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Finance and Financial Engineering  

Finance is a field that is concerned with the allocation (investment) of assets and 
liabilities over space and time, often under conditions of risk or uncertainty. 
Finance can also be defined as the art of money management. 

Financial Engineering represents the emerging discipline wherein mathematical 
tools are used to model financial markets and solve problems in finance ， 
also named as： 

• Computational Finance 

• Financial Mathematics 

• Mathematical Finance 

• Quantititave Finance[1] 

 

[1] （https://iafe.org） 
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Financial Engineering 

Money-driven interdisciplinary study 

Mathematics includes the study of such topics as quantity, structure, space and 
change. 

Finance：subject studying money 

Financial Engineering：study finance by Math. 

Start： 1900s      emerged as a discipline:1970s1970s  

Problems in Financial Engineering：Pricing and optimal investment 

• Asset pricing  
• Modern portfolio theory 
• Risk measure 
• Derivatives development 
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Financial Engineering 

Financial engineers 

Financial engineers typically work in investment banks, insurance 
companies, hedge funds, commercial banks, regulatory agencies 
corporate treasuries. 

[1]https://www.topaccountingdegrees.org/faq/what-is-financial-engineering/ 

Investment Banking 

Corporate Strategic Planning  

Risk Management 

Primary and Derivatives Securities 
Valuation 

Financial Information Systems 
Management 

Portfolio Management 

Security Trading 
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Financial Engineering 

Financial engineers : prerequisite 

Generally, Financial Engineers are strong on the following fields: 
    (1) Finance Preparation:   

 Fundamentals of Corporate Finance, Options, Futures, and Other 
Derivatives, Investments, Intro to Financial Account （ CFA Level 1. ） 

  (2) Math Preparation :    

Calculus，Linear Algebra，Partial Differential Equations，Statistics，
Numerical Analysis， optimization 

  (3) Programming Preparation:   

C++, Paython, Matlab 
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Financial Engineering 

  Courses in Business school (USA) ： 

  University of California, Berkeley  
    Haas School of Business, 
    Master in Financial Engineering 
   http://haas.berkeley.edu/MFE/index.html   
  Carnegie Mellon University  
   Graduate School of Business 
   Master of Science in Computational Finance 
   http://student-2k.gsia.cmu.edu/mscf/  

http://haas.berkeley.edu/MFE/index.html
http://student-2k.gsia.cmu.edu/mscf/
http://student-2k.gsia.cmu.edu/mscf/
http://student-2k.gsia.cmu.edu/mscf/
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Financial Engineering 

Courses in industrial engineering school (USA)：  
 
    Princeton University 
    Department of Operations Research & Financial Engineering 
    M.S.E. in Operations Research and Financial Engineering 
    http://www.orfe.princeton.edu/graduate/index.html 
     Columbia University    Department of Industrial Engineering and 
Operations Research      M.S. in Financial Engineering 
    http://www.ieor.columbia.edu/finance.html 
      Cornell University      School of Operations Research and Industrial 
Engineering      Master of Engineering in Financial Engineering 
    http://www.orie.cornell.edu/me...ables/financial1.html 
      University of Michigan, Ann Arbor              College of Engineering 
    Master of Science in Financial Engineering 
    http://interpro.engin.umich.edu/fep/ 

http://www.orfe.princeton.edu/graduate/index.html
http://www.ieor.columbia.edu/finance.html
http://www.orie.cornell.edu/me...ables/financial1.html
http://www.orie.cornell.edu/me...ables/financial1.html
http://www.orie.cornell.edu/me...ables/financial1.html
http://interpro.engin.umich.edu/fep/


 
8/19 

Financial Engineering 

Courses in Mathematics school (USA)： 

   Stanford University    The Departments of Mathematics and Statistics 
    MS in Financial Mathematics 
    http://math.stanford.edu/FinMath/ 
   University of Chicago    Department of Mathematics 
    Master of Science in Financial Mathematics 
    http://finmath.uchicago.edu/ 
   New York University     Department of Mathematics 
    Master of Science in Mathematics in Finance 
    http://math.nyu.edu/financial_mathematics/ 
   University of Southern California       Department of Mathematics 
    Master of Science in Mathematical Finance 
    http://www.usc.edu/dept/LAS/CAMS/MF/ 

http://math.stanford.edu/FinMath/
http://finmath.uchicago.edu/
http://math.nyu.edu/financial_mathematics/
http://www.usc.edu/dept/LAS/CAMS/MF/
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Financial Engineering 

Courses in Canada 
      University of Toronto 
    Masters Program in Mathematical Finance 
    http://www.math.toronto.edu/finance/ 
     York University 
    Graduate Diploma in Financial Engineering  
    http://www.yorku.ca/fineng/ 
 
Courses in Great Britain 
     University of Oxford 
    Oxford Centre for Industrial and Applied Mathematics 
    Postgraduate Diploma in Mathematical Finance 
    http://www.conted.ox.ac.uk/courses/mathsfinance/ 
     The University of Edinburgh 
    Management School 
    MSc in Financial Mathematics 
    http://www.cpa.ed.ac.uk/prosp/...ncialMathematics.html 

http://www.math.toronto.edu/finance/
http://www.yorku.ca/fineng/
http://www.conted.ox.ac.uk/courses/mathsfinance/
http://www.cpa.ed.ac.uk/prosp/...ncialMathematics.html
http://www.cpa.ed.ac.uk/prosp/...ncialMathematics.html
http://www.cpa.ed.ac.uk/prosp/...ncialMathematics.html
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  National University of Singapore 
  Centre for Financial Engineering 
  Master of Science in Financial Engineering 
  http://cfe.nus.edu.sg/msc_fe.htm 
 
    Nanyang Technological University 
  Nanyang Business School. 
 Master of Science in Financial Engineering 
http://nbs.ntu.edu.sg/Programmes/Graduate/MFE/ 
 

Courses in Singapore： 

http://cfe.nus.edu.sg/msc_fe.htm
http://nbs.ntu.edu.sg/Programmes/Graduate/MFE/
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Financial Engineering 

