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Introduction

Basic definitions of stochastic dominance:

Definition 1 (FSD)

X ∈ Lp dominates Y ∈ Lp in the first order, denoted X �(1) Y , if

P{X ≤ η} ≤ P{Y ≤ η}, ∀η ∈ R.

We define expected shortfall function
F2(X; η) =

∫ η

−∞
F(X;α)dα = E[(η − X)+].

Definition 2 (SSD)

X ∈ Lp dominates Y ∈ Lp in the second order, denoted X �(2) Y , if

F2(X; η) ≤ F2(Y; η), ∀η ∈ R.

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.
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Introduction

Proposition 1

X �(1) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U1, here U1 denotes the set
of all nondecreasing functions u : R→ R.

X �(2) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U2, here U2 denotes the set
of all concave and nondecreasing functions u : R→ R.

Dentcheva and Ruszczyński (2003) first considered optimization
problem with SSD and derived the optimality conditions.

Dentcheva and Ruszczyński (2006) developed duality relations and
solved the dual problem by utilizing the piecewise linear structure of
the dual functional

Luedtke (2008) get new linear formulations for SSD with finite
distributed benchmark

Drapkin, Gollmer, Gotzes, Schultz, et al. (2011a,2011b) study cases
where the random variables are induced by mixed-integer linear
recourse
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Introduction

Solution methods

Sampling approaches are the most popular solution method (see,
Dentcheva and Ruszczyński, 2003, Liu, Sun and Xu, 2016)

Cut plane methods are the most efficient solution algorithm (see,
e.g., Rudolf and Ruszczyński, 2003; Homem-de-Mello and
Mehrotra, 2009; Sun, Xu, et al., 2013).

Strong application background in finance

e.g., portfolio selection, index tracking applications (Dentcheva and
Ruszczyński, 2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang,
L., 2019)
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Definition and model description

Definition 3

X dominates Y robustly in the second order over a set of probability
measures Q ⊂P , denoted by X �Q(2) Y, if

EP[u(X)] ≥ EP[u(Y)], ∀u ∈ U, ∀P ∈ Q,

whereU is the set of all non-decreasing and concave utility functions.

We investigate the following distributionally robust SSD constrained
optimization problem

(PSSD) min
z∈Z

f (z)

s.t. zTξ �Q(2) zT
0 ξ.

Problem (PSSD) can be rewritten as

min
z∈Z

f (z)

s.t. EP[(η − zTξ)+ − (η − zT
0 ξ)+] ≤ 0, ∀η ∈ R, ∀P ∈ Q.

(1)
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Assumption

Assumption 1

Ξ is polyhedral, i.e., Ξ = {ξ ∈ Rn | Cξ ≤ d}, where C ∈ Rl×n, d ∈ Rl, and
zT

0 Ξ := {zT
0 ξ | ξ ∈ Ξ} is a compact set.

Problem (1) can be formulated as

min
z∈Z

f (z)

s.t. EP[(η − zTξ)+ − (η − zT
0 ξ)+] ≤ 0, ∀η ∈ R := zT

0 Ξ, ∀P ∈ Q.
(2)
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Ambiguity sets in DRO

Moment-based ambiguity sets (see, Zymler, Kuhn and Rustem,
2013)

Distance-based ambiguity sets

- Kullback-Leibler divergence (see, Hu, Hong, 2014; L., Lisser and
Chen, 2019)

- φ-divergence (see, Jiang and Guan, 2016)

- Wasserstein distance (see, Gao and Kleywegt, 2016, Esfahani and
Kuhn,2015,2018, Chen, Kuhn and Wiesemann, 2018, Ji and
Lejeune, 2020, Xie, 2021)

Mixture distribution ambiguity sets... (see Zhu et al. 2014, Chen,
Peng, L., 2018)
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Related works

Distributional robustness + Stochastic dominance

Dentcheva and Ruszczyński (2010) introduced distributionally robust
SD and establish the optimality conditions.

Dupačová and Kopa (2014) modeled the ambiguity of the
distribution by a linear combination of a nominal distribution and a
known contamination distribution with the combination parameter
being in a parametric uncertainty set.

Guo, Xu and Zhang (2017) proposed a discrete approximation
scheme for the moment-based ambiguity sets and approximately
solved the resulting stochastic optimization problem with
distributionally robust SSD constraints.

