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Introduction

@ Part |: Stochastic geometric programs

- joint chance constraint
- independent random variables
- normal distribution

@ Part II: Stochastic rectangular geometric programs

- joint chance constraint
- independent rows
- elliptical distribution
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Introduction

Part I: Stochastic geometric programs
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Introduction
Geometric programs

A geometric program can be formulated as
(GP) mingo(f) s.t. ge() < 1, k=1, K, t e RM,

with

M
zj’”, k=0,---,K.
1

iely, j=

a0 =) c
J

{I, k=0,---,K} is the disjoint index sets of {1,---, 0}.

We call ¢; Hj}il t;.l”’ a monomial and g.(¢) a posynomial.
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Introduction

Geometric programs (Cont'd)

Geometric programs have a number of practical problems, such as
@ shape optimization problems (Boyd et al., 2007)
@ electrical circuit design problems (Boyd et al., 2007)
@ mechanical engineering problems (Wiebking, 1977)
@ economic and managerial problems (Luptacik, 1981)

@ nonlinear network problems (Kim et al., 2007)
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Introduction

Shape optimization problem

Example: A shape optimization problem,

max hw
hw,{ §

s.t. 2hw +2hl < Ayan,
W{ < Aﬂry
aw < h, h < Bw,

yw <, { < ow.
@ maximize the volume of a box-shaped structure with height £,

width w and depth ¢
@ with constraint on total wall area 2(hw + h(), and floor area wl
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Introduction

Stochastic geometric programs

Usually, c¢; are preset non-negative coefficients.
In practice use, ¢; is not known deterministically but randomly.

Considering the randomness of ¢;, one can formulate stochastic
geometric programs.

Probabilistic constraints are frequently used to control the
uncertainty of posynomial constraints.
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Introduction

Stochastic geometric programs (Cont'd)

Stochastic geometric programs with individual probabilistic
constraints:

i M
(SGPIPC) min E Zc,.]_[z‘."f"

reRY, iy =1 ’
M
st. P Zcintf"f < 1] >l—eg, k=1, K.
i€l j=1

where ¢ € (0,0.5] is the tolerance probability for the k-th
posynomial constraint.
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Introduction

Stochastic geometric programs (Cont'd)

Stochastic geometric programs with joint probabilistic constraints:

M

ajj
¢ t,
’l_[ J

(SGPJPC) min E

1eRY, icly  j=1
[Zc,l_lt”<1k—l ]21—6.
i€l

where € € (0,0.5] is the tolerance probability for all the posynomial
constraints.
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Introduction

Shape optimization problem

A joint probabilistic constrained shape optimization problem,
R
e Ve
st P(Q2/Awa)hw + Q/Avahd < 1. (H/Ag)we < 1)> 1~ €,
ah'w< 1, (1/phw! <1,
ywe <1, A/owle < 1.

@ maximize the volume of a box-shaped structure with height #,

width w and depth ¢
@ with constraint on total wall area 2(hw + h(), and floor area wl
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Introduction
Literature reviews

@ Dupacova (2009) discussed the (SGPIPC) problem.

@ They find a deterministic formulation of the probabilistic
constraint when ¢; are normally distributed and independent
of each other

@ However, as far as we know, there is no in-depth research
works on the (SGPJPC) problem. Dupacova (2009):
non-convex?
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Introduction

Literature reviews (Cont'd)

(SGPJPC) problem are a generalization of stochastic linear
program with joint probabilistic constraints

@ Earlier research: Miller and Wagner (1965), Prékopa (1995):
Separable case, right hand random

@ Convexity, sub-differentiability: Prékopa, Henrion, Van Ackooij,
1990-2018.

@ = Might be nonconvex, non-differential! Bi-linear term!
Indicator function!

@ Convex Approximation: CVaR approximation (Zymler, Kuhn,
Rustem,2011), Bernstein approximation (Nemirovski, Shapiro,
2006), SOCP approximation (Cheng, Lisser, 2012), D-C
approximation (Hong, Yang, Zhang, 2011)

@ Sample approaches: SAA, SA, Luetdke, Shapiro, Nemirovski,
Campi, Xu, 2008-2018.
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Introduction
Our work

We work on stochastic geometric program with joint probabilistic
constraints.

@ We suppose that a;; is deterministic and c; is normally
distributed and independent of each other, i.e., ¢; ~ N(Ecl.,af).
The following techniques are used:
@ standard variable transformation from geometric programming
@ piecewise linear approximation
@ Sequential convex approximation
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Introduction
Equivalent formulation

As ¢; are independent of each other, we have

is equivalent to
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Introduction

Equivalent formulation (Cont’d)

By introducing auxiliary variables y; € R, k =1,--- , K, (SGPJPC)
problem can be equivalently transformed into

K
HYkZ l—€ yr20.
k=1
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Introduction

Equivalent formulation (Cont’d)

As ¢; ~ N(Ecl.,al.z), (SGPJPC) problem is further equivalent to

M

. aijj

g, e l]r
teRM,_yeRK =

i€l

M

el j=1

K
[Toez1-emz0
k=1

®~!(y) is the quantile of standard normal distribution N(0, 1).
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Introduction

Equivalent formulation (Cont’d)

The standard variable transformation r; = log(#), j=1,--- ,M and
xx = log(yk), k=1,---, K leads to the equivalent formulation:

min ZE exp Za,-jrj
reRM xeRK

icly

s.t. Z E., exp {i a,-jr,} J Z o?exp {Z(Zaur, + log(®- 1(e“)z))}

i€l iely

<l,k=1,---,K,

K
Zxkzlog(l—e), x <0, k=1,---,K

k=1

Convex optimization problem!
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Piecewise linear approximation
Property of ®~!(-)

®~!(-) is also called the probit function:
O ()= V2erf'2z-1), ze€(0,1).

