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Finance and Financial Engineering

Finance is a field that is concerned with the allocation (investment) of assets and
liabilities over space and time, often under conditions of risk or uncertainty.
Finance can also be defined as the art of money management.

Financial Engineering represents the emerging discipline wherein mathematical
tools are used to model financial markets and solve problems in finance ,
also named as:

Computational Finance

Financial Mathematics

Mathematical Finance

Quantititave Financelll

[1] (https:/iafe.org) | 2019



Financial Engineering
3 Money-driven interdisciplinary study

Mathematics includes the study of such topics as quantity, structure, space and
change.

Finance: subject studying money

Financial Engineering: study finance by Math.
Start: 1900s emerged as a discipline:1970s

Problems in Financial Engineering: Pricing and optimal investment

» Asset pricing
* Modern portfolio theory
* Risk measure
o Derivatives development
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Financial Engineering

3 Financial engineers

Financial engineers typically work iIn investment banks, Insurance
companies, hedge funds, commercial banks, regulatory agencies
corporate treasuries.

Investment Banking

Corporate Strategic Planning

Risk Management

Primary and Derivatives Securities
Valuation

Financial Information Systems

Management

Portfolio Management

Security Trading
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Financial Engineering
A Financial engineers : prerequisite

Generally, Financial Engineers are strong on the following fields:
(1) Finance Preparation:

Fundamentals of Corporate Finance, Options, Futures, and Other
Derivatives, Investments, Intro to Financial Account ( CFA Level 1. )

(2) Math Preparation :

Calculus, Linear Algebra, Partial Differential Equations, Statistics,
Numerical Analysis, optimization

(3) Programming Preparation:
C++, Paython, Matlab
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Financial Engineering

A Courses In Business school (USA) :

= University of California, Berkeley
Haas School of Business,
Master in Financial Engineering

= Carnegie Mellon University
Graduate School of Business
Master of Science in Computational Finance
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Financial Engineering

A Courses In industrial engineering school (USA):

=  Princeton University
Department of Operations Research & Financial Engineering
M.S.E. in Operations Research and Financial Engineering

=  Columbia University Department of Industrial Engineering and
Operations Research ~ M.S. in Financial Engineering

= Cornell University  School of Operations Research and Industrial
Engineering  Master of Engineering in Financial Engineering

= University of Michigan, Ann Arbor College of Engineering
Master of Science in Financial Engineering

7/19


http://www.orfe.princeton.edu/graduate/index.html
http://www.ieor.columbia.edu/finance.html
http://www.orie.cornell.edu/me...ables/financial1.html
http://www.orie.cornell.edu/me...ables/financial1.html
http://www.orie.cornell.edu/me...ables/financial1.html
http://interpro.engin.umich.edu/fep/

Financial Engineering

A Courses in Mathematics school (USA):

= Stanford University The Departments of Mathematics and Statistics
MS in Financial Mathematics

= University of Chicago Department of Mathematics
Master of Science in Financial Mathematics

= New York University  Department of Mathematics
Master of Science in Mathematics in Finance

= University of Southern California  Department of Mathematics
Master of Science in Mathematical Finance
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Financial Engineering

Courses in Canada
= University of Toronto
Masters Program in Mathematical Finance

= York University
Graduate Diploma in Financial Engineering

Courses in Great Britain
= University of Oxford
Oxford Centre for Industrial and Applied Mathematics
Postgraduate Diploma in Mathematical Finance

= The University of Edinburgh
Management School
MSc in Financial Mathematics
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Financial Engineering

A Courses In Singapore:

= National University of Singapore
Centre for Financial Engineering
Master of Science in Financial Engineering

= Nanyang Technological University
Nanyang Business School.
Master of Science in Financial Engineering
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Financial Engineering

3 Courses In China:

= Dudan University
School of Management

= Central University of Finance and Economics

= Shanghai University of Finance and Economics

= Renmin University of China
Business School
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Financial Engineering

3 Courses in my university:

= Xi’an Jiaotong University

Department of Mathematics and Statistics

Research Center for optimization and finance engineering
http://en.xjtu.edu.cn/
http://xiammt.xjtu.edu.cn/yjst/zyhjsylhjryjzx.htm
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Financial Engineering

3 Outline

Today we will study:

e Securities
e Risk measure
e Portfolio selection

13/19



Financial Engineering

What Is a security?

» A security is a fungible, negotiable
Instrument representing financial value.

» Securities are broadly categorized into

debt and equity securities such as bonds
and common stocks, respectively.
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Financial Engineering

What's the purpose of securities?

For the Issuer

Rise New Capital: Depending on the

pricing and market demand,
securities might be an attractive
option

Repackaging: Achieve regulatory

capital efficiencies.




Financial Engineering

What's the purpose of securities?

For the Holder

Investment: Debt securities generally offer a
higher rate of interest than bank deposits, and
equities may offer the prospect of capital

growth.

Collateral: Purchasing securities with
borrowed money secured by other securities.
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Financial Engineering

Traditionally, securities are divided into debt securities and equity.

Stocks

M

An equity instrument

EQUITY
$1,252,000
{13.79%)

Dividend

DEBT CAPITAL
$6,239,000

(68.2%) Ne

Voting rights
in the company.

the balance

carrying ownership interest.

VS.

Meaning

Return
Return
Guarantee

Additonal
Benefits

Bonds

'8

A debt instrument with a promise to
pay back the money with interest.