Courses in China： 

 Dudan University 
School of Management 
https://www.fdsm.fudan.edu.cn/En/ 
 
 Central University of Finance and Economics 
http://en.cufe.edu.cn/ 
 
 Shanghai University of Finance and Economics 
http://english.sufe.edu.cn/ 
 
 Renmin University of China  
  Business School 
 http://en.rmbs.ruc.edu.cn/ 

https://www.fdsm.fudan.edu.cn/En/
http://en.cufe.edu.cn/
http://english.sufe.edu.cn/
http://en.rmbs.ruc.edu.cn/
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Financial Engineering 

Courses in my university： 
 Xi’an Jiaotong University  
Department of Mathematics and Statistics  
Research Center for optimization and finance engineering 
http://en.xjtu.edu.cn/ 
http://xiammt.xjtu.edu.cn/yjst/zyhjsylhjryjzx.htm 
 

http://en.xjtu.edu.cn/
http://xiammt.xjtu.edu.cn/yjst/zyhjsylhjryjzx.htm
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Financial Engineering 

Outline 

Today we will study： 

• Securities 
• Risk measure 
• Portfolio selection 
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Financial Engineering 

What is a security? 

A security is a fungible, negotiable 
instrument representing financial value.  
Securities are broadly categorized into 
debt and equity securities such as bonds 
and common stocks, respectively. 

Netherland 1600s China 1870s 



 
15/19 

Financial Engineering 

What’s the purpose of securities? 

Rise New Capital: Depending on the 
pricing and market demand, 
securities might be an attractive 
option. 

Repackaging: Achieve regulatory 
capital efficiencies.  

For the Issuer 

Dutch East India Company 

Investment in colony 
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Financial Engineering 

What’s the purpose of securities? 

For the Holder 

Investment:  Debt securities generally offer a 
higher rate of interest than bank deposits, and 
equities may offer the prospect of capital 
growth.       

Collateral:  Purchasing securities with 
borrowed money secured by other securities.  
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Financial Engineering 

Traditionally, securities are divided into debt securities and equity. 
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Financial Engineering 

Debt 

 Debt securities may be called debentures, bonds, notes or commercial 
paper depending on their maturity and certain other characteristics. 
 
 The holder of a debt security is typically entitled to the payment of 
principal and interest, together with other contractual rights under the 
terms of the issue, such as the right to receive certain information.  
 
 Debt securities are generally issued for a fixed term and redeemable 
by the issuer at the end of that term. 



 
19/19 

Financial Engineering 

Equity 

An equity security is a share 
 in the capital stock of a company  
(typically common stock, although 
 preferred equity is also a form of capital stock).  
 
The holder of an equity is a shareholder, owning a 
share, or fractional part of the issuer. Unlike debt 
securities, which typically require regular payments 
(interest) to the holder, equity securities are not entitled 
to any payment. 
 
Equity also enjoys the right to profits and capital gain. 
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Financial Engineering 

The Value of an Investment of $1 in 1926 

Source: Ibbotson Associates 
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Financial Engineering 
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Financial Engineering 

Rates of Return 1926-2000 

Source: Ibbotson Associates 
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Source: google finance Year  

1 

Index of Chinese market 
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Source: SINA FINANCE 
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Financial Engineering 

 Returns on investment are uncertain (risky) 
 

 We model uncertainty of future returns using
  
 

   - Expected return: the return you expect to 
receive on average  => NOT ENOUGH! 

 
   - Volatility (standard deviation): degree of 

dispersion of future returns => RISK 
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Financial Engineering 

Risks 

Risk： 
Intentional interaction with uncertainty 
 
Financial risk： 
Danger or possibility that shareholders, 
investors, or other financial stakeholders 
will lose money. Uncertainty (volatility) 
of future price, interest rate or return rate 
 
Original: 
Asymmetry and incompleteness of 
information 
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Portfolio selection → reduce non systemic risk 
Tools for portfolio selection：mathematical models 



Financial decision making: from risk measure to 
portfolio selection



Content

Introduction

Risk measures based on moment information

Stochastic dominance

VaR

Coherent risk measure



Introduction

According to the type of financial securities considered:
â Operational risk: Changes in the value of the portfolio due to poor

management or maintenance
â Liquidity risk: Difficult or impossible to sell and redeem your holdings
â Exchange rate risk:Changes in foreign investment return caused by

changes in exchange rate
â Credit risk: The holder of the security cannot perform his/her obli-

gations
â Market risk: Changes in portfolio return caused by change of market

state
â etc.

The greater the risk, the greater the return or loss
How to control risk? How to balance the benefits and risks?



Introduction

Early method:

Z focuses on qualitative research, risk only plays an auxiliary, explana-
tory role

Simple indicators widely used in empirical research:

Z volatility, for single security’s return

Z duration or payback period, for fixed income securities, (valid) period

Z Beta factor, for a portfolio,

Z Convexity, first order Delta, second order Gamma, for derivative fi-
nancial product,



Introduction
Definition of risk:

Z Uncertainty of future investment results due to one or more uncertain
factors

Risk measure:

Z Some quantitative method for uncertainty of future investment results

Mathematically:
The risk can be viewed as a random variableX, defined in a probability
space (Ω, κ, P ):

Z X represents the investment results. random return: (X ≥ 0), or
random loss (X < 0)

Z V: The set of random variable X, such as LP (Ω, F, P )

Z Risk Measure ρ : V → R. ρ corresponds to different forms of risk
measures



Risk measure based on moment information

Risk measure based on the moment information of the return distribution
—The first important contribution in the quantification of risk mea-

sures

MV Model (Markowitz, 1952)

variance : E
[(
X − E[X]

)2]
Reasonability:

I The variance describes how real random return deviates from its mean

I For normally distributed return, mean and variance determine the
distribution

I Many utility functions can be approximated by quadratic functions of
mean and variance of returns



Portfolio selection theory

Figure: Henry. M. Markowitz

I “One day in 1950, in the library of the Business School of the
University of Chicago, I was check- ing out the possibility of
writing my Ph.D. dissertation ... to ‘stock market’. H.
Markowitz” (OR 2002, Vol. 50).

2 / 38



I Previous theory on investment: J. Williams (1938) The
Theory of Investment Value. The value of a stock is the
expected presented value of its future dividends.

