasing in e1 and e1

is in turn strictly decreasing in p1 and noting that p1 > 0, we
conclude e2,min > PRr.

Similarly, the minimum attainable value of e1, namely,
e1,min, satisfies

1
1 + p2

[
1−Q

(
e1,min,

1
1 + p2

, N
)]

= PRr. (21)

Note that e1,min > PRr, which can be validated by the similar
justification above.

Thus, the feasible region of (P2) is the intersection of the
contour and the rectangle area characterized by

ei,min 6 ei 6 ei,max, i = 1, 2, (22)

where

ei,max =
1

1 + pi
, i = 1, 2, (23)

and ei,min can be uniquely solved from (19) or (21) in terms
of the strict monotonicity of the production rate with respect to
e1 and e2, respectively. It should be pointed out that although
e1,max and e2,max in (23) are constant, clearly, both e1,min

and e2,min are strictly increasing in PRr. Also note that when
N = 1, e1,min and e2,min have closed-form expressions, i.e.,

e1,min =
PRr(1 + p2)

1 + p1p2
, e2,min =

PRr(1 + p1)
1 + p1p2

. (24)

As for the other optimality equation, it is derived in the fol-
lowing. Construct the Lagrangian function of (P2) as follows:

z =
2∑

i=1

Piei + µ
[
e2(1−Q)− PRr

]
, (25)

where µ is the Lagrangian multiplier. Taking the partial
derivative of z with respect to e1 and e2, respectively, and
noting that Q is continuously differentiable, we have

P1 − µe2
∂Q

∂e1
= 0,

P2 + µ
[
(1−Q)− e2

∂Q

∂e2

]
= 0,

(26)

which imply

P1

P2
=

e2
∂Q
∂e1

e2
∂Q
∂e2

− (1−Q)
. (27)

Since e2 is an implicit function of e1 (see Fig. 4), the right-
hand side of (27) can be regarded as a function of e1 only.
Define it as a function of e1, i.e.,

f(e1) :=
e2

∂Q
∂e1

e2
∂Q
∂e2

− (1−Q)

∣∣∣∣
PR=PRr

=
e2
2

∂Q
∂e1

e2
2

∂Q
∂e2

− PRr

∣∣∣∣
PR=PRr

,

(28)

which is called the energy consumption characteristic function.
Based on the definition in (28), the expression of f(e1) can
be obtained as follows:

f(e1) =





p2e2
2(PRr−e1e2)2+p1p2e2

1e2
2(1−e2)(e2−PRr)

p1e2
1(PRr−e1e2)2+p1p2e2

1e2
2(1−e1)(e1−PRr)

, if N = 1,

e2
2

∂Q
∂e1

e2
2

∂Q
∂e2

−PRr
, if N > 1,

(29)

where the expressions of ∂Q
∂e1

and ∂Q
∂e2

, which are omitted here
because of their complicated forms, can be found in [44]. From
[44], it follows

∂PR

∂e1
= −e2

∂Q

∂e1
,

∂PR

∂e2
= (1−Q)− e2

∂Q

∂e2
, (30)

which implies

f(e1) =
(

∂PR

∂e1
/
∂PR

∂e2

)∣∣∣∣
PR=PRr

. (31)

It is worth noting that the above equation holds for the
Bernoulli reliability model as well. Thus, it is hypothesized
that Eq. (31) holds for general reliability models and can be
used as an alternative definition of the energy consumption
characteristic function f .

It should be pointed out that both e2
∂Q
∂e1

and e2
∂Q
∂e2

−(1−Q)
(correspondingly, e2

2
∂Q
∂e1

and e2
2

∂Q
∂e2

−PRr) in (28) are negative
[44], which implies that f(e1) is always positive. It should also
be pointed out that taking the derivative of both sides of (16)
with respect to e1 and re-arranging the terms result in

e′2 =
de2

de1
= − e2

∂Q
∂e1

e2
∂Q
∂e2

− (1−Q)

∣∣∣∣
PR=PRr

= −f(e1). (32)

The behavior of the energy consumption characteristic func-
tion f(e1) for various N and pi’s is shown in Fig. 5.

By using f(e1) defined in (28), Eq. (27) can be re-written
as

f(e1) =
P1

P2
. (33)

Clearly, to solve (P2), it is necessary to solve optimality
equations (16) and (33). In the subsequent section, properties
of the optimality equations will be analyzed and based on these
properties, an effective method will be proposed to solve the
optimality equations and thus, to solve problem (P2).
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Fig. 5: The behavior of the energy consumption characteristic
function f(e1)

IV. SOLUTION METHODOLOGY

In this section, the methodology proposed in [33] for energy
consumption optimization in two-machine Bernoulli lines is
employed to solve problem (P2). Specifically, in Subsection
IV-A, some useful properties of f(e1) are analyzed; in Sub-
section IV-B, based on the properties of f(e1), an efficient
and effective algorithm is developed to numerically solve
the optimal solution of (P2); in Subsection IV-C, numerical
experiments are presented to reveal the effectiveness of the
proposed algorithm.

A. Properties of f(e1)
To solve the optimality equations derived in Section III, in

this subsection, more properties of function f(e1) in (28) are
analyzed. To be specific, the continuity, strict monotonicity,
and range of f(e1) are analyzed.

First, the continuity of f(e1) is analyzed based on the
definition in (28). From [44], it follows that both e2

2
∂Q
∂e1

and
e2
2

∂Q
∂e2
−PRr in (28) are continuous and always negative, which

implies that f(e1) is continuous.
Then, the monotonicity of f(e1) is analyzed. To do that,

the derivative of f(e1) is deduced. As a result, we have:
Proposition 4.1: For the energy consumption characteristic

function f(e1) in (29), its derivative is

f ′(e1) =





1
e1e2v3

[
2uvp2e2

1e3
2(PRr − e1e2)

−2uvp1p2e3
1e3

2(1 + PRr − e1 − e2)

−2v2p2e3
2PRr(PRr − e1e2)

+2uvp1e3
1e2

2(PRr − e1e2)

−2u2p1e3
1PRr(PRr − e1e2)

]
, if N = 1,

e2
2

∂2Q

∂e2
1

e2
2

∂Q
∂e2

−PRr
− e3

2
∂Q
∂e1

(e2
2

∂Q
∂e2

−PRr)3

[
2e3

2
∂Q
∂e2

∂2Q
∂e1∂e2

−2PRr
( ∂Q

∂e1
+ e2

∂2Q
∂e1∂e2

)− e3
2

∂Q
∂e1

∂2Q

∂e2
2

]
, if N > 1,

(34)

where
u =p2e

2
2(PRr − e1e2)

2 + p1p2e
2
1e

2
2(1− e2)(e2 − PRr),

v =p1e
2
1(PRr − e1e2)

2 + p1p2e
2
1e

2
2(1− e1)(e1 − PRr),

(35)

and the expressions of ∂Q
∂e1

, ∂Q
∂e2

, ∂2Q
∂e2

1
, ∂2Q

∂e2
2

, and ∂2Q
∂e1∂e2

are
omitted and can be found in [44]. Moreover, f ′(e1) is contin-
uous, which implies that f(e1) is continuously differentiable.

Proof: See the Appendix.
Although when pi + ri = 1, i = 1, 2, the geometric

reliability model degrades to the Bernoulli model, comparing

the expressions of f ′(e1) in (34) with those for Bernoulli
model in [33], one can see that f ′(e1) for the geometric
model does not degrade to the Bernoulli model anymore,
which implies that the extension of the solution method from
Bernoulli to geometric model is non-trivial.

In the following, we validate f(e1) is strictly decreasing in
e1 for N = 1 and N > 1 separately.

For N = 1, let g(e1) = ∂PR
∂e1

∣∣
PR=PRr

and h(e1) =
∂PR
∂e2

∣∣
PR=PRr

, then we have f(e1) = g(e1)
h(e1)

. From [44], it
follows

g(e1) =
e2 − PRr

1− e1
+

(PRr − e1e2)2

p1e2
1(1− e1)(1− e2)

,

h(e1) =
e1 − PRr

1− e2
+

(PRr − e1e2)2

p2e2
2(1− e1)(1− e2)

.

(36)

As a result, we have:
Lemma 4.1: For N = 1, g(e1) is strictly decreasing in e1.

Proof: See the Appendix.
Lemma 4.2: For N = 1, h(e1) is strictly increasing in e1.

Proof: See the Appendix.
Theorem 4.1: For N = 1, f(e1) is strictly decreasing in e1.

Proof: It is easy to draw this conclusion based on Lemmas
4.1 and 4.2.

As for N > 1, it is very difficult to prove the monotonicity
of f(e1). Thus, the numerical justification is adopted. For this
purpose, 5000 test cases have been constructed, with param-
eters randomly and equiprobably selected from the following
sets:

p1, p2 ∈ (0, 1), PRr ∈ (0, PRmax],
N ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. (37)

As a result, we have:
Numerical Fact 4.1: For all of the 5000 test cases con-

structed for N > 1, f ′(e1) in (34) is always negative.
Based on Theorem 4.1 and Numerical Fact 4.1, we conclude

that f(e1) is strictly decreasing in e1. The strict monotonicity
of f(e1) can also be observed in Fig. 5.

Finally, by taking advantage of the monotonicity results
of f(e1), its range is analyzed. Denote the minimum and
maximum values of f(e1) as fmin and fmax, respectively.
Noting that the range of ei in (22) and taking into account the
monotonicity of f(e1), we have

fmin = f(e1,max), fmax = f(e1,min), (38)

where f(e1) is expressed in (29) and ei,min and ei,max, i =
1, 2, are, respectively, defined in (19), (21), and (23).

To explore more properties of f(e1), the monotonicity of
fmin and fmax is investigated. For this purpose, 6000 test
cases are constructed and the system parameters are selected
randomly and equiprobably from the following sets:

p1, p2 ∈ (0, 1), N ∈ {1, 2, . . . , 10}. (39)

For all test cases, fmin and fmax are evaluated with all PRr

in the following set:

PRr ∈ {0.1PRmax, 0.2PRmax, 0.3PRmax, . . . , PRmax},
(40)
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where PRmax is calculated in terms of (12). As a result, we
have:

Numerical Fact 4.2: For all 6000 constructed test cases,
fmin and fmax are, respectively, strictly increasing and de-
creasing in PRr.