Interest

Yes

Preferential treatment
when bond matures.
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Financial Engineering

FREEDg,

= Debt securities may be called debentures, bonds, notes or commercial
paper depending on their maturity and certain other characteristics.

= The holder of a debt security is typically entitled to the payment of
principal and interest, together with other contractual rights under the
terms of the issue, such as the right to receive certain information.

= Debt securities are generally issued for a fixed term and redeemable

by the issuer at the end of that term.
18/19



Financial Engineering
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“*The holder of an equity is a shareholder, owning a
share, or fractional part of the issuer. Unlike debt
securities, which typically require regular payments
(interest) to the holder, equity securities are not entitled
to any payment.

“*Equity also enjoys the right to profits and capital gain. 19/19



Financial Engineering

The Value of an Investment of $1 in 1926
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Financial Engineering

The Value of an Investment of $1 in 1926
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Financial Engineering

Rates of Return 1926-2000
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Financial Engineering

Index of Chinese market

Market Summary = jR;3E300 + Follow
SHA: 000300

3,7/60.85 -5099 (1.324%) +

Apr 20, 3:01 PM GMT+8 - Disclaimer

1 day o days 1 month 1 year o years Max

6,000 2571.67 Jan 25,2013
2,000
4,000

3,000

]

|
16 2018

2 000 . :
2010 201 014

[

(™)
[

4

Open 3,807.21 Loww 3,750.10

High 3,815.44

Source: google finance Year 23/19



Financial Engineering

Index of Chinese market: SHA000001

S s8 &2 Bk Bk B 55 155 ;04 eos e

2018/04/20 FF 3165, 78 & 3220.85 ¥ 3071. 54 {F 3041.63 2 20.13{2 018 -5.07%

MA10: 3298.12 MA20: 3226.39 MA30: 3159.71
6500

6124.04

5500

4500

3500

2500

1500

-500
1990/12/31 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2018/4/20
REAZ VOL: 2012514873.00 MA10: 3651379294.00
144 n
z N— |||||I||I||I|||| i

A ;6 MACD EDT REL BOLL WE NI

Source: SINA FINANCE Year 24/19



Financial Engineering

Financial &
Investment Analysis

O Returns on investment are uncertain (risky)

3 We model uncertainty of future returns using

-Expected return: the return you expect to
receive on average => NOT ENOUGH!

-Volatility (standard deviation): degree of
dispersion of future returns => RISK
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Financial Engineering

d Risks

RiSk: 1400
Intentional interaction with uncertainty

1200

1000

Financial risk :
Danger or possibility that shareholders, 3 *°|
investors, or other financial stakeholders @ oo}

will lose money. Uncertainty (volatility) w0l
of future price, interest rate or return rate

200

Ori g Inal: 0 50 100 150 200 250

0
Asymmetry and incompleteness of Time
Information Simulations of a piece process

Portfolio selection — reduce non systemic risk

Tools for portfolio selection: mathematical models
26/19



Financial decision making: from risk measure to

portfolio selection
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Introduction

According to the type of financial securities considered:

> Operational risk: Changes in the value of the portfolio due to poor

management or maintenance
> Liquidity risk: Difficult or impossible to sell and redeem your holdings

> Exchange rate risk:Changes in foreign investment return caused by
changes in exchange rate

> Credit risk: The holder of the security cannot perform his/her obli-
gations

> Market risk: Changes in portfolio return caused by change of market
state

> etc.

The greater the risk, the greater the return or loss

How to control risk? How to balance the benefits and risks?



Introduction

Early method:
= focuses on qualitative research, risk only plays an auxiliary, explana-
tory role
Simple indicators widely used in empirical research:
= volatility, for single security’s return
s= duration or payback period, for fixed income securities, (valid) period
== Beta factor, for a portfolio,

= Convexity, first order Delta, second order Gamma, for derivative fi-
nancial product,



Introduction
Definition of risk:

== Uncertainty of future investment results due to one or more uncertain
factors

Risk measure:
== Some quantitative method for uncertainty of future investment results

Mathematically:
The risk can be viewed as a random variable X, defined in a probability
space (2, K, P):

= X represents the investment results. random return: (X > 0), or
random loss (X < 0)

w= V: The set of random variable X, such as L” (9, F, P)

i Risk Measurep : V. — R. p corresponds to different forms of risk
measures



Risk measure based on moment information

Risk measure based on the moment information of the return distribution
—The first important contribution in the quantification of risk mea-
sures

MV Model (Markowitz, 1952)

variance :  E[(X — E[X])Q]

Reasonability:
» The variance describes how real random return deviates from its mean

» For normally distributed return, mean and variance determine the
distribution

» Many utility functions can be approximated by quadratic functions of
mean and variance of returns



Portfolio selection theory

Figure: Henry. M. Markowitz

> “One day in 1950, in the library of the Business School of the
University of Chicago, | was check- ing out the possibility of
writing my Ph.D. dissertation ... to ‘stock market’. H.
Markowitz” (OR 2002, Vol. 50).
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» Previous theory on investment: J. Williams (1938) The
Theory of Investment Value. The value of a stock is the
expected presented value of its future dividends.

» An old saying “not to put all one’s eggs in one
basket” =>Diversification of the risk of a portfolio.

» Markowitz realized that the theory lacks an analysis of the
impact of risk. This insight led to the development of his
seminal theory of portfolio allocation under uncertainty,
“Portfolio Selection”, published in 1952 by The Journal of
Finance.