I An old saying “not to put all one’s eggs in one
basket”=>Diversification of the risk of a portfolio.

I Markowitz realized that the theory lacks an analysis of the
impact of risk. This insight led to the development of his
seminal theory of portfolio allocation under uncertainty,
“Portfolio Selection”, published in 1952 by The Journal of
Finance.

3 / 38



Risk measure based on moment information

MV different forms of the model:
-Portfolio with n securities:
-Investment weights vectorω = (ω1, ω2, · · · , ωn)T ∈ Rn ,
-Random return vectorR = (R1, R2, · · · , Rn),
-Mean vector r = (r1, r2, · · · , rn)T

-Covariance matrix V = (σij),σij : covariance between Ri and Rj ,
Portfolio returns:

X =
n∑
i=1

ωiRi =⇒ E[X] =
n∑
i=1

ωiri = rTω, ωTV ω

max rTω

s.t. eTω = 1,

ωTV ω = (6)ρ,

min ωTV ω

s.t. eTω = 1,

rTω = (>)r

max rTω − λ1
2ω

TV ω

s.t. eTω = 1,

e = (1, 1, · · · , 1)T ∈ Rn,



Risk measure based on moment information
Consider other constraints?

â Market friction: transaction cost (Atkinson & Alvarez, 2001)

â Multi-stage MV Model: Steinbach (2001)

Deficiency of MV model:

¬ For large-scale portfolios,
∑

: computationally expensive and difficult
to estimate accurately. The effect of estimation error Chen & Zhao
(2003, 2004)

­ The distribution of returns are often obvious non-normal, fat-tailed,
left-skewed. Only one or two order moments cannot fully reflect the
randomness of income.

® The quadratic utility function implied by the MV model is irrational.
Exceeding a certain critical point will lead to increasing risk aversion
level and negative marginal utility at some sharp points.



Risk measure based on moment information

To overcome the first deficiency: how to effectively solve large-scale MV
model

using the factor model (Perold, 1981)

Ri = αi + βi1F1 + · · ·+ βikFk + εi, i = 1, 2, · · · , n,

Where Fk is the k-th random factor, εi is the random error term with
E(εi) = 0, εi is unrelated to Fk (k = 1, 2, · · · , κ), εi (j 6= i).

Let
σ2
i = E[ε2

i ], frs = cov[Fr, Fs].

ωTV ω →
n∑
i=1

n∑
j=1

σ̂ijωiωj =
n∑
i=1

σ2
i ω

2
i +

n∑
i=1

n∑
j=1

k∑
r=1

k∑
s=1

frsβirβjsωiωj .



Risk measure based on moment information

MV model can be formulated as

min
n∑
i=1

σ2
i ω

2
i +

k∑
r=1

k∑
s=1

frsyrys

s.t. rTω > r,
n∑
i=1

βjkωj − yk = 0, k = 1, 2, · · · , κ,

n∑
j=1

ωj = 1,

ωj > 0, j = 1, 2, · · · , n,

When k is large, B = (βjk) ∈ Rn×k is sparse. And k is usually far
smaller than n. Solve efficiently using sparse optimization techniques.



Indicators in different sectors 



Economic Indicators 



- Stocks and VIX move in opposite directions (correlation: -75%).  
- Stocks and bonds sometimes move together.  
- Most of the time, stocks and the U.S. currency move in opposite directions. 



Economic Indicators 

Interest rate and yield spread move in opposite directions. 
Credit spread is usually high, when interest rate is low. 



Risk measure based on moment information

The tight decomposition of variance-covariance matrices, (Konno &Suzuki,
1992)

Let (r1t, r2t, · · · , rmt), t = 1, 2, · · · , T be T independent samples of
R = (R1, R2, · · · , Rn)T ,

r̂i = 1
T

T∑
t=1

rit, σ̂ij = 1
T

T∑
t=1

(rit − r̂i)(rjt − r̂j), i = 1, 2, · · · , n, j = 1, 2, · · · , n.

Where r̂i, σ̂ij is an unbiased estimate of rj , σij

ωTV ω →
n∑
i=1

n∑
j=1

σ̂ijωiωj =
n∑
i=1

n∑
j=1

{ 1
T

T∑
t=1

(rit − r̂i)(rjt − r̂j)
}
ωiωj

= 1
T

T∑
t=1

{ n∑
i=1

(rit − r̂i)ωi
}2
.



Risk measure based on moment information

Let

zt =
n∑
i=1

(rit − r̂i)ωi, t = 1, 2, · · · , T,

MV model can be formulated as

min
T∑
t=1

z2
t

s.t. rTω > r,

zt =
n∑
j=1

(rjt − r̂j)ωj , t = 1, 2, · · · , T,

n∑
j=1

ωj = 1,

ωj > 0, j = 1, 2, · · · , n.



Risk measure based on moment information

Absolute deviation measure, (Konno & Yamazaki, 1991)

AD = E[|X − E[X]|]

Normal distribution

AD =
√

2
π

√
E[(X − E(X))2]

MAD model

min E
[∣∣∣ n∑
j=1

Rjωj − E
[ n∑
j=1

Rjωj

]∣∣∣]
s.t. rTω > r,

eTω = 1,

ωj > 0, j = 1, 2, · · · , n.



Risk measure based on moment information

Based on historical data

AD = 1
T

T∑
t=1

∣∣∣ n∑
j=1

(rjt − rj)ωj
∣∣∣,

implies

min
T∑
t=1

∣∣∣ n∑
j=1

(rjt − rj)ωj
∣∣∣

s.t.
n∑
j=1

rjωj > r,

n∑
j=1

ωj = 1,

ωj > 0, j = 1, 2, . . . , n,



Risk measure based on moment information
and

min 1
T

T∑
t=1

yt

s.t. yt −
n∑
j=1

(rjt − rj)ωj > 0, t = 1, 2, · · · , T,

yt +
n∑
j=1

(rjt − rj)ωj > 0, t = 1, 2, · · · , T,

n∑
j=1

rjωj > r,

n∑
j=1

ωj = 1,

ωj > 0, j = 1, 2, . . . , n.