Chen and Jiang (2018) and Zhang et al. (2021) studied stability of
DRO problems with kth order SD constraints induced by full random
recourse.
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Data-driven Wasserstein ambiguity set

Our motivation: Distributionally robust SSD + Wasserstein ball

Definition 4

The Kantorovich metric dK : P(Ξ) ×P(Ξ)→ R+ is defined via

dK(P,Q) := inf
π

{∫
Ξ2
‖ξ1−ξ2‖π(dξ1, dξ2) :

π is a joint distribution of ξ1 and ξ2

with marginals P and Q, respectively

}
.

Given N observations {̂ξi}
N
i=1 of ξ, we define the data-driven Wasserstein

ambiguity set Q as a ball centered at the empirical distribution
P̂N = 1

N
∑N

i=1 δξ̂i
,

Q := {P ∈P(Ξ) : dK(P, P̂N) ≤ ε}. (3)
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Main difficulties

The semi-infiniteness induced from both the SSD and the
distributionally robust counterpart are the main challenge.

Distributionally robust SSD constraints are non-smooth such that
gradient based methods fail to work here.

Compared to moment-based ambiguity sets, the Wasserstein
distance contains an extra optimization problem on computing the
optimal transportation from the true distribution to the nominal
distribution. Such an inner-level optimization problem leads a
min-max-min structure and non-convexity of the distributionally
robust SSD constraints.
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Contributions

Lower bound approximation:

- use sample approximation approach

- establish the quantitative convergency of the approximation

Upper bound approximation:

- propose a novel split-and-dual decomposition framework

- prove convergency of approximation approach and quantitatively
estimate the approximation error

Peng and Delage (2020) find lower bound by sampling approach;
upper bound by reformulation as a multistage robust optimization
problem.
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Strong duality

Gao and Kleywegt (2016)

Lemma 5

If Ψ(ξ) is proper, continuous, and for some ζ ∈ Ξ, the growth rate
κ := lim sup‖ξ−ζ‖→∞

Ψ(ξ)−Ψ(ζ)
‖ξ−ζ‖

< ∞, then the optimal values of

sup
P∈P(Ξ)

{∫
Ξ

Ψ(ξ)P(dξ) : dK(P, P̂N) ≤ ε
}

and

min
λ≥0

λε +
1
N

N∑
i=1

sup
ξ∈Ξ

[Ψ(ξ) − λ‖ξ − ξ̂i‖]

 (4)

are equal. Moreover, the optimal solution set of (4) is nonempty and
compact.
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Lower bound approximation

Let ΞN = {ξ̄j}
N
j=1 be a set of finite samples in Ξ and ΓM = {ηk}

M

k=1 be a set
of finite samples in R = [Rmin,Rmax].

We then approximate the ambiguity set Q by the following Wasserstein
ball:

QN := {P ∈P(ΞN ) : dK(P, P̂N) ≤ ε}.

We have a lower bound approximation of problem (2):

min
z∈Z

f (z)

s.t. EP[(η − zTξ)+ − (η − zT
0 ξ)+] ≤ 0, ∀η ∈ ΓM, ∀P ∈ QN .

(5)
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Tractability of the lower bound approximation

By Lemma 5 and introducing auxiliary variables, we have a linear
programming reformulation of problem (5)

min
z,λ,β,s

f (z)

s.t. λkε −

N∑
i=1

1
N
βik ≤ 0, k = 1, · · · ,M,

(PSSD−L) βik + sjk ≤ λk‖ξ̄j − ξ̂i‖ + (ηk − zT
0 ξ̄j)+,

i = 1, · · · ,N, j = 1, · · · ,N , k = 1, · · · ,M,

sjk ≥ ηk − zT ξ̄j, j = 1, · · · ,N , k = 1, · · · ,M,

z ∈ Z, λ ∈ RM+ , β ∈ R
N×M, s ∈ RN×M+ .
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Quantitative analysis of the lower approximation

Assumption 2

There exist a point z̄ ∈ Z and a constant θ > 0 such that

sup
η∈R

sup
P∈Q
EP[(η − z̄Tξ)+ − (η − zT

0 ξ)+] < −θ;

limN→∞ αN = 0 and limM→∞ γM = 0, where αN := supξ∈Ξ infξ′∈ΞN ‖ξ − ξ
′‖

and ΓM by γM := supη∈R infη′∈ΓM |η − η
′|.
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Quantitative analysis of the lower approximation

Theorem 6

Given Assumption 2, the following assertions hold.
(i) For any N andM,

H(FN ,M,F ) ≤
2DZ

θ
(LαN + γM).