38



Risk measure based on moment information

MV different forms of the model:
-Portfolio with n securities:

-Investment weights vectorw = (wy,wa, -+ ,w,)T € R™,

-Random return vector R = (Ry, Ra, - -

-Mean vectorr = (ry,r9,- - aTTL)T

) 7Rn),

-Covariance matrix V = (o;;),04;: covariance between R; and Rj,

Portfolio returns:

X = Z%‘Ri = F[X]| = Zwiri =rTw, wlVw
i=1

i=1

min w! Vw

st. efw=1,

1
max rlw— )\ngVw



Risk measure based on moment information
Consider other constraints?
> Market friction: transaction cost (Atkinson & Alvarez, 2001)
> Multi-stage MV Model: Steinbach (2001)
Deficiency of MV model:

@ For large-scale portfolios, Y : computationally expensive and difficult
to estimate accurately. The effect of estimation error Chen & Zhao
(2003, 2004)

@ The distribution of returns are often obvious non-normal, fat-tailed,
left-skewed. Only one or two order moments cannot fully reflect the

randomness of income.

® The quadratic utility function implied by the MV model is irrational.
Exceeding a certain critical point will lead to increasing risk aversion
level and negative marginal utility at some sharp points.



Risk measure based on moment information

To overcome the first deficiency: how to effectively solve large-scale MV
model
using the factor model (Perold, 1981)

Ri=a;+ Bk + -+ BiFr +ei, i=1,2,--+,n,

Where F}, is the k-th random factor, &; is the random error term with
E(ei) =0, g; is unrelated to Fy, (k=1,2,--- ,K),&; (j #19).

Let
0? = E[e?], frs = cov[F,, F].

7

wTVw — Zzajwiw] 20'2012 "'Zzzzf”ﬂ"ﬁﬁw Wj.

i=1 j=1 i=1 j=1r=1s=1



Risk measure based on moment information

MV model can be formulated as

min Z aiw; + Z Z frsyrys

r=1 s=1

s.t. rTw =T,

n
Zﬁjkwj'—yk:o, ]{;:1’27...’/417

n
E wj; = 1,
Jj=1

When k is large, B = (Bj;) € R™** is sparse. And k is usually far

smaller than n. Solve efficiently using sparse optimization techniques.
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Economic Indicators

e Current stock market return (STK): Log return on the S&P 500 Price Index.

e Current bond market return (BND): Log return on the 10 Year U.S. Trea-
sury Bond.

e Current currency strength (USD): Log changes in the Dollar Index.
e Volatility (VIX): Measured as the standard deviation of short term stock

returns.
e Dividend yield (EDY): S&P 500 Aggregate Dividend Yield.
e Interest rate (UIR) : U.S. Interbank Offer Rate.
e Yield spread (TYS): 10 year U.S. Treasury Bond - 3 Month T-Bill.
e Credit spread (UCS): U.S. Corporate BAA - U.S. Corporate AAA.
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- Stocks and VIX move in opposite directions (correlation: -75%).
- Stocks and bonds sometimes move together.
- Most of the time, stocks and the U.S. currency move in opposite directions.
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Risk measure based on moment information

The tight decomposition of variance-covariance matrices, (Konno &Suzuki,

1992)
Let (r1¢, 72t sTme), t =1,2,--- T be T independent samples of

R= (RlaRQ, e aRn)Tx

1 & T
Ti:fg Tit, Oij = — E (rae =Ta)(rje —73), 1=1,2,---,n, j=12,--
t=1 t=1

Where 7, 7;; is an unbiased estimate of 7;, o;;

wiVw — ZZan wj = Zzn: {% > (ri =7 (rj — ?j)}wiwj

i=1 j=1 i=1 j=1 t=1



Risk measure based on moment information

Let

n

Zt:Z(rit_?i)wia t:1a27"'aT7

i=1

MV model can be formulated as

T
min E 22
t=1

st. T >,

n

S

rjt wj, t=1,2,---

j=1

Z wj; = 1,
j=1

wj>ov j:1a2a"'7n



Risk measure based on moment information
Absolute deviation measure, (Konno & Yamazaki, 1991)
AD = E[|X — E[X]]]

Normal distribution

Ap =2 VR B0

MAD model
min B[ Y Ryws B[ Ry
j=1 j=1
st. rTw =T,
eTw= 1,
w; 20, j=1,2, N



Risk measure based on moment information

Based on historical data

implies




Risk measure based on moment information

and

min

s.t.

w; =20, 7=12,...,n



Risk measure based on moment information

To overcome the second deficiency: use higher order moment information
Skewness (third order moment):

E[(X - E(X))’]

K(X) = 5
E[(X - B(X))"]?

When the mean and variance are the same, investors will choose a portfolio
with larger third-order moment, and even place the third-order moment in
a more important position.

Third-order center moment (Konno et al, 1993)

y[R(X)] = E[(X - E(X))’],

vijr = E[(Ry — i) (Rj — r5)(Rg — 1))



Risk measure based on moment information

MVS (mean-variance-skewness) model

n o n o n
max E E E VijkWiW ;Wi

i=1j=1k=1
st. wlVw=7,

rTw=r,



Risk measure based on moment information

Higher order moments?

