Time Consistent Recursive Risk Measures Under Regime Switching and Factor Models and Their Application in Dynamic Portfolio Selection

#### Jia Liu (with Zhiping Chen)

Xi'an Jiaotong University

TEL:0086-13572886780, E-mail: liu.jia@stu.xjtu.edu.cn

• □ ▶ • □ ▶ • □ ▶ • □ ▶

# Outline

- Introduction
- Two-level information structure
- Regime-based recursive risk measure
- Dynamic portfolio selection problem
- Numerical experiments
- Conclusions

# Introduction

#### Why dynamic risk measure?

- Decisions are made dynamically (at discrete times).
- The information changes frequently over time. The risk measure should adapt to the information flow.
- Static risk measure always leads to myopic decisions, while many investors prefer long-term investment.

#### Good dynamic risk measure

- Dynamic monotonicity
- Dynamic convexity
- Time consistency

#### Time consistency

Consider a probability space  $(\Omega, \mathcal{F}, P)$ , with  $\mathcal{F}$  denoting the set of subsets of  $\Omega$ , and filtration  $\mathcal{F} = (\mathcal{F}_0, \mathcal{F}_1, ..., \mathcal{F}_T)$ . Accumulated return  $Z_t = Y_1 + Y_2 + \cdots + Y_t$ ,  $t = 1, 2, \cdots, T$ .  $Z_t, Y_t$  are adapt to  $\mathcal{F}_t$ .

#### Time consistency

A conditional risk mapping  $\rho_{t,T} : L_p(\mathcal{F}_T) \to L_p(\mathcal{F}_t)$  is time consistent, if for any  $0 \le t < \theta \le T - 1$ ,  $Z, W \in \mathcal{F}_T, \rho_{\theta,T}(Z) \le \rho_{\theta,T}(W)$ implies that  $\rho_{t,T}(Z) \le \rho_{t,T}(W)$ .

Time consistency describes the consistent relationship of risks among different stages, which ensures the rationality of the risk measure and the resulting dynamic portfolio selection model.

Wang [1999], Cheridito, Delbaen, Kupper[2006], Detlefsen, Scandolo [2005], Roorda, Schumacher, Engwerda[2005], Artzner, Delbaen, Eber, Heath, Ku [2007], Kovacevic, Pflug[2009], Ruszczyński[2010], Acciaio, Penner[2011]

#### The final stage risk measure

The final stage risk measure

$$Var(Z_T|\mathcal{F}_t) = E[(Z_T - E(Z_T|\mathcal{F}_t))^2|\mathcal{F}_t]$$

Li and Ng[2000], Cakmak [2004], Celikyurt [2007], Cui et al. [2010]

$$VaR_{\alpha}(Z_T|\mathcal{F}_t) = inf_{z \in R}\{z|P(Z_T \ge z|\mathcal{F}_t) \le \alpha\}$$

Cheridito and Stadje[2008], Basak and Shapiro [2001], Berkelaar et al. [2005], Leippold et al. [2006], Cuoco et al.(2007)

$$CVaR_{\alpha}(Z_T|\mathcal{F}_t) = inf_{z \in R}\{z + \frac{1}{1-\alpha}E[(Z_T - z)^+|\mathcal{F}_t]\}$$

Geman and Ohana [2008], Boda and Filar [2006]

All these are not time consistent!

ヘロト 人間 ト 人間 ト 人間 トー

#### Other multi-period risk measures

Separable average CVaR

$$SA_{-}CVAR_{t,T} = \sum_{s=t}^{T} \beta_{s}CVaR_{\alpha_{s}}(Y_{s}|\mathcal{F}_{t})$$

#### Not time consistent!

Recursive CVaR

$$R_{-}CVAR_{t,T} = CVaR_{\alpha_{t}}(R_{-}CVAR_{t+1,T}|\mathcal{F}_{t})$$

#### Time consistent!

Selden [1978], Kreps and Porteus [1978], and Duffie and Epstein[1992], Pflug and Römisch[2007]

#### Recursive risk measure

The recursive risk measure is time consistent when the one-step conditional risk measure is monotonicity.

If a conditional risk mapping is monotonicity, time consistent, regularity and translation invariance, then for all *t* it can be represented recursively,  $\rho_{t,T}(Z) = \rho_{t,t+1}(\rho_{t+1,T}(Z))$ . (Theorem 1, Ruszczyński[2010])

But, the multi-stage portfolio selection problem based on recursive risk measure is hard to solve!

In our paper, we propose a two-level information structure, and define the regime-based recursive risk measure on it.