(ii) limN→∞,
M→∞

vN ,M = v and lim supN→∞,
M→∞

SN ,M ⊂ S.
(iii) If, in addition, the objective function f is Lipschitz continuous with
modulus Lf , then for any N andM,

|vN ,M − v| ≤
2DZLf

θ
(LαN + γM).

Moreover, if there exists a positive constant ρ such that
f (z) − v ≥ ρd(z,S)2, ∀z ∈ F , then for sufficiently large N andM,

D(SN ,M,S) ≤
(√2DZ

θ
+

√
4Lf DZ

ρθ

) √
LαN + γM. (6)
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Cutting-plane method
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Upper bound approximation

Notice that problem (2) can be rewritten as

min
z∈Z

f (z)

s.t. sup
P∈Q

sup
η∈R

EP[(η − zTξ)+ − (η − zT
0 ξ)+] ≤ 0. (7)

If we exchange the order of operators supη∈R and EP in problem (7), we
obtain an upper bound approximation for problem (7). However, such an
upper bound approximation might be loose or even infeasible since the
gap

EP

sup
η∈R

{(η − zTξ)+ − (η − zT
0 ξ)+}

 − sup
η∈R

EP[(η − zTξ)+ − (η − zT
0 ξ)+] (8)

might be large. The larger the range R of η, the larger the gap in (8). As
an extreme case, when R reduces to a singleton, the gap (8) becomes 0.
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Split-and-dual framework

In detail, we divide R = [Rmin,Rmax] into K intervals with disjoint interiors,
[η

k
, η̄k], k = 1, · · · ,K , where the boundary points of the intervals are

specified by η
k

= Rmin + (k − 1)Rmax−Rmin
K

, η̄k = Rmin + kRmax−Rmin
K

,
k = 1, · · · ,K . Problem (7) can be reformulated as

min
z∈Z

f (z)

s.t. sup
P∈Q

max
1≤k≤K

sup
η∈[η

k
,η̄k]
EP[(η − zTξ)+ − (η − zT

0 ξ)+] ≤ 0,

Exchanging the order of operators supη∈[η
k
,η̄k] and EP, we have the

following approximation problem

min
z∈Z

f (z)

s.t. sup
P∈Q
EP

[
sup

η∈[η
k
,η̄k]
{(η − zTξ)+ − (η − zT

0 ξ)+}
]
≤ 0, k = 1, · · · ,K .

(9)
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Reformulation of the upper approximation

By applying Lemma 5, we have a reformulation of problem (9)

min
z∈Z,λ∈RK+

f (z) (10a)

s.t. λkε +
1
N

N∑
i=1

sup
ξ∈Ξ

{
(10b)

sup
η∈[η

k
,η̄k]
{(η − zTξ)+ − (η − zT

0 ξ)+} − λk‖ξ − ξ̂i‖

}
≤ 0, k = 1, · · · ,K .

We write (10b) as

λkε +
1
N

N∑
i=1

V ik
S ≤ 0, k = 1, · · · ,K , (11)

where

V ik
S := sup

(ξ,η)∈Ξ×[η
k
,η̄k]

(η−zTξ)+−(η−zT
0 ξ)+−λk‖ξ−ξ̂i‖, i = 1, · · · ,N, k = 1, · · · ,K .
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We can split the problem into two convex sub-problems:

V ik
S1 = sup

ξ,η,s,m
η − zTξ − s − λkm V ik

S2 = sup
ξ,η,s,m

−s − λkm

s.t. s ≥ η − zT
0 ξ, s.t. s ≥ η − zT

0 ξ,

η − zTξ ≥ 0, η − zTξ ≤ 0,

(Pik
SSD−1) Cξ ≤ d, (Pik

SSD−2) Cξ ≤ d,

s ≥ 0, s ≥ 0,
η ≥ η

k
, η ≥ η

k
,

η ≤ η̄k, η ≤ η̄k,

‖ξ − ξ̂i‖ ≤ m. ‖ξ − ξ̂i‖ ≤ m.

And we have
V ik

S = max{V ik
S1,V

ik
S2}. (12)

Jia Liu Distributionally robust second-order stochastic dominance constrained optimization with Wasserstein ball
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Conic duality

Ṽ ik
S1 = inf

µ,ν
dTν − ξ̂T

i (z − µ1z0 + µ2z + CTν) − µ3ηk
+ (1−µ1 + µ2 + µ3)η̄k

(Dik
SSD−1) s.t. µ1 ≤ 1, 1 − µ1 + µ2 + µ3 ≥ 0,

‖z − µ1z0 + µ2z + CTν‖ ≤ λk,

µ ∈ R3
+, ν ∈ R

l
+.