Forth order moments: kurtosis =—minimize kurtosis
Better way to characterize the skewed, high kurtosis and fat-tail distribu-
tion?

i Generalized error distribution
= Extreme value distribution —EVT

i Stable distribution, its characteristic function is

exp{—7"[t|"(1 — insgn(t) tan(%")) +idt}, 7 # 1,
or(t) = o, .
exp{—If|(1 — in2 sgu(t) log(t)) +ist}, 7 =1,
where 7 € (0, 2] is the stable indicator, i.e., kurtosis parameter n € [—1, 1]
is the skewness parameter; § € R is the location parameter;y € RT is the
dispersion parameter; 7 = 2, n = 0: normal;7 < 2: high kurtosis and
fat-tailed 7 > 0 (n < 0) right (left) skewed.



Risk measure based on moment information

Skewed distribution
Skewed normal distribution SIV:

x ~ SN,(s,Q,a),
density
f(@) =20,(z — ;@[ w (2 —¢)], zeR",

where ¢,,(-) is the density of n-dimensional normal distribution, ®(-) ~
N(0,1); s = (51,62, -+ ,5n)T islocation parameter; w = diag (011,022, * , Tpn
is scalar parameter; a € R™ is shape parameter; a = 0: normal, the ab-
solute value of « is bigger, the skewness is larger; « — oo, f(1) — is
half-normal density function.



Risk measure based on moment information

Skewed ¢ distribution
Se:rx~ St (6,9, a,7), ng—i—V‘éZ, Z ~ SN, (0,9Q,«), ~—L

is dependent from Z.
General skewed distribution

Perturbation of skewness factor to a symmetric distribution
flx) = 2f0(x)G[w(x)], r eR"?

f is a n-dimensional density function, if the density fy is symmetry;

G is a 1-dimensional distribution function, satisfying G(—z) = 1 — G(x);
w(z): R = R, w(—z) = —w(z);

Glw(x)] is the skewness factor bringed by fo(x).

Different fo, G and w(z) correspond to different skewed distribution.



Experiment 1

Gamble 1A

Winnings | Chance | Winnings

$1 million | 100%

Gamble 1B

$1 million
Nothing

$5 million

Chance
89%
1%
10%



Experiment 2
Gamble 2A Gamble 2B
Winnings  Chance | Winnings | Chance
Nothing | 89% Nothing | 90%
$1 million | 11%
$5 million | 10%



Experiment 1

Experiment 2

Gamble 1A Gamble 1B Gamble 2A

Winnings | Chance  Winnings
$1 million | 89% $1 million
$1 million | 11% Nothing

$5 million

Chance Winnings Chance | Winnings

89% Nothing | 89%
1% $1 million  11%
10%

A =8B

Allais paradox

Gamble 2B

Nothing
Nothing

$5 million

Chance
89%
1%
10%



Risk measure based on moment information

Downside risk measure

» Variance: view biased smaller than or larger than expected value the

same — both large return and big loss are risk
> Investors: care about big losses rather than large return: Real risk

Roy's safety first technique (Roy, 1952)
Downside risk measure avoid normality: partial variance, semi-variance

> Below-target semivariance

E[(max(0,T — X))?]

T is the target return

» Below-mean semivariance

we choose T' = Ex]



Risk measure based on moment information

> Combined semivariance (Hamza & Janssen, 1998)

oF[(min (0, E[z] —x))z] + BE[(max (0, E[z] —x))Q], a, 8> 0.

> LPM: lower partial moment (Bawa 1975; Fishburn 1977)

LPM(a,T) = E[(max(0,T — X))“],

< 1, risk preference,
a§ =1, risk neutral,
> 1, risk aversion,

Different from variance and semi-variance, LPM corresponds to a
series of utility functions.



Risk measure based on moment information

MADS (mean-absolute deviation-skewness) model

Third-order lower partial moment

(@) = Blg(a - Blal)], g(u) = {; o
min E[g(i:(Rj - rj)wj)}
o B[y = B[ ] <=
rTw =T,
eTw=1



Risk measure based on moment information

9() = G(u) = —|u = |- — afu—p|-,

0, v=0,
p2<p1 <0, a>0, [_=
—v,v < 0.

n n
min EHZRJ‘WJ'—[M‘ ]—FO&EHZR]'OJJ'—/h‘ },
j=1 _ j=1 -

st B zn:ijj - E[Zn:ijj} | <=



Risk measure based on moment information
Based on T historical data, 75, j=1,...,n, t=1,...,T—

T T
min Tl_l(Zut+ath)

t=1 t=1
n
s.t. ut+£ rjtw; = p1, t=1,2,---,T,
=1
n
vt,-‘rg rjtw; 2 p2, t=1,2,---,T,
i=1
n
Ct*Wt*E rjtw; =71, t=1,2,...,T,
j=1
T n
E (st +mt) < w, E rjw; =T,
t=1 j=1
n
E wj=1 w20, i=1,2,---,n,

Jj=1

ut 20, vy 20, ¢ >0, ne >0, t=1,2,---,T.