Our feature: more realistic, tractable, and reasonable.

#### Two-level information structure

The outer level reflects the endogenous information of macro market states such as bear market, bull market, consolidation market, we call them market regimes  $M_t$ .

The endogenous assumption means which regime to appear only depends on historical regimes. and translates with the probability  $P(M_t^k, M_{t+1}^j)$ .

The inner level reflects the exogenous information driven by  $M_t$ , such as the return rates of assets  $R_t$  and the value of indexes  $F_t$ .



Jia Liu (with Zhiping Chen) Time Consistent Recursive Risk Measures Under Regime Switching

# The regime switching

We suppose that there are  $K_t$  regimes,  $M_t^k$ ,  $k = 1, 2, ..., K_t$ , at period t, t = 1, ..., T. The regime switching only relies on historical regimes. Hence, the switching structure can be represented as a scenario tree.



Generally, such process is supposed to be Markovian.

### **Regime switching**



Regime switching of S&P 500 from Aug. 2005 to Jan. 2012

A □ ► A □

#### Factor model

Modern finance theory tells us that stock prices are determined by economic factors and financial market risk factors.

Chen, Ross and Roll: five-factor model [1986]

- growth rate of industrial production (IP)
- unexpected inflation (UI)
- change of expected inflation (DEI)
- yield spread (YS)
- credit spread (CS)

#### Fama and French: three-factor model [1993]

- the excess market portfolio return over the risk free asset (MKT)
- difference of returns on the small and large stock portfolios (SML)
- difference of returns on high and low book-to-market ratio portfolio returns (HML)

# Factor model (Cont'd)

We assume the following linear relationship holds between the return rates of risky assets and the market factors,

$$R_t = A + B \cdot F_t + c_t,$$

where,  $A = (a_1, a_2, ..., a_n)' \in \mathbb{R}^n$  denotes the inherent expected return vector of risky assets,  $B = (b_{ij}) \in \mathbb{R}^{n \times L}$  is the factor loading coefficient matrix, and  $c_t = (c_t^1, c_t^2, ..., c_t^n)' \in \mathbb{R}^n$  is the residual term.

- Factor can reflect the macro market regime properly.
- Factor model can efficiently reduce the dimension of the large-scale problem.

### Factor forecasting model

We use the *q*-order autoregression model AR(q) to forecast the value of market factors. Concretely we assume, under particular regime  $M_t$ ,

$$F_t(M_t) = s_0(M_t) + \sum_{i=1}^q s_i(M_t) F_{t-i}(M_t) + e_t(M_t),$$

where  $s_0(M_t)$ ,  $s_i(M_t)$ , i = 1, 2, ..., q, and  $e_t(M_t)$  are the autoregression parameters and residual term, respectively.

The residual term  $e_t(M_t)$  and  $c_t$  are assumed following to the joint student *t* distribution with the same degree of freedom.

### Distribution fitting performance

Comparison between normal fitting and student t fitting of S&P 500 index from Aug. 2005 to Jan. 2012

|            | ν         | μ           | $\beta/\sigma$ | ln(L)   | AIC       | BIC       |
|------------|-----------|-------------|----------------|---------|-----------|-----------|
| t fit      | 3.11037   | 0.000199297 | 0.00265426     | 65229.5 | -130453.0 | -130430.0 |
| normal fit | $+\infty$ | 0.000122412 | 0.00426178     | 63164.4 | -126324.8 | -126309.5 |



• • • • • • • • • • • • •

#### Conditional mean and variance

The conditional mean and variance of factors are:

$$\begin{split} E[F_t^j | \mathcal{F}_{t-1}, M_t] &= s_0(M_t) + \sum_{i=1}^q s_i(M_t) F_{t-i}^j, \ j = 1, 2, ..., L, \\ \sigma^2[F_t^j | \mathcal{F}_{t-1}, M_t] &= \sigma^2_{F_t^j}(M_t) \ j = 1, 2, ..., L. \end{split}$$

The conditional mean and variance of stock return rates are:

$$\begin{split} E[R_t^i | \mathcal{F}_{t-1}, M_t] &= a_i + \sum_j b_{i,j}(M_t)(s_0(M_t) + \sum_{i=1}^q s_i(M_t)F_{t-i}^j), \ i = 1, 2, ..., n, \\ \sigma^2[R_t^i | \mathcal{F}_{t-1}, M_t] &= \sum_j b_{i,j}^2(M_t)\sigma_{F_t^i}^2(M_t) + \sigma_{c_t^i}^2(M_t), \ i = 1, 2, ..., n, \\ \sigma[R_t^i, R_t^k | \mathcal{F}_{t-1}, M_t] &= \sum_j b_{i,j}(M_t)b_{k,j}(M_t)\sigma_{F_t^j}^2(M_t), \ i, k = 1, 2, ..., n, \ i \neq k. \end{split}$$

### Regime-based risk measure

We construct the multi-period risk measure in two-level.