Ṽ ik
S2 = inf

µ,ν
dTν − ξ̂T

i (−µ1z0 − µ2z + CTν) − µ3ηk
+ (−µ1 − µ2 + µ3)η̄k

(Dik
SSD−2) s.t. µ1 ≤ 1, −µ1 − µ2 + µ3 ≥ 0,

‖ − µ1z0 − µ2z + CTν‖ ≤ λk,

µ ∈ R3
+, ν ∈ R

l
+.
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Upper bound

Theorem 7

Given Assumption 1, the optimal value of the following optimization
problem

min f (z)

s.t. λkε +
1
N

N∑
i=1

V ik ≤ 0, k = 1, · · · ,K ,

(PSSD−U)

µik
1 ≤ 1, µ̃ik

1 ≤ 1, 1 − µik
1 + µik

2 + µik
3 ≥ 0, −µ̃ik

1 − µ̃
ik
2 + µ̃ik

3 ≥ 0,
V ik ≥ dTνik− ξ̂T

i (z− µik
1 z0 + µik

2 z+ CTνik)− µik
3 ηk

+ (1− µik
1 + µik

2 + µik
3 )η̄k ,

V ik ≥ dT ν̃ik − ξ̂T
i (−µ̃ik

1 z0 − µ̃
ik
2 z + CT ν̃ik) − µ̃ik

3 ηk
+ (−µ̃ik

1 − µ̃
ik
2 + µ̃ik

3 )η̄k ,

‖z − µik
1 z0 + µik

2 z + CTνik‖ ≤ λk , ‖ − µ̃
ik
1 z0 − µ̃

ik
2 z + CT ν̃ik‖ ≤ λk ,

µik ∈ R3
+, ν

ik ∈ Rl
+, µ̃

ik ∈ R3
+, ν̃

ik ∈ Rl
+,V

ik ∈ R,


i = 1, · · · ,N, k = 1, · · · ,K ,

z ∈ Z, λ ∈ RK+ .

is an upper bound to that of problem (PSSD).
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Quantitative analysis of the upper approximation

Let
g(z,K) := max

1≤k≤K
sup
P∈Q
EP

[
sup

η∈[η
k
,η̄k]

{
(η − zTξ)+ − (η − zT

0 ξ)+

} ]
,

g(z) : = sup
P∈Q

sup
η∈R

EP

[
(η − zTξ)+ − (η − zT

0 ξ)+

]
= max

1≤k≤K
sup
P∈Q

sup
η∈[η

k
,η̄k]
EP

[
(η − zTξ)+ − (η − zT

0 ξ)+

]
.

Proposition 2

Given Assumption 1, for any positive integer K , g(·,K) and g(·) are
Lipschitz continuous with modulus C = supP∈Q EP[‖ξ‖] < ∞.

Proposition 3

Given Assumption 1, we have that g(z,K) − g(z) ≤ 2Rmax−Rmin
K

, and
limK→∞ g(z,K)=g(z), uniformly with respect to z ∈ Z.
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Non-differentiable MFCQ

Definition 8

(ND-MFCQ) Let F(t) := {x ∈ Rn | gj(x, t) ≤ 0, j ∈ J} with subdifferentiable
gj, here t is the parameter in the constraints. Given t̄ and x̄ ∈ F(t̄), if there
exist some vector θ and real constants σ < 0, α1 > 0, α2 > 0 such that

〈ς, θ〉 ≤ σ < 0, ∀ς ∈ ∂gj(x, t),∀x : ‖x − x̄‖ ≤ α1,∀t : ‖t − t̄‖ ≤ α2,∀j ∈ J0(x̄, t̄),

where J0(x̄, t̄) := {j ∈ J | gj(x̄, t̄) = 0}, then we say that non-differentiable
MFCQ (ND-MFCQ) holds at (x̄, t̄) with θ, σ, α1 and α2,

ND-MFCQ is equivalent to MFCQ if differentiable

Jia Liu Distributionally robust second-order stochastic dominance constrained optimization with Wasserstein ball
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Quantitative analysis of the upper approximation

Assumption 3

The optimal solution set of problem (9) with K = 1, denoted by S1, is
nonempty.