Risk measure based on moment information

co-LPM—GCLPM (generalized or asymetric co-LPM)

T oo
GCLPM,(t,R;, R;) = / / (1 — R)" Y1 — R;)dF(R;, Rj),
GCLPMH(T, Ri,Rj> 75 GC‘LF’]\4,L(7'7 Rj,Ri)

H: Rz == Rj, LPMn(T, Rl)
Discrete case

T
GCLPM, (7, R, R;) Z max (0, (r — Rit))]" ™" (7 — Ryy)

—portfolio optimization



Risk measure based on moment information

A general formulation? (Kijima & Ohnishi, 1993)
k 1
o(@; f) ={E[f(z — E[z])"]}*, k=>1,

Fy) = lyl = {E[f(z - E[])"]} 7,

==

when k£ = 1: absolute deviation; when k& = 2 standard deviation.

when k = 00, Lo, risk measure: max Elz; — Exj], z; is the j-th com-
IIXRN

ponent of x

crz,x =20,

%f(y){

c_x,xr <0,

cy =0, c_ = —1: different kinds of LPM measure



Risk measure based on moment information

Exponentially weighted mean square risk

E[w(X)(X ~T)?],

T target return rate, w(X) > 0: weight function.
When target is the expected return rate
w(X) =1,

T = B[X], 1,X < B(X),
w(X) = semivariance,
0,X > B(X),

variance,

The choice of w(X) > 0: w(X) =exp(—60(X —T)), 6 >0
Constructing asymmetric risk measures from the perspective of approxi-

mating utility functions (King, 1993)



Risk measure based on moment information

Application
funds performance evaluation, asset ranking, corresponding invest-
ment optimization method

typical indicator

Sharpe ratio (X)) =

FE[X] -
Treynor ratio d(X) = []ﬁRf,
Ry risk-free return rate, 8 = %
Lower Partial Variance Indicator
E[X]— Ry

(X) = VE[min{X — E[X],0}]2



Risk measure based on moment information

Two-sided performance indicators

The Sortino-Satchell ratio PU(X) = Fi
Ea[(X~)q]
EX]
A(p, @) 7 E[| X|]7
Alpia) = V(1 -1%)

(W1 - 2)

(e

The Stable ratio PP (X) =

«, stable indicator, 0 < p < «



Risk measure based on moment information

The Rachev ratio

. CVaR(l_a)%(Tf - X) OR — E[X | X > —VaR(l_a)]

X) = =
p(X) CVaR(l_B)%(X — ’I”f)7 E[-X|X < —VaRg]
The Generalized Rachev ratio

E[(X*)| X > —VaR(1_a)]
E[~(X )7 |X < —VaRy]

p(X) =
The Farinelli—Tibiletti ratio

BPI(X) =




Risk measure based on moment information

Reward — upside variability (portfolio managers view)—"good"
Risk — downside risk (risk managers view)—"bad"

Choose proper p, q to reflect the importance of the data in the left tail or
right tail biased from the benchmark

> p, q is larger, tail effect is more important,

p, q is smaller, tail effect is less important,

» when p or ¢ is smaller than 1, opposite effect.

For asset allocation or portfolio selection problem: max “®”



Stochastic dominance

Stochastic dominance criteria
General method for comparing uncertain and stochastic phenomena.

SD—stochastic dominance
> Hardy (1934), Marshall & Olkin (1979) et al.
> majorization theory
> Fishburn (1977), Rothschild & Stiglitz (1970) et al.

» General distribution, widely used in economic and financial theoretical

research,

> Review literature Bawa (1982), Levy (1992)

idea:

» Compare pointwise the recursive distribution functions defined by the

cumulative distribution function of random variables



Stochastic dominance

Let the probability measure of X be Px
n
FOm =Py = [ Px(d)=PIX <n). ¥yeR

— 00

Cumulative distribution function
F{P (n) = /n FU(€)ds, k=23, VneR
Definition:We call X dominates Y in the kth order, if
FPm <FPm), vneR

and for some 7, the inequality holds strictly.
X dominates Y in the k — 1th order =—> X dominates Y in the kth

order



Density

Distribution

First order stochastic dominance



Cumulative density

First order

second order
stochastic dominance



Stochastic dominance
Equivalent Definition Based on Utility Function

» U;: all the utility functions satisfying U’ > 0

> Usy: all the utility functions satisfying v’ > 0 and «” < 0

» Us: all the utility functions satisfying v’ > 0,u” <0 and v/ >0
Generally,

> U,: All the utility functions whose even-order derivatives are nega-
tive and odd-order derivatives are positive

Recursive definition:
Up={u€Up:(-1)"u™ <0}, UO=U
Definition: We call  dominates Y in the nth order, if
Eu(X) > Eu(Y), YuelU,

and for some ux € U,, the inequality holds strictly.



Stochastic dominance

FSD
Fx(n) < Fy(n), ¥ Eu(X) > Eu(Y), VueU,
SSD

n n
/ Fx(H)dt < / Fy(t)dt, Vne Eu(X)> Eu(Y), YueU

— 00 — 00

/ / Fx (t)dtdv < / / Fy (t)dtdv

< Eu(X) 2 Eu(Y), VueUs

TSD

EFX (X) < EFY (Y)



Stochastic dominance

FSD:
Utility function are non-decreasing, investors pursue return (wealth)

maximization

SSD:
Utility function are non-decreasing, investors pursue return (wealth)

maximization and are risk averse

TSD:
In addition to the assumptions of SSD, investors are required to have

decreasing absolute risk aversion



Stochastic dominance

Advantages of SD:
1> Multi-criteria model, axiomatized form

== No need to make any assumptions about the probability distribution
of returns

Phenomenon comparison, theoretical research

== No need to specify the form of investor’s utility function

Disadvantages of SD:
= |ts definition does not provide a simple calculation method

== Need to compare all possible choices one by one, infinitely many,
difficult to apply



Stochastic dominance

Relationship with the mean-risk model (Ogryczak & Ruszczynski, 1999,
2001)