Risk measure based on moment information

To overcome the second deficiency: use higher order moment information
Skewness (third order moment):

κ(X) =
E
[(
X − E(X)

)3]
E
[(
X − E(X)

)2] 3
2
.

When the mean and variance are the same, investors will choose a portfolio
with larger third-order moment, and even place the third-order moment in
a more important position.

Third-order center moment (Konno et al, 1993)

γ
[
R(X)

]
= E

[(
X − E(X)

)3]
,

vijk = E
[
(Ri − ri)(Rj − rj)(Rk − rk)

]
.



Risk measure based on moment information

MVS (mean-variance-skewness) model

max
n∑
i=1

n∑
j=1

n∑
k=1

vijkωiωjωk

s.t. ωTV ω = ρ,

rTω = r,

eTω = 1,

ω > 0.



Risk measure based on moment information

Higher order moments?
Forth order moments: kurtosis =⇒minimize kurtosis

Better way to characterize the skewed, high kurtosis and fat-tail distribu-
tion?

Z Generalized error distribution

Z Extreme value distribution →EVT

Z Stable distribution, its characteristic function is

φR(t) =
{

exp{−γτ |t|τ (1− iη sgn(t) tan(πτ2 )) + iδt}, τ 6= 1,

exp{−γ|t|(1− iη 2
π sgn(t) log(t)) + iδt}, τ = 1,

where τ ∈ (0, 2] is the stable indicator, i.e., kurtosis parameter η ∈ [−1, 1]
is the skewness parameter; δ ∈ R is the location parameter;γ ∈ R+ is the
dispersion parameter; τ = 2, η = 0: normal;τ < 2: high kurtosis and
fat-tailed η > 0 (η < 0) right (left) skewed©



Risk measure based on moment information

Skewed distribution
Skewed normal distribution SN :

x ∼ SNn(ς,Ω, α),

density

f(x) = 2φn(z − ς; Ω)Φ
[
αTω−1(z − ς)

]
, x ∈ Rn,

whereφn(·) is the density of n-dimensional normal distribution, Φ(·) ∼
N(0, 1); ς = (ς1, ς2, · · · , ςn)T is location parameter; ω = diag (σ11, σ22, · · · , σnn) 1

2

is scalar parameter; α ∈ Rn is shape parameter; α = 0: normal, the ab-
solute value of α is bigger, the skewness is larger; α → ∞, f(·) → is
half-normal density function©



Risk measure based on moment information

Skewed t distribution

St : x ∼ Stn(ς,Ω, α, γ), x = ς+V − 1
2Z, Z ∼ SNn(0,Ω, α), V ∼

ϕ2
γ

γ
,

is dependent from Z©

General skewed distribution
Perturbation of skewness factor to a symmetric distribution

f(x) = 2f0(x)G
[
ω(x)

]
, x ∈ Rn

f is a n-dimensional density function, if the density f0 is symmetry;
G is a 1-dimensional distribution function, satisfying G(−x) = 1−G(x);
ω(x) : Rn → R, ω(−x) = −ω(x);
G[ω(x)] is the skewness factor bringed by f0(x)©
Different f0, G and ω(x) correspond to different skewed distribution.





 



A   =   B 

Allais paradox 



Risk measure based on moment information
Downside risk measure

I Variance: view biased smaller than or larger than expected value the
same – both large return and big loss are risk

I Investors: care about big losses rather than large return: Real risk

Roy’s safety first technique (Roy, 1952)
Downside risk measure avoid normality: partial variance, semi-variance

I Below-target semivariance

E[(max(0, T −X))2]

T is the target return

I Below-mean semivariance

we choose T = E[x]



Risk measure based on moment information

I Combined semivariance (Hamza & Janssen, 1998)

αE
[(

min
(
0, E[x]−x

))2]+βE
[(

max
(
0, E[x]−x

))2]
, α, β > 0.

I LPM: lower partial moment (Bawa 1975; Fishburn 1977)

LPM(α, T ) = E
[(

max(0, T −X)
)α]

,

α


< 1, risk preference,
= 1, risk neutral,
> 1, risk aversion,

Different from variance and semi-variance, LPM corresponds to a
series of utility functions.



Risk measure based on moment information

MADS (mean-absolute deviation-skewness) model
Third-order lower partial moment

γ−(x) = E
[
g
(
x− E[x]

)]
, g(u) =

{
0, u > 0,

u3, u < 0,

min E
[
g
( n∑
j=1

(Rj − rj)ωj)
]

s.t. E
[∣∣∣ n∑
j=1

Rjωj − E
[ n∑
j=1

Rjωj

]∣∣∣] 6 ω,

rTω = r,

eTω = 1,



Risk measure based on moment information

g(·)→ G(u) = −|u− ρ1|− − α|u− ρ2|−,

ρ2 < ρ1 < 0, α > 0, |v|− =
{

0, v > 0,

−v, v < 0.

min E
[∣∣∣ n∑
j=1

Rjωj − ρ1

∣∣∣
−

]
+ αE

[∣∣∣ n∑
j=1

Rjωj − ρ2

∣∣∣
−

]
,

s.t. E
[∣∣∣ n∑
j=1

Rjωj − E
[ n∑
j=1

Rjωj

]∣∣∣] 6 ω,

rTω = r, eTω = 1, ω > 0.



Risk measure based on moment information
Based on T historical data, rjt, j = 1, . . . , n, t = 1, . . . , T=⇒

min
1

T − 1

( T∑
t=1

ut + α

T∑
t=1

vt

)
s.t. ut +

n∑
j=1

rjtωj > ρ1, t = 1, 2, · · · , T,

vt +

n∑
j=1

rjtωj > ρ2, t = 1, 2, · · · , T,

ςt − ηt −

n∑
j=1

rjtωj = r, t = 1, 2, · · · , T,

T∑
t=1

(ςt + ηt) 6 ω,

n∑
j=1

rjωj = r,

n∑
j=1

ωj = 1, ω > 0, i = 1, 2, · · · , n,

ut > 0, vt > 0, ςt > 0, ηt > 0, t = 1, 2, · · · , T.