It is clear that, similar to the Bernoulli reliability model,
the f -function of the two-machine line with geometric reli-
ability model is also of good mathematical properties, i.e.,
positiveness, continuity, strict monotonicity, and continuous
differentiability.

B. Algorithm Design

Based on the properties explored in Subsection IV-A, an
efficient and effective method will be developed to solve
optimality equations (16) and (33) so that problem (P2) is
solved.

To do that, we first assume that P1
P2

∈ [fmin, fmax] and
develop a method to solve the optimality equations (16) and
(33), and then extend the method to the general case P1

P2
∈

(0,+∞).
For P1

P2
∈ [fmin, fmax], clearly, optimality equations (16)

and (33) always have a solution. Considering that both f(e1)
and e2 are strictly monotonic functions of e1, the optimality
equations have a unique solution. Furthermore, based on the
monotonicity of f(e1) and e2, this unique solution can be
solved by a binary search method (i.e., the dichotomy method)
in the following. Let eL

1 = e1,min and eU
1 = e1,max denote,

respectively, the initial lower- and upper-endpoint for the
binary search. Let ê1 = eL

1 +eU
1

2 , solve ê2 based on (16)
with e1 replaced by ê1, and calculate f(ê1) with (ê1, ê2). If
|f(ê1) − P1

P2
| < ε (where ε is a predetermined small enough

positive real number), then (e∗1, e
∗
2) = (ê1, ê2) and the search

ends; otherwise, if f(ê1) < P1
P2

(or f(ê1) > P1
P2

), let eU
1 = ê1

(correspondingly, let eL
1 = ê1) and continue the binary search

using the updated lower- and upper-endpoints. The flowchart
for solving (e∗1, e

∗
2) using the binary search method is shown

in Fig. 6.
As for the general case, i.e., P1

P2
∈ (0,+∞), we have

dz

de1
= P1 + P2

de2

de1
= P2

[P1

P2
− f(e1)

]
, (41)

where e1 ∈ [e1,min, e1,max]. If P1
P2

< fmin, i.e., P1
P2

< fmin =
f(e1,max) 6 f(e1), then dz

de1
< 0, which implies that z is

strictly decreasing in e1 and achieves its minimum at e1,max.
In other words, (e∗1, e

∗
2) = (e1,max, e2,min). Similarly, if

P1
P2

> fmax, then dz
de1

> 0, which implies that z is strictly
increasing in e1 and achieves its minimum at e1,min. In this
case, (e∗1, e

∗
2) = (e1,min, e2,max).

C. Numerical Experiments

Based on the method proposed in Subsection IV-B, ex-
tensive test cases with various PRr, N , P1

P2
, p1, and p2 are

constructed and solved. Some of these test cases and their
solutions are provided in Table I. Note that the optimal solution
(e∗1, e

∗
2), which depends on the value of P1

P2
, is independent of

the absolute values of P1 and P2. Considering that the optimal

Start

Y

Y

N

N

Let                 

and solve        

based on (16)

End

Fig. 6: Flowchart of solving (P2) when P1
P2
∈ [fmin, fmax]

objective value, z∗, depends on the absolute value of P1 and
P2, without loss of generality, in Table I, z∗ is provided for
P2 = 1.

From Table I, one can observe:

• e∗1, e∗2, and z∗ are increasing in PRr while decreasing in
N ;

• e1,min and fmin are also increasing in PRr and decreas-
ing in N ;

• fmax is decreasing in PRr and increasing in N .

The quantitative impact of system parameters on the optimal
solution and on the optimal objective value will be analyzed
in the next section.

V. SENSITIVITY ANALYSIS

From Table I, we observe that the values of all system
parameters have impacts on the optimal solution and the
optimal objective value of (P2). In this section, we analyze
the sensitivity of the optimal solution and the optimal objective
value with respect to these system parameters. Specifically, the
impact of PRr is analyzed in Subsection V-A and impacts of
other parameters are investigated in Subsection V-B.

A. Impact of PRr

In this subsection, the impact of PRr on the optimal solution
and on the optimal objective value is analyzed. To do that, the
expression of de∗i

dPRr
, i = 1, 2, is derived. First, with a slight
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TABLE I: Optimal solution of (P2) for various test cases
Case P1

P2
N p1 p2 PRr e1,min e1,max fmin fmax e∗1 e∗2 r∗1 r∗2 z∗ (P2 = 1)No.

1 0.5 1 0.1 0.2 0.1 0.118 0.909 0.094 8.014 0.401 0.213 0.067 0.054 0.414
2 0.5 1 0.1 0.2 0.4 0.471 0.909 0.388 1.983 0.823 0.469 0.464 0.177 0.881
3 0.5 1 0.1 0.2 0.75 0.882 0.909 0.860 0.973 0.909 0.809 1 0.846 1.263
4 0.5 1 0.9 0.8 0.1 0.105 0.526 0.043 33.766 0.211 0.156 0.241 0.148 0.261
5 0.5 1 0.9 0.8 0.3 0.314 0.526 0.294 3.967 0.460 0.357 0.767 0.444 0.587
6 0.5 1 0.9 0.8 0.5 0.523 0.526 1.037 1.074 0.526 0.552 1 0.987 0.815
7 0.5 2 0.1 0.2 0.1 0.110 0.909 0.071 9.565 0.358 0.197 0.056 0.049 0.376
8 0.5 2 0.1 0.2 0.4 0.439 0.909 0.296 2.333 0.761 0.464 0.318 0.173 0.844
9 0.5 2 0.1 0.2 0.75 0.827 0.909 0.640 1.064 0.909 0.764 1 0.647 1.219
10 0.5 2 0.9 0.8 0.1 0.100 0.526 0.009 424.368 0.164 0.130 0.177 0.119 0.212
11 0.5 2 0.9 0.8 0.3 0.300 0.526 0.063 59.905 0.390 0.331 0.576 0.396 0.526
12 0.5 2 0.9 0.8 0.5 0.502 0.526 0.754 5.009 0.526 0.515 1 0.851 0.779
13 0.5 3 0.1 0.2 0.1 0.105 0.909 0.028 12.707 0.326 0.185 0.048 0.045 0.348
14 0.5 3 0.1 0.2 0.4 0.422 0.909 0.120 3.017 0.714 0.463 0.249 0.172 0.819
15 0.5 3 0.1 0.2 0.75 0.802 0.909 0.306 1.191 0.887 0.763 0.782 0.645 1.206
16 0.5 3 0.9 0.8 0.1 0.100 0.526 0.001 23208.128 0.146 0.120 0.153 0.109 0.193
17 0.5 3 0.9 0.8 0.3 0.300 0.526 0.008 1942.750 0.363 0.322 0.514 0.380 0.504
18 0.5 3 0.9 0.8 0.5 0.500 0.526 0.434 28.541 0.524 0.507 0.991 0.822 0.769
19 2 1 0.1 0.2 0.1 0.118 0.909 0.094 8.014 0.226 0.392 0.029 0.129 0.844
20 2 1 0.1 0.2 0.4 0.471 0.909 0.388 1.983 0.471 0.833 0.089 1 1.775
21 2 1 0.1 0.2 0.75 0.882 0.909 0.860 0.973 0.882 0.833 0.750 1 2.598
22 2 1 0.9 0.8 0.1 0.105 0.526 0.043 33.766 0.149 0.218 0.157 0.223 0.515
23 2 1 0.9 0.8 0.3 0.314 0.526 0.294 3.967 0.344 0.473 0.471 0.717 1.160
24 2 1 0.9 0.8 0.5 0.523 0.526 1.037 1.074 0.523 0.556 0.988 1 1.602
25 2 2 0.1 0.2 0.1 0.110 0.909 0.071 9.565 0.217 0.342 0.028 0.104 0.776
26 2 2 0.1 0.2 0.4 0.439 0.909 0.296 2.333 0.467 0.771 0.088 0.674 1.706
27 2 2 0.1 0.2 0.75 0.827 0.909 0.640 1.064 0.827 0.833 0.479 1 2.488
28 2 2 0.9 0.8 0.1 0.100 0.526 0.009 424.368 0.126 0.167 0.130 0.161 0.420
29 2 2 0.9 0.8 0.3 0.300 0.526 0.063 59.905 0.328 0.393 0.438 0.518 1.048
30 2 2 0.9 0.8 0.5 0.502 0.526 0.754 5.009 0.508 0.538 0.929 0.930 1.553
31 2 3 0.1 0.2 0.1 0.105 0.909 0.028 12.707 0.207 0.307 0.026 0.089 0.722
32 2 3 0.1 0.2 0.4 0.422 0.909 0.120 3.017 0.471 0.716 0.089 0.504 1.657
33 2 3 0.1 0.2 0.75 0.802 0.909 0.306 1.191 0.802 0.833 0.404 1 2.437
34 2 3 0.9 0.8 0.1 0.100 0.526 0.001 23208.128 0.118 0.147 0.121 0.138 0.384
35 2 3 0.9 0.8 0.3 0.300 0.526 0.008 1942.750 0.320 0.365 0.424 0.460 1.005
36 2 3 0.9 0.8 0.5 0.500 0.526 0.434 28.541 0.506 0.524 0.924 0.882 1.537

abuse of notations, let ∂Q
∂e∗i

denote ∂Q
∂ei

∣∣
ei=e∗i

, i = 1, 2, and let

E =− 1

e∗2
∂Q
∂e∗1

,

F =





2
e∗1

P2p2e∗22 (PRr − e∗1e∗2)PRr − P1p1e∗21 e∗2
[
2(PRr

−e∗1e∗2) + p2e∗2(e∗1 − PRr)− p2e∗2(1− e∗1)
]
, if N = 1,

e∗22
∂2Q

∂e∗1∂e∗2
− P2

P1
e∗22

∂2Q

∂e∗21
, if N > 1,

G =





− 2
e∗2

P1p1e∗21 (PRr − e∗1e∗2)PRr + P2p2e∗1e∗22

[
2(PRr

−e∗1e∗2) + p1e∗1(e∗2 − PRr)− p1e∗1(1− e∗2)
]
, if N = 1,

2e∗2
∂Q
∂e∗2

+ e∗22
∂2Q

∂e∗22
− 2P2

P1
e∗2

∂Q
∂e∗1

− P2
P1

e∗22
∂2Q

∂e∗1∂e∗2
, if N > 1,

H =





−P1p1e∗21

[
2(PRr − e∗1e∗2)− p2e∗22 (1− e∗1)

]

+P2p2e∗22

[
2(PRr − e∗1e∗2)− p1e∗21 (1− e∗2)

]
, if N = 1,

1, if N > 1.