When using a semi-variance relative to a fixed target return as a risk
measure, mean-risk model is consistent with SD.

kth order center semi-deviation:

B
=

= {/E[X] (EX] —<)kpw(d<)} |

— 0o

5% = {B(max (0, E[X] — X))"}
absolute semi-deviation:

E[X] 00
5w:[ (E[X] — <) pa(ds) = %[ s — E[X]|p.(ds)



Stochastic dominance

Standard semi-deviation:

Mean-risk control:

X}%Y@E(X)ZE(Y) & rx < Ty,

X =Y & B(X)—Arx 2 E[Y]=Ary, VAZ0.
Theorem: If X > ggprY,then E(X) > E(Y) and
E(X) - (SX 2 E[Y] - 5y(E(X) —0Xx 2 E[Y] - O’y)

When E(X) > E(Y), the second inequality holds strictly.



Stochastic dominance

For the maximum X € Q such that
E(X) - )\5X(E(X) — )\Ux), 0<A<1

, it is efficient with respect to SSD.
Notation

Lk = Lk = Lk(Q,K,p) : E|:|X|k} < 0

Theorem: Letk > land XY € Lg, ifX > ()Y, then E(X) >
E(Y), and
E(X) - ¥ > B[y] - 6

When E(X) > E(Y), the second inequality holds strictly.



Stochastic dominance

If for somek > 1, X = (,41)Y, then E(X) > E(Y') and for allm > k
satisfying E{|z|™} < oo,

Definition:For some nonnegative «, if
X = wY =EX)>EY], B EX]-aY,>EY]-aYy

then we say mean-risk model is a-consistent with SD in kth order.



Stochastic dominance

> InL =k, 6) mean-risk model is 1-consistent with SD in all 1,2,--- | k+

1 order

From these results, we know

» Downside risk measure is better than and can replace the classical

variance risk measure.

> Not Necessarily! Grootveld & Hallerbach (1999)in the mean-risk
framework, only a few of the underlying risk measures are better

than the variance.



Stochastic dominance

Remarks:

== Use SD for research on uncertainties in economy, finance, etc.

== Find the relationship between SD with different orders and other types
of risk measures to demonstrate the risk

== T he rationality of measurement, guide the choice of optimal portfolio

s> Discuss tractable algorithms of calculating SD under specific condi-
tion, e.g., generalized error distribution, stable distribution, skewed
distribution

= Based on SD, explore problems that cannot be solved under other
types of risk measures
The problem of complex portfolio selection based on nonlinear utility

function



VaR

Value-at-Risk
—The second important approach in risk measurement
> VaR quantifies market risk with multiple sources into a single number

> At a given confidence level, what is the maximum loss that an investor

may suffer during a certain investment period?

» How much of the investor's total investment is at risk?

Definition: for a given time interval and probability level k(0 < k <
1),VaRy, represents the minimum loss occurring with probability 1 — k; or
the maximum loss occurring with probability &.

VaRy, = —Fy'(k),

F)zl is the inverse function of X' distribution function, Fx.



10% 90%

probability density

I
10% quantile p

portfolio value 1P

Exhibit: A portfolio” s 90% VaR is the amount of money such that there is a 90%
probability of the portfolio losing less than that amount of money

the 90% quantile of 1L.



VaR

Dual

Bankruptcy risk (risk of ruin):  measures the probability of a com-
pany’s bankruptcy or the occurrence of a catastrophic event: the maximum
probability of a certain loss.

For multivariate distributions, Fgl is undefined at some values of &
(Rockafellar & Vryasev, 2000)

VaRy, = inf{—Fx'(k)}

Computation of VaR (Penza & Bansal, 2001)

» Historical simulation method: A simple empirical method that does
not require any assumptions about the distribution of market factors
and simulates the future returns of the portfolio directly based on

historical data collected from market.



VaR

» Monte Carlo simulation method: Use statistical method to estimate
the parameters of the market factor, and then simulate the scenarios
of market factors..

Increase computational efficiency: scenario, simulation (Jamshudian
& Zhu, 1996)

Reduce estimated variance: importance sampling, stratified sampling
(Glasserman, 2000)
These two methods can deal with non-linear financial securities such as
options. The disadvantages are the large amount of calculation and low
efficiency.

» Analytical method: Assume that the change of the market factor

follows multivariate normal distribution, or other distribution

Portfolio value function Market factor model



VaR

0—GARCH normal model: use GARCH to describe the change of market

factor

T = [+ 0, ne | Qe—1 ~ N(0, hy),

1
Inh; =a+BIlnhi_1 + (p{ e — (2)5} + 5 -1
r¢: return rate, u: expected return rate, €2;_1: information available at
time period t — 1, «, 3, ¢, v: parameters in EGARCH model.
-In() — guarantees the variance h; > 0
-The sharp decline in stock prices will produce greater volatility than their

sharp rise



VaR

The disadvantages of above analytical methods: assumed distributions are
too simple and special

Under normal distribution: VaR based investment selection model is equiv-
alent to MV model

Other new computation methods:

> Semi-parametric method using high-order information such as skew-
ness and kurtosis, (Li, 1999)

» The calculation of VaR with high kurtosis and fat-tail distribution
(Zou Xinyue & Lv Xian, 2003)

> Use generalized error distribution (Tian Guo et al., 2003)

Better computation method?
Based on stable distribution, skewed distribution, etc.