The inner level measures the one-step conditional investment risk mapping under individual regimes  $M_t$ ,

$$\rho_{M_t}(\cdot): L_p(\mathcal{F}_t) \to L_p(\mathcal{F}_{t-1}(M_t))$$
(1.1)

We require  $\rho_{M_t}(\cdot)$  satisfy translation invariance, monotonicity, and convexity.

It is called the weak coherent risk measure (Artzner et al.[1997], Carr et al.[2001]), or the convex risk measure (Fölmer and Scchied[2002], Frittelli and Rosazza[2002]).

ヘロト 人間 ト 人間 ト 人間 トー

# Properties

The outer level combines all the "sub-risks" together through proper regime switching probabilities.

$$\rho_{t-1,T}(Z) = E_{M_{t-1}}[\rho_{M_t}(\rho_{t,T}(Z))], \qquad (1.2)$$

#### Theorem

If the one-step conditional risk mapping  $\rho_{M_t}$  satisfies translation invariance, monotonicity, and convexity, then the recursive risk measure (1.2) satisfies the following properties: (1) For all  $Z, W \in \mathcal{F}_T$  such that  $Z \leq W$ ,  $\rho_{t,T}(Z) \leq \rho_{t,T}(W)$ , (2) For any  $0 \leq t < \theta \leq T - 1$ ,  $Z, W \in \mathcal{F}_T$ ,  $\rho_{t,T}(Z) \leq \rho_{t,T}(W)$  holds if  $\rho_{\theta,T}(Z) \leq \rho_{\theta,T}(W)$ . (3) $\rho_{t,T}(\lambda Z + (1 - \lambda)W) \leq \lambda \rho_{t,T}(Z) + (1 - \lambda)\rho_{t,T}(W)$  holds for all  $Z, W \in \mathcal{F}_T, t \leq T$ .

properties (1)-(3) are so-called dynamic monotonicity, time consistency, and dynamic convexity, respectively (Wang[1999], Ruszczyński[2010], Cheridito ot al[2006])

Jia Liu (with Zhiping Chen)

Time Consistent Recursive Risk Measures Under Regime Switching

Xi'an Jiaotong University

Introduction Two-level information structure Regime-based risk me

#### VaR(CVaR) under different regimes



Tail density curves under different regimes

ヘロト ヘヨト ヘヨト ヘヨト

### Portfolio selection model

The investor joins the market at time 0 with an initial wealth  $x_0$  and plans to invest his/her wealth in the stock market for *T* consecutive periods in a self-financing way. Let  $x_t$  be the total wealth at the beginning of the *t*th period, and let  $u_t^i$ , i = 1, 2, ..., n, be the cash amount invested in the *i*th risky asset at stage *t*. Here we assume  $u_t$  is  $M_t$  adapted.

$$x_{t+1} = e_{t+1}^0 x_t + R'_{t+1} u_t, \ t = 0, 1, ..., T - 1.$$

We maximize the expected final wealth, while controlling the multi-period investment risk not exceeding a given threshold  $\delta$ , which forms the optimization problem  $P1(\delta)$ ;

$$P1(\delta): \text{ Max } E(x_T)$$
  
s.t.  $\rho_{0,T}(-x_T) \le \delta,$   
 $x_{t+1} = e_{t+1}^0 x_t + R'_{t+1} u_t, \ t = 0, 1, ..., T-1;$ 

#### Portfolio selection model(Cont'd)

We minimize the multi-period investment risk, while requiring the expected final wealth to be at least  $\epsilon$ , which forms the optimization problem  $P2(\epsilon)$ ;

$$P2(\epsilon): \text{ Min } \rho_{0,T}(-x_T)$$
  
s.t.  $E(x_T) \ge \epsilon,$   
 $x_{t+1} = e_{t+1}^0 x_t + R'_{t+1} u_t, \ t = 0, 1, ..., T-1;$ 

We maximize the linear combination of the expected terminal wealth and the investment risk by introducing a risk averse factor  $\omega$ , which forms the optimization problem  $P3(\omega)$ .