(42)

Then, we have:

Proposition 5.1: For the system defined by model (i)-(vii),
the derivative of the optimal solution of (P2) with respect to

PRr is

de∗1
dPRr

=





P2H−P1EG
P2F−P1G , if P1

P2
∈ (fmin, fmax),

0, if P1
P2

< fmin,

− 1
e∗2

∂Q
∂e∗1

, if P1
P2

> fmax,

de∗2
dPRr

=





P1(EF−H)
P2F−P1G , if P1

P2
∈ (fmin, fmax),

− e∗2
e∗22

∂Q
∂e∗2

−PRr
, if P1

P2
< fmin,

0, if P1
P2

> fmax,

(43)

where the expressions of E, F,G, and H are given in (42).
Proof: See the Appendix.

With the derived de∗1
dPRr

and de∗2
dPRr

, it is obvious that for P1
P2

<

fmin and P1
P2

> fmax, both de∗1
dPRr

and de∗2
dPRr

are non-negative
(noting that e∗2

∂Q
∂e∗1

and e∗22
∂Q
∂e∗2

−PRr are negative, see Section
III for details). For P1

P2
∈ (fmin, fmax), to validate that both

de∗1
dPRr

and de∗2
dPRr

are positive, 6000 test cases are constructed
with system parameters selected randomly and equiprobably
from the following sets:

p1, p2 ∈ (0, 1), PRr ∈ (0, PRmax],
P1

P2
∈ (fmin, fmax), N ∈ {1, 2, . . . , 10}. (44)

As a result, we have:



9

Numerical Fact 5.1: For all constructed 6000 test cases
with P1

P2
∈ (fmin, fmax), both de∗1

dPRr
and de∗2

dPRr
are always

positive.
Based on the analysis above, we conclude that both e∗1 and

e∗2 are increasing (not necessarily strictly) in PRr. To illustrate
it, a system with p1 = 0.2 and p2 = 0.3 is exemplified in Fig.
7 for both N = 1 and N = 2. Note that PRmax is 0.6795
and 0.7421 for N = 1 and N = 2, respectively. As a result,
we observe:
• when P1

P2
= 3, for N = 1, ∀PRr ∈ (0, 0.27] (cor-

respondingly, for N = 2, ∀PRr ∈ (0, 0.36]), P1
P2

∈
[fmin, fmax] and e∗1 and e∗2 are strictly increasing in PRr;
∀PRr ∈ (0.27, PRmax] (correspondingly, for N = 2,
∀PRr ∈ (0.36, PRmax]), P1

P2
> fmax and e∗1 is strictly

increasing while e∗2 achieves its maximum 1
1+p2

;
• for N = 1, when P1

P2
= 0.9 (correspondingly, for N =

2, when P1
P2

= 0.75), since ∀PRr ∈ (0, PRmax], P1
P2

∈
[fmin, fmax], e∗1 and e∗2 are strictly increasing in PRr;

• when P1
P2

= 0.2, for N = 1, ∀PRr ∈ (0, 0.22]
(correspondingly, for N = 2, ∀PRr ∈ (0, 0.32]), P1

P2
∈

[fmin, fmax] and e∗1 and e∗2 are strictly increasing in PRr;
∀PRr ∈ (0.22, PRmax] (correspondingly, for N = 2,
∀PRr ∈ (0.32, PRmax]), P1

P2
< fmin and e∗2 is strictly

increasing while e∗1 achieves its maximum 1
1+p1

;
• when P1

P2
= 0.2, the turning points for the optimal

solution are PRr = 0.22 (N = 1) and PRr = 0.32
(N = 2); when P1

P2
= 3, these turning points are

PRr = 0.27 (N = 1) and PRr = 0.36 (N = 2).
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Fig. 7: The optimal solution, (e∗1, e
∗
2), as a function of PRr

(p1 = 0.2 and p2 = 0.3)

On the basis of the derivative of the optimal solution with
respect to PRr, the sensitivity of the optimal objective value
is analyzed. As a result, we have:

Proposition 5.2: For the system defined by model (i)-(vii),
the derivative of the optimal objective value of (P2) with
respect to PRr is

dz∗

dPRr
=





−P1
1

e∗2
∂Q
∂e∗1

, if P1
P2
∈ [fmin, fmax],

−P2
e∗2

e∗22
∂Q
∂e∗2

−PRr
, if P1

P2
< fmin,

−P1
1

e∗2
∂Q
∂e∗1

, if P1
P2

> fmax.

(45)

Proof: Based on Proposition 5.1, it is easy to draw the
conclusion.

Note that when P1
P2

< fmin or P1
P2

> fmax, although de∗1
dPRr

and de∗2
dPRr

are discontinuous at some PRr (see Fig. 7), dz∗
dPRr

is always continuous. This conclusion is in accord with the
one for the Bernoulli reliability model.

Since both de∗1
dPRr

and de∗2
dPRr

are non-negative and at least
one of them is positive for any PRr ∈ (0, PRmax), we have

dz∗
dPRr

> 0. Furthermore, since the expressions in the right-
hand side of (45) are continuous, dz∗

dPRr
is continuous, which

implies that z∗ is continuously differentiable. Functions z∗ and
dz∗

dPRr
are shown in Figs. 8 and 9, from which one can also

observe that z∗ is concave when PRr is small (i.e., before the
turning point) and is slightly convex when PRr is large (i.e.,
after the turning point).
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Fig. 8: The optimal objective value, z∗, as a function of PRr

(P2 = 1, p1 = 0.2, and p2 = 0.3)
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Fig. 9: The derivative of the optimal objective value, dz∗
dPRr

,
as a function of PRr (P2 = 1, p1 = 0.2, and p2 = 0.3)

B. Impacts of Other Parameters

In this subsection, the sensitivity of the optimal objective
value, z∗, of (P2) with respect to other parameters (i.e., buffer
capacity N , machine power Pi, and breakdown probability
pi, i = 1, 2) is analyzed. For simplicity, with a slight abuse of
notations, let ∂Q

∂N and ∂Q
∂pi

, i = 1, 2, denote ∂Q
∂N

∣∣
(e1,e2)=(e∗1 ,e∗2)

and ∂Q
∂pi

∣∣
(e1,e2)=(e∗1 ,e∗2)

, respectively.
First, we study the impact of N on z∗ and obtain:
Proposition 5.3: For the system defined by model (i)-(vii)

with N > 1, the derivative of the optimal objective value of
(P2) with respect to the buffer capacity is

dz∗

dN
=





−P1

∂Q
∂N
∂Q
∂e∗1

, if P1
P2
∈ [fmin, fmax],

−P2
e∗22

∂Q
∂N

e∗22
∂Q
∂e∗2

−PRr
, if P1

P2
< fmin,

−P1

∂Q
∂N
∂Q
∂e∗1

if P1
P2

> fmax.

(46)

Proof: See the Appendix.
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To check whether dz∗
dN is negative, 6000 test cases are

constructed with system parameters selected randomly and
equiprobably from the sets in (37) and the one

P1

P2
∈ (0, 10). (47)

It is worth noting that P1
P2

∈ [fmin, fmax], P1
P2

< fmin, and
P1
P2

> fmax are all included in the constructed test cases. As
a result, we have:

Numerical Fact 5.2: For all constructed 6000 test cases
with N > 1, ∂Q

∂N is always negative.

Since both ∂Q
∂e∗1

and e∗22
∂Q
∂e∗2

− PRr are negative, based on
Proposition 5.3 and Numerical Fact 5.2, it is concluded that
z∗ is strictly decreasing in N for N > 1, which can be
observed in Table I (both e∗1 and e∗2 are decreasing in N and at
least one of them is strictly decreasing). Extensive numerical
experiments show that even if N = 1 is included, z∗ is also
strictly decreasing in N , which can be observed in Table I as
well.

Then, the impact of Pi, i = 1, 2, on z∗ is considered. Similar
to the analysis of the impact of PRr, the impact on the optimal
solution, (e∗1, e

∗
2), is firstly analyzed. As a result, we have:

Proposition 5.4: For the optimal solution, (e∗1, e
∗
2), of (P2),

when P1
P2
∈ [fmin, fmax], e∗1 (correspondingly, e∗2) is strictly

decreasing (correspondingly, increasing) in P1 and strictly
increasing (correspondingly, decreasing) in P2; when P1

P2
/∈

[fmin, fmax], as long as the change of P1 and P2 is small so
that P1

P2
< fmin or P1

P2
> fmax is kept, the optimal solution

remains the same.

Proof: See the Appendix.

Based on Proposition 5.4, the impact of Pi, i = 1, 2, on the
optimal objective value is as follows:

Proposition 5.5: For the system defined by model (i)-(vii),
the derivative of the optimal objective value of (P2) with
respect to the machine power is

dz∗

dP1
= e∗1,

dz∗

dP2
= e∗2. (48)

Proof: See the Appendix.

From (48), it follows that dz∗
dPi

> 0, i = 1, 2, which implies
that z∗ is strictly increasing in P1 and P2, respectively. The
conclusion in Proposition 5.5, which is in accord with the one
for the Bernoulli model, is hypothesized to hold for general
reliability models.

Finally, the sensitivity of z∗ with respect to pi, i = 1, 2, is
analyzed. As a result, we have:

Proposition 5.6: For the system defined by model (i)-(vii),
the derivative of the optimal objective value of (P2) with

respect to the machine breakdown probability is

dz∗

dp1
=





−P1

∂Q
∂p1
∂Q
∂e∗1

, if P1
P2
∈ (fmin, fmax],

−P1
1

(1+p1)2
− 2P2

e∗22
∂Q
∂p1

e∗22
∂Q
∂e∗2

−PRr
, if P1

P2
< fmin,

−P1

∂Q
∂p1
∂Q
∂e∗1

, if P1
P2

> fmax,

dz∗

dp2
=





−P1

∂Q
∂p2
∂Q
∂e∗1

, if P1
P2
∈ [fmin, fmax),

−P2

e∗22
∂Q
∂p2

e∗22
∂Q
∂e∗2

−PRr
, if P1

P2
< fmin,

P1

PRr−2 ∂Q
∂p2

∂Q
∂e∗1

− P2
1

(1+p2)2
, if P1

P2
> fmax.