VaR

Remarks:
The advantages of VaR:
@ The definition is simple and intuitive, easy to understand
@ Theoretically, it can measure various portfolios including complex fi-
nancial derivatives
® Lower partial risk measure

Disadvantages of VaR:

@ The value of VaR relies on the selection of parameters such as holding
period and confidence level. Very sensitive.

@ Can't measure loss over VaR

® People concern more about the risk from abnormal situations; VaR
often underestimates the real risk



VaR

@ VaR is generally non-convex to the investment weight! Non-smooth
when using a limited number of scenario.

The corresponding portfolio optimization problems are non-smooth and
non-convex, with multiple local extrema. Not easy to apply. Hard to be
applied in large-scale portfolio optimization problems.

Considering the simplest VaR based optimal portfolio selection prob-

lem:
min VaR,(—w? R) <+ max VaR;_,(w? R)
st. wlr =T,
wle =1,
w =0,
r is approximated by N scenarios, R', R?,--- , RN, with equal appearing

probability.



VaR

Definition: M. ny(ut,u?, -+ ,u®) is the k-th maximum component in
ul u2 ... UN
VaRo(—w" R) = Moy v (—w" RY, —w"R?, -+ | —w" RY)
(VaR—Opt)
min M[[QN]:N](fwTRl, 7U)TR2, SN *U/TRN)
st. wlF>T,
wle = 1,
w = 0,
N .
= % Z RY, expected return rate vector

ﬁ
Il
-



VaR

VaR based optimal portfolio selection problem :
Given cut-off point ¢ and index set I:

P(c,I) : n}inz{a—i-m[zzrf'_z:(c_a)”



VaR

For fixed o and z:
I(z,0) ={i: —w"R'>a} C{1,2,--- ,N}

Theorem: Suppose z* is the minimal solution of (VaR-Opt), a* is
the minimum value, then, * and a* are the optimal solution of the LP
problem P(a*, I(z*,a*)).Moreover, for each fix point (z,a) such that z
and a are the optimal solution of P(a,I(x,a)), z is the local minimal point
of problem (VaR-Opt).



VaR

® Only when x follows elliptical distribution, VaR is sub-additive

» In the elliptical case, the optimal portfolio of VaR based model is
consistent with the MV model

» VaR does not satisfy sub-additivity: the decentralization of the port-
folio may lead to an increase in risk

> VaR from different sources can't be add together—-unusual

In a word:
VaR is not a really reasonable, good risk measure.
“No More VaR” (J. of Banking & Finance, 2002.26 Special Issue)



More Value-at-Risk Resources

For a deeper discussion of value-at-risk, or for worked
examples of actual value-at-risk measures, see my
book Value-at-Risk: Theory and Practice. | distribute
the latest edition free online at http://value-at-risk.net.
The book contains about 160 exercises you can
practice on, with solutions provided right on this
website.

Also explore this website. The blog in particular offers
plenty of information on market risk management and
value-at-risk.

References
e Holton, Glyn A. (2004). Defining risk, Financial Analysts Journal, 60 (6), 19-25.

e Holton, Glyn A. (2014). Value-at-Risk: Theory and Practice, 2" ed. e-book at
http://value-at-risk.net.



Coherent risk measure

Coherent risk measure

What mathematical properties a general, appropriate and reasonable
risk measurement should satisfy? The third important approach in risk
management (Artzner, Delbaen, et al. 1997, 1999)

Coherent risk measure: p: X — R

A. Transitional invariance:
ple+arg)=p(r)—a, VzeX, VaeR

here, rg is the risk-free return rate
B. Sub-additivity:

plr+y) <plx)+ply), VryeX



Coherent risk measure

C. Positive homogeneity:
p(Ax) =Xp(z), YA=20, VezeX
D. Monotonicity:

py) <p(z), if 2<y, VoyeX

> A — p(x + p(x)rg) = 0 the combination between risk-free asset
and risky assets are always efficient in reducing the risk: risk can be
controlled

» B — Combining risky assets does not bring extra risks



Coherent risk measure

» C — The size of the holding asset has a direct impact on risk, (eg,

large enough to affect the timing of liquidation), the lack of liquidity
is considered.

» D — Exclude variance and all semi-variance measures
Weak Coherent risk measure: B and C is replaced by convexity
Typical Coherent risk measure

T(o) = inf{x ER:PX<z]> a},
2l = inf{z € R: PIX <] >a}, E[X ]<oo
TCE—Tail Conditional Expectation, Tail VaR

TCEq(X) = —E[X | X < (o]



Coherent risk measure

WCE—Worst Conditional Expectation
WCEq(X) = —inf {E[X |A] : A € F,P[A] > o}
Tail Mean
TMa(X) = o™ (EX Lix<a(p] + 2 (@ = Plz < 2(0)]))
ES—Expected Shortfall
ES,(X) = —TM4(X)

CVaR—Conditional Value-at-risk
The average loss/gain exceeding VaR
« of investment loss — mean value of tail distribution

CVaR,(X) = E{X | X > VaR,(X)} = inf {a—&—ﬁE[X —at:ae R}



Frequency

VaR Deviation

Mean

CVaR Deviation

CVaR

Max Loss Deviation

Max
Loss
Probability
1-ox
Loss
=




Risk

X

[

CVaR is convex, but VaR, CvaR ~,CVaR™ may be non-convex,
inequalities are valid: VaR < CVaR™ <CVaR <CVaR™