Risk measure based on moment information

co-LPM→GCLPM (generalized or asymetric co-LPM)

GCLPMn(τ,Ri, Rj) =
∫ τ

−∞

∫ +∞

−∞
(τ −Ri)n−1(τ −Rj)dF (Ri, Rj),

GCLPMn(τ,Ri, Rj) 6= GCLPMn(τ,Rj , Ri)

If Ri = Rj , LPMn(τ,Ri)
Discrete case

GCLPMn(τ,Ri, Rj) = 1
T − 1

T∑
t=1

[
max

(
0, (τ −Rit)

)]n−1(τ −Rjt)

→portfolio optimization



Risk measure based on moment information

A general formulation? (Kijima & Ohnishi, 1993)

σk(x; f) =
{
E
[
f
(
x− E[x]

)k]} 1
k , k > 1,

f(y) = |y| →
{
E
[
f
(
x− E[x]

)k]} 1
k ,

when k = 1: absolute deviation; when k = 2 standard deviation©
when k = ∞, L∞ risk measure: max

16j6n
E[xj − Exj ], xj is the j-th com-

ponent of x

→ f(y) =
{
c+x, x > 0,

c−x, x < 0,

c+ = 0, c− = −1: different kinds of LPM measure



Risk measure based on moment information

Exponentially weighted mean square risk

E
[
ω(X)(X − T )2],

T : target return rate, ω(X) > 0: weight function©
When target is the expected return rate

T = E[X],


w(X) ≡ 1, variance,

w(X) =
{

1, X < E(X),

0, X > E(X),
semivariance,

The choice of ω(X) > 0: w(X) = exp
(
− θ(X − T )

)
, θ > 0

Constructing asymmetric risk measures from the perspective of approxi-
mating utility functions (King, 1993)



Risk measure based on moment information

Application
funds performance evaluation, asset ranking, corresponding invest-

ment optimization method
typical indicator

Sharpe ratio Φ(X) = E[X]
E[(X − E[X])2] 1

2

Treynor ratio Φ(X) = E[X]−Rf
β

,

Rf : risk-free return rate, β = cov(X,RM )
Var(RM )

Lower Partial Variance Indicator

Φ(X) = E[X]−Rf√
E[min{X − E[X], 0}]2



Risk measure based on moment information

Two-sided performance indicators

The Sortino-Satchell ratio Φq(X) = E[X]
E

1
q [(X−)q]

The Stable ratio Φpα(X) = E[X]
A(p, α)

1
pE[|X|p]

1
p

A(p;α) =
√
π Γ(1− p

2 )
2p Γ( (1+p)

2 )Γ(1− 1−p
α )

α, stable indicator, 0 ≤ p 6 α



Risk measure based on moment information

The Rachev ratio

ρ(X) =
CVaR(1−α)%(rf −X)
CVaR(1−β)%(X − rf ) , OR =

E[X |X > −VaR(1−α)]
E[−X |X 6 −VaRβ ]

The Generalized Rachev ratio

ρ(X) =
E[(X+)γ |X > −VaR(1−α)]
E[−(X−)δ |X 6 −VaRβ ]

The Farinelli—Tibiletti ratio

Φp,qb (X) = E
1
p [{(X − b)+}p]

E
1
q [{(X − b)−}q]



Risk measure based on moment information

Reward → upside variability (portfolio managers view)—“good"
Risk → downside risk (risk managers view)—“bad"

Choose proper p, q to reflect the importance of the data in the left tail or
right tail biased from the benchmark

I p, q is larger, tail effect is more important,
p, q is smaller, tail effect is less important,

I when p or q is smaller than 1, opposite effect©

For asset allocation or portfolio selection problem: max “Φ”



Stochastic dominance
Stochastic dominance criteria
General method for comparing uncertain and stochastic phenomena©
SD—stochastic dominance

I Hardy (1934), Marshall & Olkin (1979) et al.

I majorization theory

I Fishburn (1977), Rothschild & Stiglitz (1970) et al.

I General distribution, widely used in economic and financial theoretical
research,

I Review literature Bawa (1982), Levy (1992)

idea:

I Compare pointwise the recursive distribution functions defined by the
cumulative distribution function of random variables



Stochastic dominance

Let the probability measure of X be PX

F
(1)
X (η) = FX(η) =

∫ η

−∞
PX(dς) = P{X 6 η}, ∀ η ∈ R

Cumulative distribution function

F (k)
x (η) =

∫ η

−∞
F (k−1)
x (ξ)dξ, k = 2, 3, · · · , ∀ η ∈ R

Definition:We call X dominates Y in the kth order§if

F (k)
x (η) 6 F (k)

y (η), ∀ η ∈ R

and for some η, the inequality holds strictly.
X dominates Y in the k − 1th order =⇒ X dominates Y in the kth

order



Density 

Distribution 

First order stochastic dominance 



First order                                  second order 
                             stochastic dominance 



Stochastic dominance
Equivalent Definition Based on Utility Function

I U1: all the utility functions satisfying U ′ > 0

I U2µall the utility functions satisfying u′ > 0 and u” 6 0

I U3µall the utility functions satisfying u′ > 0,u” 6 0 and u′′′ > 0

Generally,

I UnµAll the utility functions whose even-order derivatives are nega-
tive and odd-order derivatives are positive

Recursive definitionµ

Un =
{
u ∈ Un−1 : (−1)nu(n) 6 0

}
, U (0) = U

Definition: We call x dominates Y in the nth order, if

Eu(X) > Eu(Y ), ∀ u ∈ Un

and for some u∗ ∈ Un, the inequality holds strictly.