(49)

Proof: See the Appendix.
For N = 1, based on the expressions of ∂Q

∂p1
and ∂Q

∂p2
in

[44], it follows that dz∗
dpi

< 0, i = 1, 2, which implies that z∗

is strictly decreasing in p1 and p2, respectively. To investigate
the sign of dz∗

dpi
for N > 1, we have constructed 6000 test cases

with parameters randomly and equiprobably selected from the
sets in (37) and (47). As a result, we have:

Numerical Fact 5.3: For all constructed 6000 test cases
with N > 1, dz∗

dpi
, i = 1, 2, is always negative.

Based on the above analysis, we draw the conclusion that
no matter N = 1 or N > 1, z∗ is strictly decreasing in p1

and p2, respectively.

VI. EXTENSIONS

Sections II-V analyzed and solved the energy consumption
optimization problem in the two-machine geometric serial
lines. In this section, some extensions of this problem will
be addressed.

A. Problem of Minimizing Energy Consumption per Job

In some production systems, the energy efficiency, i.e.,
the energy consumption per job (which is called specific
energy consumption in some research), rather than the total
energy consumption, attracts more attention. To reduce the
specific energy consumption, the optimization problem in a
two-machine geometric serial line is formulated as follows:

(P3) min y =
1

PR

2∑

i=1

Piei (50)

s.t.: PR > PRr, (51)

e2

[
1−Q(e1, e2, N)

]
= PR, (52)

0 < ei 6 1
1 + pi

, i = 1, 2. (53)

It is clear that problems (P3) and (P1’) are the same except
for the objective function. To solve (P3), as in Section II-B,
the following problem is introduced:

(P4) min y =
1

PR

2∑

i=1

Piei (54)

s.t.: PR = PRr, (55)
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e2

[
1−Q(e1, e2, N)

]
= PR, (56)

0 < ei 6 1
1 + pi

, i = 1, 2. (57)

Comparing (P4) with (P2), one can see that their optimal
solutions are identical and their optimal objective values
satisfy y∗ = z∗

PRr
. Furthermore, we have:

Proposition 6.1: For the system defined by model (i)-(vii),
the derivative of the optimal objective value of (P4) with
respect to PRr is

dy∗

dPRr
=





− 1
PR2

r

(
PRrP1

e∗2
∂Q
∂e∗1

+ z∗
)
, if P1

P2
∈ [fmin, fmax],

− 1
PR2

r

(
PRrP2e∗2

e∗22
∂Q
∂e∗2

−PRr
+ z∗

)
, if P1

P2
< fmin,

− 1
PR2

r

(
PRrP1

e∗2
∂Q
∂e∗1

+ z∗
)
, if P1

P2
> fmax,

(58)

where z∗ = P1e
∗
1 + P2e

∗
2.

Proof: Clearly, the derivative of y∗ with respect to PRr

is
dy∗

dPRr
=

1
PR2

r

(
PRr

dz∗

dPRr
− z∗

)
. (59)

According to (45), it is easy to draw the conclusion.
Now we focus on the sign of dy∗

dPRr
. For N = 1, we obtain:

Proposition 6.2: For N = 1, the derivative of the optimal
objective value of (P4) with respect to PRr, i.e., dy∗

dPRr
, is

negative.
Proof: See the Appendix.

As for N > 1, 5000 test cases, with system parameters
selected from (37) and (47), are constructed to justify dy∗

dPRr
<

0. As a result, we have:
Numerical Fact 6.1: For all constructed 5000 test cases

with N > 1, dy∗

dPRr
< 0 always holds.

Based on Proposition 6.2 and Numerical Fact 6.1, we
conclude that the optimal objective value, y∗, of (P4), is strictly
decreasing in PRr, which implies that the objective value
of (P3) is decreasing in PR. That is to say, (P3) reaches
its optimal objective value if and only if PR achieves its
maximum value, PRmax, and hence its optimal solution is
( 1
1+p1

, 1
1+p2

).

B. Problem with Machine Power in Operational and Idle
States Distinguished

When a machine is up, it could be either operational (i.e.,
processing jobs) or idle (i.e., starved or blocked). Considering
that in general, the power consumed by a machine in oper-
ational state is greater than in idle, it is more practical to
distinguish the power of a machine in these states. Denote
the power of machine mi, i = 1, 2, in operational and idle
states as P opr

i and P idl
i , respectively. Taking into account that

for mi, the probabilities in operational, idle, and down states
are PR, ei − PR, and 1 − ei, respectively, the problem of
minimizing the total energy consumption of the two-machine
geometric line is re-formulated as follows:

(P5) min z =
2∑

i=1

[
P opr

i PR + P idl
i (ei − PR)

]
(60)

s.t.: PR > PRr, (61)

e2

[
1−Q(e1, e2, N)

]
= PR, (62)

0 < ei 6 1
1 + pi

, i = 1, 2. (63)

The objective function of (P5) can be separated into two parts,
viz.,

z1 =
2∑

i=1

P idl
i ei, z2 =

2∑

i=1

(P opr
i − P idl

i )PR. (64)

To figure out the impact of PR on the objective value of
(P5), the monotonicity of z1 and z2 is analyzed. Based on
Theorem 2.1 and Corollary 2.1, and taking into account that
(P5) with z replaced by z1 and (P1’) have the same form, z1

reaches its minimum value when PR = PRr. Meanwhile, it is
obvious that z2 reaches its minimum value when PR = PRr

as well. As a result, z achieves its minimum when the equality
holds in (61). Given that z2 =

∑2
i=1(P

opr
i − P idl

i )PRr is a
constant, (P5) is equivalently converted into (P6):

(P6) min z =
2∑

i=1

P idl
i ei (65)

s.t.: e2

[
1−Q(e1, e2, N)

]
= PRr, (66)

0 < ei 6 1
1 + pi

, i = 1, 2. (67)

Since (P6) is formally the same as (P2), it can be solved by
the method developed in Section IV-B.

Then, under the same assumptions, the problem of mini-
mizing the specific energy consumption is re-formulated as

(P7) min y =
1

PR

2∑

i=1

[
P opr

i PR + P idl
i (ei − PR)

]
(68)

s.t.: PR > PRr, (69)

e2

[
1−Q(e1, e2, N)

]
= PR, (70)

0 < ei 6 1
1 + pi

, i = 1, 2. (71)

The objective function of (P7) can be re-written as y =
1

PR

∑2
i=1 P idl

i ei+
∑2

i=1(P
opr
i −P idl

i ), where the second term
in the right-hand side is a constant. Then, (P7) is equivalently
converted into (P8):

(P8) min y =
1

PR

2∑

i=1

P idl
i ei (72)

s.t.: PR > PRr, (73)

e2

[
1−Q(e1, e2, N)

]
= PR, (74)

0 < ei 6 1
1 + pi

, i = 1, 2. (75)

Clearly, (P8) is formally the same as (P3) and thus, its
optimal solution is ( 1

1+p1
, 1
1+p2

) and its optimal production
rate is PRmax.
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C. Problem with General Bounds on Machine Efficiency

In practice, due to physical limitations, the efficiency of
machine mi, i = 1, 2, is usually confined to a closed set,
[ei, ei], which is a subset of (0, 1

1+pi
]. In this case, for the

system defined by model (i)-(vii), the total energy consumption
optimization problem is re-formulated as follows:

(P9) min z =
2∑

i=1

Piei (76)

s.t.: e2

[
1−Q(e1, e2, N)

]
> PRr, (77)

ei 6 ei 6 ei, i = 1, 2. (78)

Problem (P9) has the same form as the one for two-
machine Bernoulli serial lines in [34], where by introducing
the following problem and solving it, the optimal solution of
the former is obtained.

(P10) min z =
2∑

i=1

Piei (79)

s.t.: e2

[
1−Q(e1, e2, N)

]
= PRr, (80)

ei 6 ei 6 ei, i = 1, 2. (81)

Note that (P10) is the same as (P2) except for constraint (81).
Adopting the approach developed for the energy consump-

tion optimization for the Bernoulli serial line in [34], (P10)
can be solved. Specifically, by investigating the relationship
between the optimal solution of (P2) and the feasible region
of (P10) and taking advantage of the monotonicity of the ob-
jective value, the optimal solution of (P10) can be constructed.
For this purpose, we first figure out the feasible region of
(P10).

From Fig. 10, one can see that constraint (81) characterizes
a rectangle area. Since PR is strictly increasing in e1 and e2,
respectively, it is easy to conclude that for any given N , in
the rectangle area, the smallest and largest production rates
are, respectively, achieved at the lower-left and the upper-
right vertexes of the rectangle (e.g., (0.4861, 0.5472) and
(0.6301, 0.6321) for systems with N = 1 in Fig. 10). Let
PR and PR denote the smallest and largest production rates,
respectively. For example, for systems in Fig. 10, PR = 0.35
and PR = 0.5. Assume that PR 6 PRmax, otherwise
(P10) has no feasible solutions. Clearly, if PRr < PR or
PRr > min(PR, PRmax), the feasible region is an empty
set and thus, (P10) has no feasible solutions; if PR < PRr <
min(PR, PRmax), the feasible region is the intersection of
the contour of the production rate (80) and the rectangle
area characterized by (81) (e.g., in Fig. 10(a), the feasible
region of the problem for PRr = 0.4 is the curve segment
inside the rectangle area with endpoints (0.4986, 0.6321) and
(0.5668, 0.5472)); if PRr = PR, the feasible region has
only one point, i.e., the lower-left vertex of the rectangle; if
PRr = min(PR, PRmax), the feasible region has a unique
point as well, which is either the upper-right vertex of the
rectangle or (e1, e2) = ( 1

1+p1
, 1

1+p2
), depending on which of

PR and PRmax is smaller.
For the case PR < PRr < min(PR, PRmax), the feasible

range of e1 corresponding to max(e2, e2,min) 6 e2 6

0.3 0.4 0.5 0.6 0.7
0.3

0.4
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0.7

(a) P1 = 0.7

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5
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(b) P1 = 0.9
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0.4
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(c) P1 = 1.1

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

(d) P1 = 2

Fig. 10: Locus of the optimal solution of (P10) for PRr ∈
[PR,min(PR, PRmax)] (p1 = p2 = 0.5, N = 1, P2 = 1,
PRmax = 0.5556)

min(e2, e2,max) can be identified, where e2,min and e2,max

are given in (19) and (23), respectively. Let this range be
[ê1,min, ê1,max], and

ê1 =max(e1,min, e1, ê1,min),

ê1 =min(e1,max, e1, ê1,max).
(82)

Then the feasible range of e1 is

ê1 6 e1 6 ê1 (83)

and correspondingly, the feasible range of e2 is

ê2 6 e2 6 ê2. (84)

Thus, the endpoints of the feasible region of (P10) are (ê1, ê2)
and (ê1, ê2).