Coherent risk measure
If X =gsp Y, then
CVaR,(Y) < CVaRa(X), CVaRa(X) > VaRa(X)
For continuous X:
ESo(X) = WCEL(X) = TCEL(X) = CVaR(X)
Artzner et al. (1999), Uryasev (2000), Pflug (2000),
Acerbi & Tasche (2002), Rockafellar & Uryasev (2002)
A simple CVaR based portfolio selection model
min CVaR,(—w" R) +» max CVaR(;_q)(w” R)
st. wlr =T,
wle =1,

w = 0,



Coherent risk measure
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Coherent risk measure

CVaR for general loss distribution

f(x,y): loss function of decision variable x € X C R";, y € R™:
random vector; P(y): density function of y; ¢(x,a) = ff(%y)ga p(y)dy:
cumulated distribution function of x

B—VaR:ag(z) =min{a € R: ¢(z,a) > B},

B~ CVaR : ds(z) = (1 - ) / Fayply)dy, e (0,1)

f(zy)Z>ap(x)

Augxiliary functions
Fg: X xR—R,

Fy(z,0) = a+ (1- )~ / /() — a] " p(y)dy

yER™

Convex, continuously differentiable



Coherent risk measure

Computation of CVaR for general loss distribution:

¢p(z) = min Fg(z, o), Ag(x)=argmin Fg(z,a)
acR a€ER
Non-empty, bounded closed interval
Computation of VaR: «ag(z) = the Left endpoint of horizon Ag(x).

ag(z) € argerréin Fg(z,a), ¢p(x)=Fp (x,aﬁ(:c))

Minimizing 8 — CVaR over x € X: Ini)I(l ¢s(x)
AS

Minimizing Fj3(z, ,a) € X X R: i F
inimizing F(x, o) over (z, ) (ac,ar)rggl(xR 5(a)

(z*,a*) minimizes the latter one < z* minimizes the former one, and
a* € Ag(z*)



Coherent risk measure

Discretization:

y_>y1’y27”. 7yJa

J
Fs(z,0) = Fa(z,a) =a+v Y [flz,y)) —a] ", v=J711-p)""
j=1

If f(z,y) is linear to = < Fs(x, ) is piece-wise linear and convex

Bring Auxiliary variable:



Coherent risk measure

Single-period portfolio optimization model with transaction costs

> n risky securities: S;, i=1,2,---,n

» current hold 20 = (29,29, -+ ,20)

> current price ¢ = (q1,q2, -+ ,qn) — q* 2° current wealth
> Optimal portfolio © = (z1,z2, -+ ,2pn) =7

The prices of securities at the end of the holding period is y = (y1, y2, - - -

depends on scenarios,
Loss function: f(x,y,2° q) = —yT2 + q7 2
Objective function: expected portfolio return

:%Z Eyzmz, U*ZQZ
i=1

+Yn)



Coherent risk measure

Transaction costs: linear transaction fees, proportional to the number of

trading shares
Balance constraint

=1

n n n
E qix? = E ciqi|x? — ;| + E q;r;, c; Proportional cost factor,
i=1 i=1

n n n
Z iz} = Z ciqi(9; +6;) + Z qii,
i=1 i=1 i=1

z?fQiJrgi:xi, 1=1,2,---,n,

5, >0, 0;=0, i=1,2,---,n,

=1

One of §,,0; should be zero!



Coherent risk measure

Value constraint
Not allowing the holding of a certain security ¢ exceeds a certain
percentage of the total value of the portfolio

n
4T < U; E q;x;
i—1

CVaR constraints:

Government usually require capital reserves according to a VaR value
of the investment bank’s portfolio. This can be achieved by adding CVaR
constraints. Letting the upper bound of CVaR is w, such as w could be a
maximum VaR value, then

n

T
a—l—Usz <w, zj 22(—y§xi+qi$?)—a, zj20,j=12,---,J
j=1 i=1

= Portfolio Optimization Model:



Coherent risk measure

1 n
min 75 —Elyi]z;
T, v
=1
T

s.t. a+wv E zj S w,

Jj=1
n
zj 2 E (—ylwi+ qad) —a, 220, j
=1
n n n
E gzl = ci(9; +0s) + E 4w,
=1 i=1 =1
n
z; < E kT, ©=1,2,---,n,
k=1

0 N .
T —i+ 0=z i=1,2,--,m,

0<; <M, 06 <M, i=1,2,-

N

T, S Ti X Ty, 1=1,2,---,n.

LP! Scenario generation?

=1.2....

)&y

LY



Coherent risk measure

Remarks:

>

But:

For coherent or convex risk measure, there is still much work to do!

Better coherent and convex risk measures?

Existing coherent risk measures usually only consider the first-order
change of the tail part, such as the average value

Excepting CVaR, other coherent risk measure is too complicated to

compute and use

How to modify and improve existing non-coherent risk measure (such
as the moment based risk measure), to make it coherent or convexity

while keeping its feature and property.

Evaluation of existing coherent risk measure



Coherent risk measure

Yamai & Yoshiba(2002):
Compares ES and VaR:

> ES (CVaR) is easier to decompose and optimize than VaR

> To reach a good accuracy, ES (CVaR) requires a large number of
samples

Based on Evaluation results:

> Improve existing risk measure and design new coherent risk measure:

more reasonable and effective
» Investor's behavior? psychology?

» New trend: Different investors: different risk measure
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