Theorem 9

Given Assumptions 1 and 3. For some z∗ ∈ S, assume that ND-MFCQ
holds at (z∗, 0) with θ, σ, α1, and α2 as is defined in Definition 8. If the
objective function f is Lipschitz continuous with modulus Lf , then for
K ≥ max

{
1
α2
, 2
|σ|
Rmax−Rmin

α1
‖θ‖,−2Rmax−Rmin

g(z∗)

(
C
‖θ‖
|σ|

+ 1
)}
, we have that

|vK − v| ≤ Lf
2‖θ‖
|σ|

Rmax − Rmin

K
,

and limK→∞ vK = v.
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Upper bound

Theorem 10

Given Assumption 1, the optimal value of the following optimization
problem

min f (z)

s.t. λkε +
1
N

N∑
i=1

V ik ≤ 0, k = 1, · · · ,K ,

(PSSD−U)

µik
1 ≤ 1, µ̃ik

1 ≤ 1, 1 − µik
1 + µik

2 + µik
3 ≥ 0, −µ̃ik

1 − µ̃
ik
2 + µ̃ik

3 ≥ 0,
V ik ≥ dTνik− ξ̂T

i (z− µik
1 z0 + µik

2 z+ CTνik)− µik
3 ηk

+ (1− µik
1 + µik

2 + µik
3 )η̄k ,

V ik ≥ dT ν̃ik − ξ̂T
i (−µ̃ik

1 z0 − µ̃
ik
2 z + CT ν̃ik) − µ̃ik

3 ηk
+ (−µ̃ik

1 − µ̃
ik
2 + µ̃ik

3 )η̄k ,

‖z − µik
1 z0 + µik

2 z + CTνik‖ ≤ λk , ‖ − µ̃
ik
1 z0 − µ̃

ik
2 z + CT ν̃ik‖ ≤ λk ,

µik ∈ R3
+, ν

ik ∈ Rl
+, µ̃

ik ∈ R3
+, ν̃

ik ∈ Rl
+,V

ik ∈ R,


i = 1, · · · ,N, k = 1, · · · ,K ,

z ∈ Z, λ ∈ RK+ .

is an upper bound to that of problem (PSSD).
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Sequential convex approximation
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Numerical results

Table: The optimal values and the optimal solutions of the lower and upper bound
approximations

lower bound approximation ((PSSD−L) or Algorithm 3.1) upper bound approximation (Algorithm 4.1) Gap
N M Optimal value Optimal solution K Optimal value Optimal solution
100 100 0.2922 (0.4229, 0.4027)T 10 0.4097 (0.8010, 0.1564)T 40.2122%
200 200 0.2964 (0.4266, 0.4077)T 11 0.3044 (0.4590, 0.4002)T 2.6991%
300 300 0.3014 (0.4423, 0.4014)T 12 0.3025 (0.4653, 0.3868)T 0.3650%

Jia Liu Distributionally robust second-order stochastic dominance constrained optimization with Wasserstein ball
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Numerical results
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Figure: Optimal values of the lower bound approximation with respect to N ,M
and that of the upper bound approximation with respect to K .
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Numerical results

Table: Optimal values of the lower and upper bound approximations, and their
relative gaps with respect to different robust radii.

Robust radius Optimal values (%) Gap
ε lower bound approximation upper bound approximation

10−5 -10.8775 -10.8268 0.4661%
10−4 -10.7838 -10.7389 0.4164%
10−3 -10.7836 -10.6536 1.2055%
10−2 -10.7823 -10.6535 1.1946%
0.1 -10.7689 -10.6534 1.0725%
0.5 -10.6885 -10.6534 0.3284%
1 -10.6534 -10.6534 0%
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Conclusions

Summary:
Study a distributionally robust SSD constrained optimization problem
Adopt the sample approximation approach to develop a linear
programming formulation to obtain a lower bound approximation
Establish the quantitative convergency for the lower bound
approximation problem
Propose a novel split-and-dual decomposition framework to derive
an upper bound approximation
Quantitatively estimate the approximation error between the optimal
value of the upper bound approximation and that of the original
problem

Further works:
Modifying the design of cutting-planes
Investigate the critical number of intervals for enhancing the
practicality of the upper bound approximation
Consider distributionally robust multivariate robust SSD constrained
optimization problem

Jia Liu Distributionally robust second-order stochastic dominance constrained optimization with Wasserstein ball
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Thank you!
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