Based on the above analysis, the optimal solution of (P10)
can be constructed. Let (ẽ∗1, ẽ

∗
2) denote this optimal solution,

then we have:
Theorem 6.1: Assume PR 6 PRr 6 min(PR, PRmax),

then (P10) has a unique optimal solution. If the optimal
solution, (e∗1, e

∗
2), of (P2), is a feasible solution of (P10), i.e.,

ê1 6 e∗1 6 ê1 (in this case, ê2 > e∗2 > ê2), then

(ẽ∗1, ẽ
∗
2) = (e∗1, e

∗
2); (85)

if e∗1 < ê1, then

(ẽ∗1, ẽ
∗
2) = (ê1, ê2); (86)

if e∗1 > ê1, then

(ẽ∗1, ẽ
∗
2) = (ê1, ê2). (87)

Proof: Based on the monotonicity of the objective value
of (P10) with respect to e1, it is easy to draw the conclusion.
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From Theorem 6.1, it is easy to conclude that as shown
in Fig. 10, as PRr increases, the optimal solution of (P10),
starting from the lower-left vertex of the rectangle, moves
along the piecewise bold lines, which is in accord with the
conclusion for two-machine Bernoulli serial lines in [34].

On the basis of Theorem 6.1, the property of the optimal
objective value of (P10) is analyzed in the following.

Theorem 6.2: Assume PR 6 PRr 6 min(PR, PRmax).
The optimal objective value, z̃∗, of (P10), is strictly increasing
in PRr.

Proof: See the Appendix.
Based on Theorems 6.1 and 6.2, the optimal solution of

(P9) is constructed. As a result, we have:
Corollary 6.1: Assume PRr 6 min(PR, PRmax). Then

the optimal solution of (P9) is the optimal solution of (P10)
with required production rate max(PR,PRr).

Since it is easy to draw this conclusion from Theorems 6.1
and 6.2, the proof is omitted.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the energy consumption optimization problem,
which minimizes the total or specific energy consumption
while maintaining a required production rate, is formulated
and solved for the two-machine geometric serial lines. Similar
for the Bernoulli lines, we establish two optimality equations
and analyze their mathematical properties, based on which
an effective and efficient algorithm is developed to solve the
energy consumption optimization problem. Moreover, the sen-
sitivity analysis of the optimal solution with system parameters
is conducted. The results show that the energy consumption
optimization problem for the geometric and Bernoulli lines
has some common attributes, which might exist for general
reliability models. Finally, some variations of the energy
consumption optimization problem are addressed as well.

In the current paper, the repair resources are assumed to
be sufficient and their costs are ignored. In the future, the
cost of the repair resources will be considered in the problem
to balance the resource cost and energy cost. Besides, the
energy consumption optimization problem will also be studied
in long geometric serial lines and assembly systems. The
results obtained for the geometric model will be extended
to exponential and non-Markovian, e.g., Weibull, gamma,
and log-normal, models. In addition, the energy consumption
optimization problem will be investigated for more practical
and complex production lines, e.g., for time sensitive lines,
for lines with quality inspection, multiple products, and batch
processing, etc.

APPENDIX

PROOFS OF THEOREMS

A. Proof of Theorem 2.1

Proof: From (1), one can see that PR is a continuous
function of both e1 and e2 since the Q-function in (6) is
continuous. Therefore, for any PRr ∈ (0, PRmax), (P2)
always has at least one feasible solution and thus, it has the
optimal solution.

To prove the theorem, we choose PRr1 and PRr2 such
that 0 < PRr1 < PRr2 < PRmax, and let (P2’) and
(P2”) denote (P2) with PRr replaced by PRr1 and by PRr2,
respectively. In addition, denote the optimal solutions of (P2’)
and (P2”) as (e∗1,r1, e

∗
2,r1) and (e∗1,r2, e

∗
2,r2), respectively, and

their corresponding optimal values as z∗r1 and z∗r2. Construct
a solution (e∗1,r2, ê2,r1) of (P2’) which satisfies PRr1 =
ê2,r1

[
1−Q(e∗1,r2, ê2,r1, N)

]
. Considering that the production

rate of (e∗1,r2, e
∗
2,r2) is PRr2 and taking into account the

monotonicity of PR with respect to e2, we have

0 < ê2,r1 < e∗2,r2 6 1
1 + p2

. (88)

Clearly, (88) indicates that (e∗1,r2, ê2,r1) is a feasible solu-
tion of (P2’). Thus, for the optimal solution (e∗1,r1, e

∗
2,r1) and

the feasible solution (e∗1,r2, ê2,r1) of (P2’), and the optimal
solution (e∗1,r2, e

∗
2,r2) of (P2”), taking into account (88), we

have

z∗r1 =
2∑

i=1

Pie
∗
i,r1 6 P1e

∗
1,r2 +P2ê2,r1 <

2∑

i=1

Pie
∗
i,r2 = z∗r2,

(89)

which completes the proof.

B. Proof of Proposition 4.1

Proof: For N = 1, using f ′(e1) = u′v−uv′
v2 , it is easy to

derive the expression on the right-hand side of (34).
As for N > 1, we have

f ′(e1) =
2e2e

′
2

∂Q
∂e1

+ e2
2

(
∂2Q

∂e2
1

+ ∂2Q
∂e1∂e2

e′2
)

e2
2

∂Q
∂e2

− PRr

−
e2
2

∂Q
∂e1(

e2
2

∂Q
∂e2

− PRr

)2

·
[
2e2e

′
2
∂Q

∂e2
+ e2

2

( ∂2Q

∂e2∂e1
+

∂2Q

∂e2
2

e′2
)]

=
e2e

′
2

(e2
2

∂Q
∂e2

− PRr)2

[(
2

∂Q

∂e1
+ e2

∂2Q

∂e1∂e2

)

·
(
e2
2
∂Q

∂e2
− PRr

)
− e2

2
∂Q

∂e1

(
2

∂Q

∂e2
+ e2

∂2Q

∂e2
2

)]

+
e2
2

∂2Q

∂e2
1

e2
2

∂Q
∂e2

− PRr

−
e4
2

∂Q
∂e1

∂2Q
∂e1∂e2(

e2
2

∂Q
∂e2

− PRr

)2

=−
e3
2

∂Q
∂e1

(e2
2

∂Q
∂e2

− PRr)3

[
e3
2
∂Q

∂e2

∂2Q

∂e1∂e2

− PRr

(
2

∂Q

∂e1
+ e2

∂2Q

∂e1∂e2

)
− e3

2
∂Q

∂e1

∂2Q

∂e2
2

]

+
e2
2

∂2Q

∂e2
1

e2
2

∂Q
∂e2

− PRr

−
e4
2

∂Q
∂e1

∂2Q
∂e1∂e2(

e2
2

∂Q
∂e2

− PRr

)2

=
e2
2

∂2Q

∂e2
1

e2
2

∂Q
∂e2

− PRr

−
e3
2

∂Q
∂e1

(e2
2

∂Q
∂e2

− PRr)3

[
2e3

2
∂Q

∂e2

∂2Q

∂e1∂e2

− 2PRr

( ∂Q

∂e1
+ e2

∂2Q

∂e1∂e2

)
− e3

2
∂Q

∂e1

∂2Q

∂e2
2

]
,

(90)

which completes the proof.
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C. Proof of Lemma 4.1

Proof: To prove it, the derivative of g(e1) with respect to
e1 is derived. From (36), it follows

g′(e1) =
e2 − PRr

(1− e1)2
+

e′2
1− e1

− (PRr − e1e2)
[
2PRr(1− e1)− e1(PRr − e1e2)

]

p1e3
1(1− e1)2(1− e2)

− e1(2e1 − e1e2 − PRr)(PRr − e1e2)e′2
p1e3

1(1− e1)(1− e2)2
.

(91)

Let

Vg =p2
1e

4
1(1− e1)2(1− e2)2

· [p2e
2
2(1− e1)(e1 − PRr) + (PRr − e1e2)2

]
,

Ug =Vgg
′(e1).

(92)

Taking into account e′2 = −f(e1) (see equation (32)) and re-
arranging the items, we have

Ug =p
2
1p2e

4
1e

2
2(1− e1)(1− e2)

2
(e1 − PRr)(e2 − PRr)

− [
2p1p2e1e

2
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

]
PRr

− [
2p1e1(1− e1)(1− e2)(PRr − e1e2)

3]
PRr

+ p1p2e
2
1e

2
2(1− e1)(1− e2)(e1 − PRr)(PRr − e1e2)

2

+ p1e
2
1(1− e2)(PRr − e1e2)

4

− p
2
1p2e

4
1e

2
2(1− e1)(1− e2)

3
(e2 − PRr)

+ p1p2e
3
1e

2
2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

+ p1p2e
2
1e

2
2(1− e1)(1− e2)(e1 − PRr)(e2 − PRr)(PRr − e1e2)

− p1p2e
2
1e

2
2(1− e1)(1− e2)

2
(PRr − e1e2)

2

+ p1e
3
1(1− e2)(e2 − PRr)(PRr − e1e2)

[
p1e1(1− e2)(PRr − e1e2)

]

+ e1e2(1− e2)(PRr − e1e2)
2[

p2e2(1− e1)(PRr − e1e2)
]

+ e2(e1 − PRr)(PRr − e1e2)
2[

p2e2(1− e1)(PRr − e1e2)
]
.

(93)

Clearly, Vg is positive. To prove the lemma, we only need to
prove Ug is negative.