Stochastic dominance

FSD

FX(η) 6 FY (η), ∀ η ⇔ Eu(X) > Eu(Y ), ∀ u ∈ U1

SSD∫ η

−∞
FX(t)dt 6

∫ η

−∞
FY (t)dt, ∀ η ⇔ Eu(X) > Eu(Y ), ∀ u ∈ U2

TSD ∫ η

−∞

∫ v

−∞
FX(t)dtdv 6

∫ η

−∞

∫ v

−∞
FY (t)dtdv

⇔ Eu(X) > Eu(Y ), ∀ u ∈ U3

�

EFX (X) 6 EFY (Y )



Stochastic dominance

FSDµ
Utility function are non-decreasing, investors pursue return (wealth)

maximization

SSDµ
Utility function are non-decreasing, investors pursue return (wealth)

maximization and are risk averse

TSDµ
In addition to the assumptions of SSD, investors are required to have

decreasing absolute risk aversion



Stochastic dominance

Advantages of SD:

Z Multi-criteria model, axiomatized form

Z No need to make any assumptions about the probability distribution
of returns
Phenomenon comparison, theoretical research

Z No need to specify the form of investor’s utility function

Disadvantages of SD:

Z Its definition does not provide a simple calculation method

Z Need to compare all possible choices one by one, infinitely many,
difficult to apply



Stochastic dominance

Relationship with the mean-risk model (Ogryczak & Ruszczynski, 1999,
2001)

When using a semi-variance relative to a fixed target return as a risk
measure§mean-risk model is consistent with SD©

kth order center semi-deviation:

δkX =
{
E
(

max
(
0, E[X]−X

))k} 1
k =

{∫ E[X]

−∞

(
E[X]− ς

)k
px(dς)

} 1
k

absolute semi-deviationµ

δx =
∫ E[X]

−∞

(
E[X]− ς

)
px(dς) = 1

2

∫ ∞
−∞

∣∣ς − E[X]
∣∣px(dς)



Stochastic dominance

Standard semi-deviationµ

δx =
{∫ E[X]

−∞

(
E[X]− ς

)2
px(dς)

} 1
2

Mean-risk controlµ

X � µ
r
Y ⇔ E(X) > E(Y ) & rX 6 rY ,

X � µ
r
Y ⇔ E(X)− λrX > E[Y ]− λrY , ∀ λ > 0.

Theorem: IfX � SSDrY ,thenE(X) > E(Y ) and

E(X)− δX > E[Y ]− δY
(
E(X)− σX > E[Y ]− σY

)
WhenE(X) > E(Y ), the second inequality holds strictly.



Stochastic dominance

For the maximum X ∈ Q such that

E(X)− λδX
(
E(X)− λσx

)
, 0 < λ 6 1

, it is efficient with respect to SSD©
Notation

Lk = Lk = Lk(Ω, κ, p) : E
[
|X|k

]
<∞

Theorem: Let k > 1 andX,Y ∈ Lk§ifX � (k+1)Y§thenE(X) >

E(Y )§and
E(X)− δ(k)

x > E[Y ]− δ(k)
Y

WhenE(X) > E(Y ), the second inequality holds strictly.



Stochastic dominance

If for some k > 1, X � (k+1)Y , thenE(X) > E(Y ) and for allm > k

satisfying E{|x|m} <∞,

E(X)− δ(m)
x > E[Y ]− δ(m)

Y

Definition:For some nonnegativeα, if

X � (k)Y ⇒ E(X) > E[Y ], � E[X]− αYx > E[Y ]− αYY

then we say mean-risk model is α-consistent with SD in kth order.



Stochastic dominance

I InL = k, δ(k) mean-risk model is 1-consistent with SD in all 1, 2, · · · , k+
1 order

From these results, we know

I Downside risk measure is better than and can replace the classical
variance risk measure.

I Not Necessarily�Grootveld & Hallerbach (1999) in the mean-risk
framework, only a few of the underlying risk measures are better
than the variance.



Stochastic dominance

Remarksµ

Z Use SD for research on uncertainties in economy, finance, etc.

Z Find the relationship between SD with different orders and other types
of risk measures to demonstrate the risk

Z The rationality of measurement, guide the choice of optimal portfolio

Z Discuss tractable algorithms of calculating SD under specific condi-
tion, e.g., generalized error distribution, stable distribution, skewed
distribution

Z Based on SD§explore problems that cannot be solved under other
types of risk measures
The problem of complex portfolio selection based on nonlinear utility
function



VaR

Value-at-Risk
—The second important approach in risk measurement

I VaR quantifies market risk with multiple sources into a single number

I At a given confidence level, what is the maximum loss that an investor
may suffer during a certain investment period?

I How much of the investor’s total investment is at risk?

Definition: for a given time interval and probability level k (0 < k <

1),VaRk represents the minimum loss occurring with probability 1− k; or
the maximum loss occurring with probability k.

VaRk = −F−1
X (k),

F−1
X is the inverse function of X’ distribution function, FX .



  
Exhibit: A portfolio’s 90% VaR is the amount of money such that there is a 90% 
probability of the portfolio losing less than that amount of money 
 
the 90% quantile of 1L.  



VaR

Dual
Bankruptcy risk (risk of ruin): measures the probability of a com-

pany’s bankruptcy or the occurrence of a catastrophic event: the maximum
probability of a certain loss.

For multivariate distributions, F−1
X is undefined at some values of k

(Rockafellar & Vryasev, 2000)

VaRk = inf{−F−1
X (k)}

Computation of VaR (Penza & Bansal, 2001)

I Historical simulation method: A simple empirical method that does
not require any assumptions about the distribution of market factors
and simulates the future returns of the portfolio directly based on
historical data collected from market.



VaR

I Monte Carlo simulation method: Use statistical method to estimate
the parameters of the market factor, and then simulate the scenarios
of market factors.©

Increase computational efficiency: scenario, simulation (Jamshudian
& Zhu, 1996)

Reduce estimated variance: importance sampling, stratified sampling
(Glasserman, 2000)
These two methods can deal with non-linear financial securities such as
options. The disadvantages are the large amount of calculation and low
efficiency.

I Analytical method: Assume that the change of the market factor
follows multivariate normal distribution, or other distribution

Portfolio value function Market factor model



VaR

δ–GARCH normal model: use GARCH to describe the change of market
factor

rt = µ+ ηt, ηt |Ωt−1 ∼ N(0, ht),

ln ht = α+ β ln ht−1 + ϕ
[ |ηt−1|√

ht−1
−
( 2
π

) 1
2
]

+ γ
ηt−1√
ht−1

rt: return rate, µ: expected return rate, Ωt−1: information available at
time period t− 1, α, β, ϕ, γ: parameters in EGARCH model©
-ln()→ guarantees the variance ht > 0
-The sharp decline in stock prices will produce greater volatility than their
sharp rise



VaR

The disadvantages of above analytical methods: assumed distributions are
too simple and special

Under normal distribution: VaR based investment selection model is equiv-
alent to MV model

Other new computation methods:

I Semi-parametric method using high-order information such as skew-
ness and kurtosis, (Li, 1999)

I The calculation of VaR with high kurtosis and fat-tail distribution
(Zou Xinyue & Lv Xian, 2003)

I Use generalized error distribution (Tian Guo et al., 2003)

Better computation method?
Based on stable distribution, skewed distribution, etc.