P3(
$$\omega$$
): Max  $E(x_T) - \omega \rho_{0,T}(-x_T)$ ,  
s.t.  $x_{t+1} = e_{t+1}^0 x_t + R'_{t+1} u_t$ ,  $t = 0, 1, ..., T - 1$ .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

### Transformation

Let  $P(M_t, k)$  denote the conditional probability of the *k*th scenario generated by node  $M_t$ , and  $d(M_t, k)$  the accumulated autocorrelation coefficients along the sub-path  $M_t, M_{t+1}, ..., M_T$ , beginning from node  $M_t$ , of the corresponding *k*th scenario. Then we have the following recursive formula about components of  $d(M_t, k)$ .

$$\begin{aligned} &d_i^0(M_t,k) = s_i(M_t,k), \ i = 0, 1, ..., q, \\ &d_0^{k+1}(M_t,k) = d_0^k(M_t,k) + d_1^k(M_t,k)s_0(M_t,k), \ k = 1, 2, ..., T, \\ &d_i^{k+1}(M_t,k) = d_{i+1}^k(M_t,k) + d_1^k(M_t,k)s_i(M_t,k), \ i = 1, 2, ..., q-1, \ k = 1, ..., \\ &d_q^{k+1}(M_t,k) = d_1^k(M_t,k)s_q(M_t,k), \ k = 1, 2, ..., T, \end{aligned}$$

# Transformation(Cont'd)

At any stage *t*, the conditional recursive risk measure can be expressed as

$$\rho_{t,T}(-x_T) = -E[x_T | \mathcal{F}_t] + \sum_{\tau=t+1}^T E_{M_t}[E_{M_{t+1}}[....E_{M_{\tau-1}}[C_{\sigma_\tau(M_\tau)}\sqrt{\sigma^2(E[x_T | \mathcal{F}_\tau] | \mathcal{F}_{\tau-1}, M_\tau)}]]],$$

where

$$\begin{split} E[x_{T}|\mathcal{F}_{t}] &= \sum_{k \in \mathbb{N}^{T-t}M_{t}} P(M_{t},k)(R_{t,T}^{0}x_{t} + \sum_{s=t}^{T-1} R_{s+1,T}^{0}(A + B \cdot (d_{0}^{s-t}(M_{t},k) + \sum_{i=1}^{q} d_{i}^{s-t}(M_{t},k)F_{t+1-i}))'u_{s}, \\ C_{\sigma_{s}(M_{\tau})} &= \frac{\nu}{\nu-1}(1 + \frac{F_{0}^{-1}(\alpha(M_{\tau}))}{\nu})\frac{f_{0}(F_{0}^{-1}(\alpha(M_{\tau})))}{\alpha(M_{\tau})}\sqrt{\frac{\nu-2}{\nu}}, \\ \sigma^{2}(-E[x_{T}|\mathcal{F}_{\tau}]|\mathcal{F}_{\tau-1},M_{\tau}) &= \sigma^{2}(E[x_{T}|\mathcal{F}_{\tau}]|\mathcal{F}_{\tau-1},M_{\tau}), \\ &= \sum_{j}(\sigma_{F_{\tau}^{j}}(M_{\tau}))^{2}(\sum_{k \in \alpha^{T-\tau}M_{\tau}} P(M_{\tau},k)(R_{\tau,T}^{0}(b_{j}(M_{\tau})'u_{\tau-1}) + \sum_{s=\tau}^{T-1} R_{s+1,T}^{0}d_{1}^{s-\tau}(M_{\tau},k,j)(b_{j}(M_{t})'u_{s})))^{2} \\ &+ \sum_{i}(\sigma_{c_{\tau}^{i}})^{2}(\sum_{k \in \alpha^{T-\tau}M_{\tau}} (R_{\tau,T}^{0}u_{\tau-1}^{i}))^{2}, \ \tau = t+1, ..., T-1. \end{split}$$