For this purpose, the expressions in the brackets of the last
three items in (93) are replaced by

p1e1(1− e2)(PRr − e1e2)
=p1p2e1e2(1− e1)(1− e2)− p2e2(1− e1)(PRr − e1e2)

+ p1p2e1e2(PRr − e1e2)
(94)

and

p2e2(1− e1)(PRr − e1e2)
=p1p2e1e2(1− e1)(1− e2)− p1e1(1− e2)(PRr − e1e2)

+ p1p2e1e2(PRr − e1e2),
(95)

respectively, which are derived from (8) with PR = PRr. In
addition, the second and third terms of (93) are, respectively,
split into two terms by replacing PRr outside the brackets by

(PRr − e1e2) + e1e2. As a result, we have

Ug =
[− p1e1e2(1− e2)(e1 − PRr)(PRr − e1e2)

3

+ p1p2e1e
2
2(e1 − PRr)(PRr − e1e2)

3]

+
[− p1p2e

3
1e2(1− e1)(1− e2)(e2 − PRr)(PRr − e1e2)

2

+ p
2
1p2e

4
1e2(1− e2)(e2 − PRr)(PRr − e1e2)

2]

− 2p1e1(1− e1)(1− e2)(PRr − e1e2)
4

+
[− p1e

2
1e2(1− e2)

2
(PRr − e1e2)

3

+ p1p2e
2
1e

2
2(1− e2)(PRr − e1e2)

3]

+
{[− 2p1e

2
1e2(1− e1)(1− e2)(PRr − e1e2)

3

+ p1e
2
1(1− e2)(PRr − e1e2)

4]

+
[− 2p1p2e1e

2
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

2

− 2p1p2e
2
1e

3
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

+ p1p2e
2
1e

2
2(1− e1)(1− e2)(e1 − PRr)(PRr − e1e2)

2

+ p1p2e
3
1e

2
2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

+ p1p2e
2
1e

2
2(1− e1)(1− e2)(e1 − PRr)(e2 − PRr)(PRr − e1e2)

+ p1p2e1e
2
2(1− e1)(1− e2)(e1 − PRr)(PRr − e1e2)

2]}

+
[
p
2
1p2e

4
1e

2
2(1− e1)(1− e2)

2
(e1 − PRr)(e2 − PRr)

+ p
2
1p2e

4
1e2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

− p
2
1p2e

4
1e

2
2(1− e1)(1− e2)

3
(e2 − PRr)

]

=− p1e1e2(e1 − PRr)(PRr − e1e2)
3
(1− e2 − p2e2)

− p1p2e
3
1e2(1− e2)(e2 − PRr)(PRr − e1e2)

2
(1− e1 − p1e1)

− 2p1e1(1− e1)(1− e2)(PRr − e1e2)
4

− p1e
2
1e2(1− e2)(PRr − e1e2)

3
(1− e2 − p2e2)

−
{[

p1e
2
1e2(1− e1)(1− e2)(PRr − e1e2)

3

+ p1e
2
1(1− e2)(e2 − PRr)(PRr − e1e2)

3]

+
[
p1p2e1e

2
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

2

− p1p2e
2
1e2(1− e2)(e2 − PRr)(PRr − e1e2)

3

− p1p2e
2
1e2(1− e2)(e2 − PRr)

2
(PRr − e1e2)

2]}

− p
2
1p2e

4
1e2(1− e1)(1− e2)

3
(e2 − PRr)

2

=− p1e1e2(e1 − PRr)(PRr − e1e2)
3
(1− e2 − p2e2)

− p1p2e
3
1e2(1− e2)(e2 − PRr)(PRr − e1e2)

2
(1− e1 − p1e1)

− 2p1e1(1− e1)(1− e2)(PRr − e1e2)
4

− p1e
2
1e2(1− e2)(PRr − e1e2)

3
(1− e2 − p2e2)

− p1e
2
1e2(1− e1)(1− e2)(PRr − e1e2)

3

− p1p2e1e
2
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

2

− p1e
2
1(1− e2)(e2 − PRr)(PRr − e1e2)

3
(1− e2 − p2e2)

+ p1e
2
1(1− e2)(e2 − PRr)

[
p2e2(e2 − PRr)(PRr − e1e2)

2

− p1p2e
2
1e2(1− e1)(1− e2)

2
(e2 − PRr)− e2(PRr − e1e2)

3]
.

(96)

Since PRr < ei 6 1
1+pi

, i = 1, 2, and PRr − e1e2 > 0
(following from (8)), it is easy to check that all items except
the last one are negative. To validate Ug < 0, let Ug,s denote
the expression in the bracket of the last item of (96). Re-write

Ug,s =p2e2(e2 − PRr)(PRr − e1e2)
2

− p1p2e1e2(1− e1)(1− e2)(e1 − PRr)(e2 − PRr)

− [
p1p2e1e2(1− e1)(1− e2)

]
(e2 − PRr)(PRr − e1e2)

− e2(PRr − e1e2)
3

(97)

and replace the expression in the bracket of the third item of
the above equation by

p1p2e1e2(1− e1)(1− e2)
=

[
p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2

]
(PRr − e1e2),
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(98)

we have

Ug,s =p2e2(e2 − PRr)(PRr − e1e2)
2

− p1p2e1e2(1− e1)(1− e2)(e1 − PRr)(e2 − PRr)

− p1e1(1− e2)(e2 − PRr)(PRr − e1e2)
2

− p2e2(1− e1)(e2 − PRr)(PRr − e1e2)
2

+ p1p2e1e2(e2 − PRr)(PRr − e1e2)
2 − e2(PRr − e1e2)

3

=− e1(e2 − PRr)(PRr − e1e2)
2(1− e2 − p2e2)

+ e1(1− e2)(e2 − PRr)(PRr − e1e2)
2

− p1p2e1e2(1− e1)(1− e2)(e1 − PRr)(e2 − PRr)

− p1e1(e2 − PRr)(PRr − e1e2)
2(1− e2 − p2e2)

− e2(PRr − e1e2)
3

=− e1(e2 − PRr)(PRr − e1e2)
2(1− e2 − p2e2)

+ (e1 − PRr)(e2 − PRr)
[
(PRr − e1e2)

2

− p1p2e1e2(1− e1)(1− e2)
]− PRr(PRr − e1e2)

3

− p1e1(e2 − PRr)(PRr − e1e2)
2(1− e2 − p2e2).

(99)

For the expression in the bracket of the second term of the
right-hand side of (99), it can be re-written as

(PRr − e1e2)

p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2

·
{

p1p2e1e2(1− e1)(1− e2)

− [
p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2

]2}

=
(PRr − e1e2)

p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2

·
{
− p2

1e
2
1(1− e2)(1− e2 − p2e2)− p2e2(1− e1 − p1e1)

· [p1e1(1− e2) + p2e2(1− e1)− p1p2e1e2

]}
,

(100)

which is clearly negative. Considering that the other terms of
the right-hand side of (99) are all negative, we conclude Ug,s

is negative, which implies Ug is negative and completes the
proof.

D. Proof of Lemma 4.2

Proof: To prove it, the derivative of h(e1) is derived.
From (36), it follows

h′(e1) =
1

1− e2
+

(e1 − PRr)e
′
2

(1− e2)2

+
(PRr − e1e2)

[− 2e2(1− e1) + (PRr − e1e2)
]

p2e2
2(1− e1)2(1− e2)

+
(PRr − e1e2)

[
e2(PRr − e1e2)− 2(1− e2)PRr

]
e′2

p2e3
2(1− e1)(1− e2)2

.

(101)

Let

Vh =p1p2e
2
1e

2
2(1− e1)2(1− e2)2

· [p2e
2
2(1− e1)(e1 − PRr) + (PRr − e1e2)2

]
,

Uh =Vhh′(e1).
(102)

Taking into account e′2 = −f(e1) and re-arranging the items,
we have

Uh =p1p2e
2
1e

2
2(1− e1)

2
(1− e2)(PRr − e1e2)

2

+ p1p
2
2e

2
1e

4
2(1− e1)

3
(1− e2)(e1 − PRr)

− 2p1p2e
2
1e

3
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

+ p1p2e
2
1e

2
2(1− e1)(1− e2)(e1 − PRr)(PRr − e1e2)

2

+ 2p2e1e
2
2(1− e1)(1− e2)(PRr − e1e2)

3

+ 2p2e2(1− e1)(1− e2)(PRr − e1e2)
4

− p2e
2
2(1− e1)(PRr − e1e2)

4

− p1p
2
2e

2
1e

4
2(1− e1)

2
(1− e2)(e1 − PRr)(e2 − PRr)

+ 2p1p2e
3
1e

2
2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

+ 2p1p2e
2
1e2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

2

− p1p2e
2
1e

2
2(1− e1)(1− e2)(e2 − PRr)(PRr − e1e2)

2

− e1e2(1− e1)(PRr − e1e2)
2[

p1e1(1− e2)(PRr − e1e2)
]

− e1(e2 − PRr)(PRr − e1e2)
2[

p1e1(1− e2)(PRr − e1e2)
]

− p2e
3
2(1− e1)(e1 − PRr)(PRr − e1e2)

[
p2e2(1− e1)(PRr − e1e2)

]
.

(103)

Clearly, Vh is positive. To prove the lemma, we only need to
prove Uh is positive.