VaR

Remarks:
The advantages of VaR:

¬ The definition is simple and intuitive, easy to understand
­ Theoretically, it can measure various portfolios including complex fi-
nancial derivatives

® Lower partial risk measure

Disadvantages of VaRµ
¬ The value of VaR relies on the selection of parameters such as holding

period and confidence level. Very sensitive.
­ Can’t measure loss over VaR
® People concern more about the risk from abnormal situations; VaR

often underestimates the real risk



VaR
¯ VaR is generally non-convex to the investment weight! Non-smooth

when using a limited number of scenario©
The corresponding portfolio optimization problems are non-smooth and

non-convex, with multiple local extrema. Not easy to apply. Hard to be
applied in large-scale portfolio optimization problems©

Considering the simplest VaR based optimal portfolio selection prob-
lemµ

min VaRα(−wTR)↔ max VaR1−α(wTR)

s.t. wT r > r,

wT e = 1,

w > 0,

r is approximated by N scenarios, R1, R2, · · · , RN , with equal appearing
probability.



VaR

Definition: M[k:N ](u1, u2, · · · , uN ) is the k-th maximum component in
u1, u2, · · · , uN

VaRα(−wTR) = M[[αN ]:N ](−wTR1,−wTR2, · · · ,−wTRN )

(VaR—Opt)

min M[[αN ]:N ](−wTR1,−wTR2, · · · ,−wTRN )

s.t. wT r̂ > r,

wT e = 1,

w > 0,

r̂ = 1
N

N∑
i=1

Ri, expected return rate vector



VaR

VaR based optimal portfolio selection problem :
Given cut-off point c and index set I:

P (c, I) : min
w,a,z

{
a+ 1

(1− α)N

[∑
i/∈I

zi +
∑
i∈I

(c− a)
]}

s.t. zi > −wTRi − a, i /∈ I,

− wTRi > c, i ∈ I,

c > a,

wT r̂ > r,

wT e = 1,

zi > 0, i /∈ I,

x > 0



VaR

For fixed α and xµ

I(x, a) = {i : −wTRi > a} ⊆ {1, 2, · · · , N}

Theoremµ Suppose x∗ is the minimal solution of (VaR-Opt), a∗ is
the minimum value, then, x∗ and a∗ are the optimal solution of the LP
problem P (a∗, I(x∗, a∗)).Moreover, for each fix point (x, a) such that x
and a are the optimal solution of P (a, I(x, a)), x is the local minimal point
of problem (VaR-Opt)©



VaR

° Only when x follows elliptical distribution, VaR is sub-additive

I In the elliptical case, the optimal portfolio of VaR based model is
consistent with the MV model

I VaR does not satisfy sub-additivity: the decentralization of the port-
folio may lead to an increase in risk

I VaR from different sources can’t be add together—-unusual

In a word:
VaR is not a really reasonable, good risk measure©
/No More VaR0(J. of Banking & Finance, 2002.26 Special Issue)



 



Coherent risk measure

Coherent risk measure
What mathematical properties a general, appropriate and reasonable

risk measurement should satisfy? The third important approach in risk
management (Artzner, Delbaen, et al. 1997, 1999)

Coherent risk measureµρ : X → R

A! Transitional invarianceµ

ρ(x+ αr0) = ρ(x)− α, ∀ x ∈ X, ∀ α ∈ R

here, r0 is the risk-free return rate
B! Sub-additivityµ

ρ(x+ y) 6 ρ(x) + ρ(y), ∀ x, y ∈ X



Coherent risk measure

C! Positive homogeneityµ

ρ(λx) = λρ(x), ∀ λ > 0, ∀ x ∈ X

D! Monotonicityµ

ρ(y) 6 ρ(x), if x 6 y, ∀ x, y ∈ X

I A → ρ(x + ρ(x)r0) = 0 the combination between risk-free asset
and risky assets are always efficient in reducing the risk: risk can be
controlled

I B → Combining risky assets does not bring extra risks



Coherent risk measure

I C → The size of the holding asset has a direct impact on risk, (eg,
large enough to affect the timing of liquidation), the lack of liquidity
is considered.

I D → Exclude variance and all semi-variance measures

Weak Coherent risk measure: B and C is replaced by convexity

Typical Coherent risk measure

x(α) = inf
{
x ∈ R : P [X 6 x] > α

}
,

x(α) = inf
{
x ∈ R : P [X 6 x] > α

}
, E[X−] <∞

TCE¨Tail Conditional Expectation, Tail VaR

TCEα(X) = −E
[
X |X 6 x(α)

]



Coherent risk measure
WCE¨Worst Conditional Expectation

WCEα(X) = − inf
{
E[X |A] : A ∈ F, P [A] > α

}
Tail Mean

TMα(X) = α−1(E[X1{X6x(α)}] + x(α)
(
α− P [x 6 x(α)]

))
ES¨Expected Shortfall

ESα(X) = −TMα(X)

CVaR¨Conditional Value-at-risk
The average loss/gain exceeding VaR
α of investment loss – mean value of tail distribution

CVaRα(X) = E
{
X |X > V aRα(X)

}
= inf

{
a+ 1

1− αE[X − a]+ : a ∈ R
}







Coherent risk measure
If X �SSD Y§then

CVaRα(Y ) 6 CVaRα(X), CVaRα(X) > VaRα(X)

For continuous Xµ

ESα(X) = WCEα(X) = TCEα(X) = CVaR(X)

Artzner et al. (1999), Uryasev (2000), Pflug (2000),
Acerbi & Tasche (2002), Rockafellar & Uryasev (2002)

A simple CVaR based portfolio selection model

min CVaRα(−wTR)↔ max CVaR(1−α)(wTR)

s.t. wT r > r,

wT e = 1,

w > 0,

↓



Coherent risk measure

min
a,x

a+ 1
1− αE[z]

s.t. z > −wTR− a,

wT r > r,

wT e = 1,

w > 0,

a > 0

min
a,x,z

a+ 1
(1− α)N

N∑
i=1

zi

s.t. zi > −wTRi − a, i = 1, . . . , N,

wT r̂ > r,

wT e = 1,

zi > 0, i = 1, . . . , N,

x > 0.