ヘロト ヘヨト ヘヨト ヘヨト

### Transformed problem

By introducing auxiliary variables,  $P1(\delta)$  can be transformed into the following standard second-order cone program (SOCP):

$$\begin{split} & \text{Max} \quad \sum_{k \in \mathbb{N}^{T} M_{0}} P(M_{0}, k) (R_{0,T}^{0} x_{t} + \sum_{s=0}^{T-1} R_{s+1,T}^{0} (A + B \cdot (d_{0}^{s}(M_{0}, k) + \sum_{i=1}^{q} d_{i}^{s}(M_{0}, k)F_{1-i}))' u_{s}) \\ & \text{s.t.} \quad \sum_{t=1}^{T} (\sum_{M_{t} \in \mathcal{F}_{M_{t}}} P(M_{t}) (C_{\sigma_{t}(M_{t})} V_{t}(M_{t}))) \leq \delta, \\ & \sqrt{\sum_{k \in \mathbb{N}^{T-t} M_{t}} y_{t}(M_{t}, k)' y_{t}(M_{t}, k) + z_{t}(M_{t})' z_{t}(M_{t})} \leq V_{t}(M_{t}), \ M_{t} \in \Xi(M) \setminus \{M_{0}\}, \\ & P(M_{t}, k) \sigma_{F_{j}}(M_{t}) (R_{t,T}^{0}(b_{j}(M_{t})' u_{t-1}) + \sum_{s=t}^{T-1} R_{s+1,T}^{0} d_{1}^{s-t}(M_{t}, k, j) (b_{j}(M_{t})' u_{s})) = y_{t}^{i}(M_{t}, k), \\ & M_{t} \in \Xi(M) \setminus \{M_{0}\}, \ k \in \mathbb{N}^{T-t} M_{t}, \ j = 1, 2, ..., L, \\ & R_{t,T}^{0} \sigma_{c,i} u_{t-1}^{i} \sqrt{\sum_{k \in \mathbb{N}^{T-t} M_{t}} P(M_{t}, k)^{2}} = z_{t}^{i}(M_{t}), \ M_{t} \in \Xi(M) \setminus \{M_{0}\}, \ i = 1, 2, ..., n. \end{split}$$

Jia Liu (with Zhiping Chen) Time Consistent Recursive Risk Measures Under Regime Switching

< ロト < 同ト < ヨト < ヨト

# Transformed problem(Cont'd)

Similarly,  $P2(\epsilon)$  and  $P3(\omega)$  can be also transformed into SOCP.

SOCP can be efficiently solved by some commercial optimization softwares, such as MOSEK.

Compared with current method for multi-stage portfolio selection under dynamic risk measure, our method is easier to implement and more efficient computationally.

#### Numerical experience

- We randomly choose 13 stocks from different industries in both Dow Jones Industrial Average and S&P 500 Indexes.
- We use 7 factors to explain the return rates.
- We use weekly data from February 14, 1977 to January 30, 2012, and take the last 100 weeks to be the out-of-sample horizon.
- We demonstrate out-of-sample test in a rolling way.

#### Out-of-sample performance



#### Out-of-sample cumulated wealth performance

Jia Liu (with Zhiping Chen) Time Consistent Recursive Risk Measures Under Regime Switching

Xi'an Jiaotong University

duction Two-level information structure Regime-based risk

#### Out-of-sample performance (Cont'd)



Out-of-sample rates of return performance between Week 73 and Week 92

# Out-of-sample performance (Cont'd)

#### Portfolios performance of single and multi stages models

|                     | 1 stage |        |        | 3 stages |        |        |
|---------------------|---------|--------|--------|----------|--------|--------|
| $p^1$               | 0.5     | 0.999  | 0.5    | 1        | 2      | 5      |
| mean of return rate | 0.0012  | 0.0014 | 0.0012 | 0.0016   | 0.0016 | 0.0018 |
| std. of return rate | 0.0063  | 0.0141 | 0.0063 | 0.0114   | 0.0127 | 0.0131 |
| final wealth        | 1.1240  | 1.1366 | 1.1232 | 1.1593   | 1.1559 | 1.1823 |

#### portfolio performance of different stages models

|                     | 1 stages | 2 stages | 3 stages | 4 stages | 5 stages |
|---------------------|----------|----------|----------|----------|----------|
| mean of return rate | 9.95E-04 | 0.0011   | 0.0013   | 0.0017   | 0.0015   |
| std. of return rate | 0.0054   | 0.0052   | 0.0051   | 0.0078   | 0.0135   |
| final wealth        | 1.0998   | 1.1124   | 1.1346   | 1.1686   | 1.1460   |

### Conclusions

- The "two-level" information structure can capture the high-kurtosis, fat-tail, and left-skewed properties of financial market.
- The regime-based recursive risk measure is time consistent. And it can reflect the different measure under different market states.
- The corresponding dynamic portfolio selection problem is tractable and performance well in numerical experience .

ヘロト ヘヨト ヘヨト ヘヨト

# Thank you!

Jia Liu (with Zhiping Chen) Time Consistent Recursive Risk Measures Under Regime Switching

イロト イヨト イヨト

æ