For this purpose, the expressions in the brackets of the last
three items in (103) are replaced by (94) and (95), respectively.
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As a result, we have

Uh =
[
p2e1e

2
2(1− e1)

2
(PRr − e1e2)

3 − p1p2e
2
1e

2
2(1− e1)(PRr − e1e2)

3]

+
[
p2e1e

2
2(1− e1)(1− e2)(PRr − e1e2)

3

− p2e
2
2(1− e1)(PRr − e1e2)

4]

+ p1p2e
2
1e2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

2

+ p2e2(1− e1)(1− e2)(PRr − e1e2)
4

+
[
p2e1e2(1− e1)(e2 − PRr)(PRr − e1e2)

3

− p1p2e
2
1e2(e2 − PRr)(PRr − e1e2)

3]

+
{[

p1p2e
2
1e

2
2(1− e1)

2
(1− e2)(PRr − e1e2)

2

+ p1p2e
2
1e

2
2(1− e1)(1− e2)(e1 − PRr)(PRr − e1e2)

2

− p1p2e
2
1e

2
2(1− e1)(1− e2)(e2 − PRr)(PRr − e1e2)

2]

− p1p2e
2
1e

2
2(1− e1)

2
(1− e2)(PRr − e1e2)

2

− p1p2e
2
1e

3
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

+ p1p2e
3
1e

2
2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

}

+
[
p1p

2
2e

2
1e

4
2(1− e1)

3
(1− e2)(e1 − PRr)

− p1p
2
2e1e

4
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

− p1p
2
2e1e

4
2(1− e1)(e1 − PRr)(PRr − e1e2)

2

+ p1p2e1e
3
2(1− e1)(1− e2)(e1 − PRr)(PRr − e1e2)

2

− p1p
2
2e

2
1e

4
2(1− e1)

2
(1− e2)(e1 − PRr)(e2 − PRr)

]

+
[
p2e1e

2
2(1− e1)(1− e2)(PRr − e1e2)

3

+ p2e2(1− e1)(1− e2)(PRr − e1e2)
4]

+
[
p1p2e

2
1e2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

2

− p1p2e
2
1e2(1− e1)(1− e2)(e2 − PRr)(PRr − e1e2)

2

+ p1p2e
3
1e

2
2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

− p1p2e
2
1e

3
2(1− e1)

2
(1− e2)(e1 − PRr)(PRr − e1e2)

]

=p2e1e
2
2(1− e1)(PRr − e1e2)

3
(1− e1 − p1e1)

+ p2e
2
2(1− e1)(e1 − PRr)(PRr − e1e2)

3

+ p1p2e
2
1e2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

2

+ p2e2(1− e1)(1− e2)(PRr − e1e2)
4

+ p2e1e2(e2 − PRr)(PRr − e1e2)
3
(1− e1 − p1e1)

+
[
p1p2e1e

3
2(1− e1)(e1 − PRr)(PRr − e1e2)

2
(1− e2 − p2e2)

+ p1p
2
2e1e

4
2(1− e1)

3
(1− e2)(e1 − PRr)

2]

+
[
p2e

2
2(1− e1)(e1 − PRr)(PRr − e1e2)

3

+ p2e2(1− e1)(PRr − e1e2)
4]

− [
p1p2e1e

2
2(1− e1)(e1 − PRr)

2
(PRr − e1e2)

2

+ p1p2e1e
2
2(1− e1)(e1 − PRr)(PRr − e1e2)

3]

=p2e1e
2
2(1− e1)(PRr − e1e2)

3
(1− e1 − p1e1)

+ p2e
2
2(1− e1)(e1 − PRr)(PRr − e1e2)

3

+ p1p2e
2
1e2(1− e1)(1− e2)

2
(e2 − PRr)(PRr − e1e2)

2

+ p2e2(1− e1)(1− e2)(PRr − e1e2)
4

+ p2e1e2(e2 − PRr)(PRr − e1e2)
3
(1− e1 − p1e1)

+ p2e2(1− e1)(PRr − e1e2)
4

+ p1p2e1e
3
2(1− e1)(e1 − PRr)(PRr − e1e2)

2
(1− e2 − p2e2)

+ p2e
2
2(1− e1)(e1 − PRr)(PRr − e1e2)

3
(1− e1 − p1e1)

+ p2e
2
2(1− e1)(e1 − PRr)

[
e1(PRr − e1e2)

3

+ p1p2e1e
2
2(1− e1)

2
(1− e2)(e1 − PRr)

− p1e1(e1 − PRr)(PRr − e1e2)
2]

.

(104)

Similar in the proof of Lemma 4.1 (see Appendix C), it
is easy to see that all items of the right-hand side of the
above equation except the last one are positive. As for the
last item, comparing the expression in the bracket with that in
the bracket of the last item of (96), it is not hard to prove its
positiveness. Thus, Uh is positive, which completes the proof.

E. Proof of Proposition 5.1
Proof: From the expression of PRr, we have

PRr = e∗2
[
1−Q(e∗1, e

∗
2, N)

]
. (105)

Take the total derivative of both sides of the above equation
with respect to e∗1, e∗2, and PRr, and re-arrange the terms, we
obtain

−e∗2
∂Q

∂e∗1
de∗1 +

(
1−Q− e∗2

∂Q

∂e∗2

)
de∗2 = dPRr. (106)

In the following, we consider the cases P1
P2

∈ (fmin, fmax),
P1
P2

< fmin, P1
P2

> fmax separately.
For the case P1

P2
∈ (fmin, fmax), considering that

f(e∗1) =
e∗2

∂Q
∂e∗1

e∗2
∂Q
∂e∗2

− (1−Q)
=

P1

P2
, (107)

(106) can be rewritten as

P1
de∗1

dPRr
+ P2

de∗2
dPRr

= P1E. (108)

Meanwhile, based on f(e∗1) = P1
P2

, we have

P1

P2
=





p2e∗22 (PRr−e∗1e∗2)2+p1p2e∗21 e∗22 (1−e∗2)(e∗2−PRr)

p1e∗21 (PRr−e∗1e∗2)2+p1p2e∗21 e∗22 (1−e∗1)(e∗1−PRr)
, if N = 1,

e∗22
∂Q
∂e∗1

e∗22
∂Q
∂e∗2

−PRr
, if N > 1.

(109)

For N = 1, re-arranging the above equation results in

P1

[
p1e

∗2
1 (PRr − e∗1e

∗
2)

2 + p1p2e
∗2
1 e∗22 (1− e∗1)(e

∗
1 − PRr)

]

=P2

[
p2e

∗2
2 (PRr − e∗1e

∗
2)

2 + p1p2e
∗2
1 e∗22 (1− e∗2)(e

∗
2 − PRr)

]
.

(110)

Take the total derivative of both sides of the above equation
with respect to e∗1, e∗2, and PRr, and re-arrange the terms, we
obtain

de∗1
{2P2

e∗1

[
p2e∗22 (PRr − e∗1e∗2)2 + p2e∗1e∗32 (PRr − e∗1e∗2)

]

− P1p1e∗21 e∗2
[
2(PRr − e∗1e∗2) + p2e∗2(e∗1 − PRr)− p2e∗2(1− e∗1)

]}

+ de∗2
{
− 2P1

e∗2

[
p1e∗21 (PRr − e∗1e∗2)2 + p1e∗31 e∗2(PRr − e∗1e∗2)

]

+ P2p2e∗1e∗22

[
2(PRr − e∗1e∗2) + p1e∗1(e∗2 − PRr)− p1e∗1(1− e∗2)

]}

= dPRr

{
− P1p1e∗21

[
2(PRr − e∗1e∗2)− p2e∗22 (1− e∗1)

]

+ P2p2e∗22

[
2(PRr − e∗1e∗2)− p1e∗21 (1− e∗2)

]}
.

(111)

Combining with (108) and (111) results in
de∗1

dPRr
=

P2H − P1EG

P2F − P1G
,

de∗2
dPRr

=
P1(EF −H)
P2F − P1G

.

(112)

For N > 1, the derivatives de∗1
dPRr

and de∗2
dPRr

can be obtained
similarly. Different from N = 1, (110) and (111) are replaced
by

P1

(
e∗22

∂Q

∂e∗2
− PRr

)
= P2e

∗2
2

∂Q

∂e∗1
(113)
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and

de∗1
(
e∗22

∂2Q

∂e∗1∂e∗2
− P2

P1
e∗22

∂2Q

∂e∗21

)
+ de∗2

(
2e∗2

∂Q

∂e∗2

+ e∗22

∂2Q

∂e∗22

− 2
P2

P1
e∗2

∂Q

∂e∗1
− P2

P1
e∗22

∂2Q

∂e∗1∂e∗2

)
= dPRr,

(114)

respectively. The forms of de∗1
dPRr

and de∗2
dPRr

in (112) still hold
for N > 1.

As for the cases P1
P2

< fmin and P1
P2

> fmax, f(e∗1) = P1
P2

does not hold anymore. Assume that P1
P2

< fmin, then e∗1 =
1

1+p1
. That is to say, (106) is simplified as
(
1−Q− e∗2

∂Q

∂e∗2

)
de∗2 = dPRr, (115)

which implies that

de∗1
dPRr

=0,

de∗2
dPRr

=
1

1−Q− e∗2
∂Q
∂e∗2

= − e∗2
e∗22

∂Q
∂e∗2

− PRr

.
(116)

Similarly, for P1
P2

> fmax, e∗2 = 1
1+p2

and (106) is simplified
as

−e∗2
∂Q

∂e∗1
de∗1 = dPRr, (117)

which implies that

de∗1
dPRr

= − 1
e∗2

∂Q
∂e∗1

,
de∗2

dPRr
= 0. (118)

F. Proof of Proposition 5.3

Proof: For Equation (105), taking the total derivative of
both sides with respect to e∗1, e∗2, and N , we have

e∗2
∂Q

∂e∗1
de∗1+

[
e∗2

∂Q

∂e∗2
−(1−Q)

]
de∗2+e∗2

∂Q

∂N
dN = 0. (119)

In the following, we prove the proposition for the three cases
one by one.

First, we prove it for P1
P2

∈ [fmin, fmax]. Taking into
account (107), (119) can be re-written as

P1 de∗1 + P2 de∗2 = −P1

∂Q
∂N
∂Q
∂e∗1

dN. (120)

Thus,

dz∗

dN
= P1

de∗1
dN

+ P2
de∗2
dN

= −P1

∂Q
∂N
∂Q
∂e∗1

. (121)

As for P1
P2

/∈ [fmin, fmax], e∗1 or e∗2 is constant and (119) can
be simplified. Specifically, if P1

P2
< fmin, the optimal solution

is e∗1 = 1
1+p1

and e∗2 = e2,min, where e∗1 is a constant. In this
case, (119) is rewritten as

[
e∗2

∂Q

∂e∗2
− (1−Q)

]
de∗2 = −e∗2

∂Q

∂N
dN. (122)

And then, we have

dz∗

dN
= P2

de∗2
dN

= −P2

e∗22
∂Q
∂N

e∗22
∂Q
∂e∗2

− PRr

. (123)

Similarly, when P1
P2

> fmax, e∗2 is a constant, thus (119) is
simplified as

e∗2
∂Q

∂e∗1
de∗1 = −e∗2

∂Q

∂N
dN, (124)

which leads to

dz∗

dN
= P1

de∗1
dN

= −P1

∂Q
∂N
∂Q
∂e∗1

. (125)

G. Proof of Proposition 5.4

Proof: When P1
P2
∈ [fmin, fmax], taking into account (33)

and the monotonicity of f(e1), it is easy to conclude that e∗1
is decreasing in P1 and thus, e∗2 is increasing. Similarly, it
can be proved that e∗1 and e∗2 are, respectively, increasing and
decreasing in P2.