Coherent risk measure

CVaR for general loss distribution
f(x, y): loss function of decision variable x ∈ X ⊆ Rn; y ∈ Rm:

random vector; P (y): density function of y; φ(x, α) =
∫
f(x,y)6α p(y)dy:

cumulated distribution function of x

β −VaR : αβ(x) = min
{
α ∈ R : φ(x, α) > β

}
,

β − CVaR : φβ(x) = (1− β)−1
∫
f(x,y)>αβ(x)

f(x, y)p(y)dy, β ∈ (0, 1)

Auxiliary functions

Fβ : X ×R→ R,

Fβ(x, α) = α+ (1− β)−1
∫
y∈Rm

[
f(x, y)− α

]+
p(y)dy

Convex, continuously differentiable



Coherent risk measure

Computation of CVaR for general loss distribution:

φβ(x) = min
α∈R

Fβ(x, α), Aβ(x) = arg min
α∈R

Fβ(x, α)

Non-empty, bounded closed interval
Computation of VaRµαβ(x) = the Left endpoint of horizon Aβ(x)©

αβ(x) ∈ arg min
α∈R

Fβ(x, α), φβ(x) = Fβ
(
x, αβ(x)

)
Minimizing β − CVaR over x ∈ X: min

x∈X
φβ(x)

Minimizing Fβ(x, α) over (x, α) ∈ X ×R: min
(x,α)∈X×R

Fβ(α)

(x∗, α∗) minimizes the latter one ⇔ x∗ minimizes the former one, and
α∗ ∈ Aβ(x∗)



Coherent risk measure

Discretizationµ

y → y1, y2, · · · , yJ ,

Fβ(x, α)→ F β(x, α) = α+ υ

J∑
j=1

[
f(x, yj)− α

]+
, υ = J−1(1− β)−1

If f(x, y) is linear to x ⇔ F β(x, α) is piece-wise linear and convex
Bring Auxiliary variableµ

zj , j = 1, 2, · · · , J,

F β(x, α) = α+ υ

T∑
j=1

zj ,

zj > f(x, yj)− α, zj > 0, j = 1, 2, · · · , J



Coherent risk measure

Single-period portfolio optimization model with transaction costs

I n risky securities: Si, i = 1, 2, · · · , n

I current hold x0 = (x0
1, x

0
2, · · · , x0

n)

I current price q = (q1, q2, · · · , qn)→ qTx0 current wealth

I Optimal portfolio x = (x1, x2, · · · , xn) =?

The prices of securities at the end of the holding period is y = (y1, y2, · · · , yn)
depends on scenarios,
Loss functionµf(x, y, x0, q) = −yTx+ qTx0

Objective function: expected portfolio return

R(x) = 1
v

n∑
i=1
−E[yi]xi, v =

n∑
i=1

qix
0
i



Coherent risk measure

Transaction costs: linear transaction fees, proportional to the number of
trading shares

Balance constraint
n∑
i=1

qix
0
i =

n∑
i=1

ciqi|x0
i − xi|+

n∑
i=1

qixi, ci Proportional cost factor,

n∑
i=1

qix
0
i =

n∑
i=1

ciqi(δi + δ̄i) +
n∑
i=1

qixi,

x0
i − δi + δ̄i = xi, i = 1, 2, · · · , n,

δi > 0, δi > 0, i = 1, 2, · · · , n,

One of δi, δi should be zero!



Coherent risk measure
Value constraint

Not allowing the holding of a certain security i exceeds a certain
percentage of the total value of the portfolio

qixi 6 vi

n∑
i=1

qixi

CVaR constraints:
Government usually require capital reserves according to a VaR value

of the investment bank’s portfolio.This can be achieved by adding CVaR
constraints. Letting the upper bound of CVaR is w, such as w could be a
maximum VaR value, then

α+v
T∑
j=1

zj 6 w, zj >
n∑
i=1

(−yji xi + qix
0
i )− α, zj > 0, j = 1, 2, · · · , J

⇒ Portfolio Optimization Model:



Coherent risk measure

min
x,α

1
v

n∑
j=1

−E[yi]xi

s.t. α+ v

T∑
j=1

zj 6 w,

zj >

n∑
i=1

(−yji xi + qix
0
i ) − α, zj > 0, j = 1, 2, · · · , J,

n∑
i=1

qix
0
i =

n∑
i=1

ci(δi + δ̄i) +
n∑
i=1

qixi,

xi 6 vi

n∑
k=1

qkxk, i = 1, 2, · · · , n,

x0
i − i + δ̄i = xi, i = 1, 2, · · · , n,

0 6 i 6 δmax
i , 0 6 δ̄i 6 δ̄max

i , i = 1, 2, · · · , n,

xi 6 xi 6 x̄i, i = 1, 2, · · · , n.

LP! Scenario generation?



Coherent risk measure

Remarks:

I For coherent or convex risk measure, there is still much work to do!
Better coherent and convex risk measures?

But:

I Existing coherent risk measures usually only consider the first-order
change of the tail part, such as the average value

I Excepting CVaR, other coherent risk measure is too complicated to
compute and use

I How to modify and improve existing non-coherent risk measure (such
as the moment based risk measure), to make it coherent or convexity
while keeping its feature and property.

I Evaluation of existing coherent risk measure



Coherent risk measure

Yamai & Yoshiba(2002):
Compares ES and VaR:

I ES (CVaR) is easier to decompose and optimize than VaR

I To reach a good accuracy, ES (CVaR) requires a large number of
samples

Based on Evaluation resultsµ

I Improve existing risk measure and design new coherent risk measure:
more reasonable and effective

I Investor’s behavior? psychology?

I New trend: Different investors: different risk measure
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