As for the case P1
P2

/∈ [fmin, fmax], clearly, P1
P2

is ei-
ther smaller than fmin or greater than fmax. Thus, from
the conclusion in Section IV-B, the optimal solution is still
(e1,max, e2,min) for the former case and (e1,min, e2,max) for
the latter one, which completes the proof.

H. Proof of Proposition 5.5

Proof: Take the total derivative of both sides of (105)
with respect to e∗1 and e∗2 and re-arrange the terms, we have

e∗2
∂Q

∂e∗1
de∗1 =

(
1−Q− e∗2

∂Q

∂e∗2

)
de∗2. (126)

For P1
P2

∈ [fmin, fmax], combining (126) with f(e∗1) =
e∗2

∂Q
∂e∗1

e∗2
∂Q
∂e∗2

−(1−Q)
= P1

P2
, we obtain

P1 de∗1 + P2 de∗2 = 0. (127)

Then, the derivative of z∗ with respect to P1 is derived:

dz∗

dP1
= e∗1 + P1

de∗1
dP1

+ P2
de∗2
dP1

= e∗1. (128)

Similarly, the derivative of z∗ with respect to P2 for P1
P2

∈
[fmin, fmax] is obtained:

dz∗

dP2
= e∗2. (129)

For the case that P1
P2

/∈ [fmin, fmax], the optimal solution,
which is (e1,max, e2,min) or (e1,min, e2,max), stays unchanged
when Pi changes slightly, i = 1, 2. Thus, the derivatives of z∗

with respect to P1 and P2 are as follows:

dz∗

dP1
=e∗1 + P1

de∗1
dP1

+ P2
de∗2
dP1

= e∗1,

dz∗

dP2
=e∗2 + P1

de∗1
dP2

+ P2
de∗2
dP2

= e∗2,
(130)

which is consistent with the case that P1
P2
∈ [fmin, fmax].
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I. Proof of Proposition 5.6
Proof: Since the expressions of dz∗

dp1
and dz∗

dp2
can be

deduced in the same way, in the following, we only provide
the derivation of dz∗

dp1
.

Taking the total derivative of both sides of (105) with respect
to e∗1, e∗2, and p1 and re-arranging the terms, we have

e∗2
∂Q

∂e∗1
de∗1 +

[
e∗2

∂Q

∂e∗2
− (1−Q)

]
de∗2 = −e∗2

∂Q

∂p1
dp1. (131)

For P1
P2
∈ (fmin, fmax), since f(e∗1) =

e∗2
∂Q
∂e∗1

e∗2
∂Q
∂e∗2

−(1−Q)
= P1

P2
,

we obtain

dz∗

dp1
= P1

de∗1
dp1

+ P2
de∗2
dp1

= −P1

∂Q
∂p1

∂Q
∂e∗1

. (132)

When P1
P2

< fmin, since e∗1 = 1
1+p1

, we have

e∗2
∂Q

∂e∗1
de∗1 = e∗2

∂Q

∂e∗1

de∗1
dp1

dp1 = e∗2
∂Q

∂p1
dp1. (133)

Based on the above equation, (131) can be rewritten as

e∗2
∂Q

∂p1
dp1 +

[
e∗2

∂Q

∂e∗2
− (1−Q)

]
de∗2 = −e∗2

∂Q

∂p1
dp1, (134)

from which we obtain

de∗2
dp1

=
−2e∗2

∂Q
∂p1

e∗2
∂Q
∂e∗2

− (1−Q)
. (135)

Considering that dz∗
dp1

= P1
de∗1
dp1

+P2
de∗2
dp1

and de∗1
dp1

= − 1
(1+p1)2

,
the expression of dz∗

dp1
for P1

P2
< fmin is obtained:

dz∗

dp1
= −P1

1
(1 + p1)2

− 2P2

e∗22
∂Q
∂p1

e∗22
∂Q
∂e∗2

− PRr

. (136)

For P1
P2

> fmax, since e∗2 equals 1
1+p2

which is a constant,
(131) is rewritten as

e∗2
∂Q

∂e∗1
de∗1 = −e∗2

∂Q

∂p1
dp1. (137)

Then, we have

dz∗

dp1
= P1

de∗1
dp1

= −P1

∂Q
∂p1

∂Q
∂e∗1

. (138)

As far as P1
P2

= fmin is concerned, let p̂1 denote the value
of p1 satisfying P1

P2
= fmin. Since the difference of left and

right limits of p̂1, i.e.,

− P1

∂Q
∂p1

∂Q
∂e∗1

−
[
− P1

1
(1 + p1)2

− 2P2

e∗22
∂Q
∂p1

e∗22
∂Q
∂e∗2

− PRr

]

=P1
1

(1 + p1)2
+ P2

e∗22
∂Q
∂p1

e∗22
∂Q
∂e∗2

− PRr

,

(139)

is positive (noting that ∂Q
∂p1

and e∗22
∂Q
∂e∗2

− PRr are negative,
see the report [44]), dz∗

dp1
does not exist. While for P1

P2
= fmax,

it is clear that the corresponding left and right limits are equal

to each other, which implies that dz∗
dp1

= −P1

∂Q
∂p1
∂Q
∂e∗1

.

J. Proof of Proposition 6.2

Proof: As before, we prove it by considering the cases
P1
P2
∈ [fmin, fmax], P1

P2
< fmin, and P1

P2
> fmax separately.

First, we consider the case that P1
P2

> fmax. From Section
IV-B, it follows that, for P1

P2
> fmax, the optimal solution of

(P2) is (e1,min, e2,max). Noting that (P4) and (P2) have the
same optimal solution and taking into account (23) and (24),
we have

y∗ =
P1(1 + p2)
1 + p1p2

+
P2

(1 + p2)PRr
. (140)

Clearly, dy∗

dPRr
< 0. For the case P1

P2
< fmin, the proof is

similar and omitted here.

As for the case P1
P2
∈ [fmin, fmax], from (8), it follows

∂Q

∂e1
= − (PRr − e1e2)2 + p1e

2
1(1− e2)(e2 − PRr)

p1e2
1e2(1− e1)(1− e2)

. (141)

Thus, based on (58), we have

dy∗

dPRr
=− 1

PR2
r

[
PRrP1/

(
e∗2

∂Q

∂e1

∣∣∣
(e1,e2)=(e∗1 ,e∗2)

)
+ z∗

]

=
1

PR2
r

[ P1p1e
∗2
1 (1− e∗1)(1− e∗2)PRr

(PRr − e∗1e
∗
2)

2 + p1e∗21 (1− e∗2)(e
∗
2 − PRr)

− P1e
∗
1 − P2e

∗
2

]

=
P1e

∗
1

p2e∗2PR2
r

[ p1p2e
∗
1e
∗
2(1− e∗1)(1− e∗2)PRr

(PRr − e∗1e
∗
2)

2 + p1e∗21 (1− e∗2)(e
∗
2 − PRr)

− p2e
∗
2 − P2p2e

∗2
2

P1e∗1

]
.

(142)

Letting U = p2e
∗
2PR2

r

[
(PRr − e∗1e

∗
2)

2 + p1e
∗2
1 (1 − e∗2)(e

∗
2 −

PRr)
]

and taking into account (110), the equation above can
be rewritten as

dy∗

dPRr
=

P1e
∗
1

U

{
p1p2e

∗
1e
∗
2(1− e∗1)(1− e∗2)(PRr − e∗1e

∗
2)

+ p1p2e
∗2
1 e∗22 (1− e∗1)(1− e∗2)

− p2e
∗
2

[
(PRr − e∗1e

∗
2)

2 + p1e
∗2
1 (1− e∗2)(e

∗
2 − PRr)

]

− p1e
∗
1

[
(PRr − e∗1e

∗
2)

2 + p2e
∗2
2 (1− e∗1)(e

∗
1 − PRr)

]}
.

(143)

In addition, from (8), it follows

p1p2e
∗
1e
∗
2(1− e∗1)(1− e∗2)

=
[
p1e

∗
1(1− e∗2) + p2e

∗
2(1− e∗1)− p1p2e

∗
1e
∗
2

]
(PRr − e∗1e

∗
2),

(144)
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which results in

dy∗

dPRr
=

P1e
∗
1

U

{[
p1e

∗
1(1− e∗2) + p2e

∗
2(1− e∗1)− p1p2e

∗
1e
∗
2

]

· (PRr − e∗1e
∗
2)

2 + p1p2e
∗2
1 e∗22 (1− e∗1)(1− e∗2)

− p2e
∗
2

[
(PRr − e∗1e

∗
2)

2 + p1e
∗2
1 (1− e∗2)(e

∗
2 − PRr)

]

− p1e
∗
1

[
(PRr − e∗1e

∗
2)

2 + p2e
∗2
2 (1− e∗1)(e

∗
1 − PRr)

]}

=
P1e

∗
1

U

[− (p1 + p2)e
∗
1e
∗
2(PRr − e∗1e

∗
2)

2 − p1p2e
∗
1e
∗
2

· (PRr − e∗1e
∗
2)

2 + p1p2e
∗2
1 e∗22 (1− e∗1)(1− e∗2)

− p1p2e
∗
1e
∗2
2 (1− e∗1)(e

∗
1 − PRr)

− p1p2e
∗2
1 e∗2(1− e∗2)(e

∗
2 − PRr)

]

=− P1e
∗
1

U

[
(p1 + p2)e

∗
1e
∗
2(PRr − e∗1e

∗
2)

2

+ p1p2e
∗
1e
∗
2(e

∗
1 − PRr)(e

∗
2 − PRr)

]
.

(145)

Clearly, the sum of terms in the bracket of the last expres-
sion of (145) is positive. Taking into account that U > 0, it is
concluded that dy∗

dPRr
< 0, which completes the proof.

K. Proof of Theorem 6.2

Proof: From Fig. 10, one can see that as PRr increases,
the optimal solution of (P10) moves along its locus starting
from the lower-left vertex of the rectangle characterized by
(81). Since the locus consists of edges of the rectangle and the
locus of the optimal solution of (P2), we only need to prove
that, as PRr increases, the objective value of (P10) increases
along each edge of the rectangle and the locus of the optimal
solution of (P2).

For the former, without loss of generality, we take the
bottom horizontal edge of the rectangle as an example. Clearly,
ẽ∗2 is fixed and z̃∗ is strictly increasing in ẽ∗1, which is strictly
increasing in PRr. On the other edges, it can be proved
similarly. As for the latter, it is also true from Theorem 2.1.
Thus, the proof is completed.
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