The inverse error function is a nonelementary function which can
be represented by the Maclaurin series:

f—l — P VA ,
erf” (2) ,,Z=02P+1(2Z)

where 4o = 1 and

._.

Z A
i+ DQi+1) o P=h=r
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Piecewise linear approximation

Property of log(®~!(e%)?)

@ log(®~!(e*)?) is convex for 1 >y, > 1 — e > 0.5.
@ Moreover, log(®~!(¢%)?) is always monotonic increasing.

@ nonelementary log(®~!(¢*)?) = approximate by a piecewise
linear function from below:

Fo(xp) =dgxg+bg, s=1,---,85,
such that

Fo(xp) < log((D_l(ex")z), Vxi € [log(1 —€),0), s=1,---,8.
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Piecewise linear approximation

Piecewise linear approximation

@ For a practical use, we can choose the tangent lines of
log(d~!(¢*)?) at different points in [log(1 — €), 0), say

£1,62,+, Es.

@ Then, we have

_ 265 (D~ HD(hr)
T @)

and

by = —dyé +1og(@~' (€%)%), s = 1,--- ..
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Piecewise linear approximation

Using the piecewise linear function F(xy), we can found an
approximation of (SGPJPC) problem:
(SGPy)
M
min Z E. exp {Z a,;,vrj}
reRM xeRK il =i
M M
Z E exp {Z atﬁirj} + Z o7 exp {Z(Za,;,-r, +dyxi + b»v)}
iel), Jj=1 i€}, Jj=1
<l,s=1,---,8 k=1,---,K,
K
Zxk >log(l—€), 5 <0, k=1,--- K.
k=1
The optimal value is a lower bound of the (SGPJPC) problem.
When S goes to infinity, the approximation is tight.
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Sequential convex ap
Sequential convex approximation

@ Sequential convex approximation = upper bound

@ Basic idea: decomposing into subproblems where a subset of
variables is fixed alternatively.

@ We first fix y = y" and update ¢ by solving

(&Y mm Z E. l_l £

** i€l

t Y E, ]_[ £+ 07 o)

i€ly
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Sequential convex ap

Sequential convex approximation (Cont'd)

@ and then fix ¢ = #* and update y by solving

K

(S02) min " di

S

1= Sier, Ec TI2,t)%
st. <@ ,k=1,--- K.

2 (M ,
\/Zielk g; Hj:l(lf;l)za’

K
l—lykZI—e, >0 k=1,--- K.
k=1

@ ¢ is a chosen searching direction.
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Sequential convex ap

Sequential convex approximation (Cont’

Algorithm 1 Sequential convex approximation

Initialization:
Choose an initial point y° of y feasible for (8). Set n = 0.
Iteration:
while n > 1 and |[y"~! — 4"|| is small enough do
e Solve problem (SQ1); let t*, #” and v" denote an optimal solution of
t, an optimal solution of the Lagrangian dual variable # and the optimal

value, respectively.

e Solve problem (SQs) with ¢y = 67 - (1) (y7) \/Zigk o? H?’il(t?)zaug
let 7 denote an optimal solution.
o "ty 4 7(—y"), n+ n+1. Here, 7 € (0,1) is the step length.
end while
Output: ", "
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Sequential convex ap

Sequential convex approximation (Cont'd)

Algorithm 1 converges in a finite number of iterations and the
returned value v" is a upper bound for problem (SGP).

@ Problems (SQ;) and (SQ») are both geometric programs,
hence they can be transformed into a convex programming
problem, and solved by interior point methods.
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@ Seta=y=05,=06=2,¢=5%,
@ Assume 1/A,,,; ~ N(0.005,0.01) and 1/Ag ~ N(0.01,0.01).

@ By using CVX software, we solve the approximation problems
with Matlab R2012b, on a PC with a 2.6 Ghz Intel Core
i7-5600U CPU and 12.0 GB RAM.

@ We solve five groups of approximation problems with different
number of segments, S.
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Computational results

Table 1: Computational results

S | Var. Num.  Con. Num. | Low. bound CPU(s) | Upp. bound CPU(s) | Gap(%)
1 133 60 0.232 0.5955 0.256 5.5274 9.655
2 184 91 0.234 0.6272 0.256 5.5274 8.789
5 283 153 0.241 0.9480 0.256 5.5274 6.044
10 513 273 0.252 1.3554 0.256 5.5274 1.713
20 973 513 0.256 1.9986 0.256 5.5274 0

Sequential convex approximation algorithm converges within 7
outer iterations




II. Stochastic rectangular geometric programs
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Stochastic rectangular geometric programs

Stochastic rectangular geometric programs with joint probabilistic
constraints:

~

0

(SRGP) min E

M 0
a
C? | | A”}

eRY =1 j=1
Iy M x
k 4ij
st. Plag < Zci l_[tj <Br, k=1,...,K|=1-¢€.
=1  j=1

1 — e is a prespecified probability with € < 0.5, ag., k=1,....K
i=1,....It,j=1,...,M, are given parameters and cf.‘,
k=1,...,K,i=1,...,I, are random parameters with
non-negative mean values.
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Elliptical distribution

We suppose ¢ [c c2, e ,c’;k] follows a multivariate elliptical
distribution Elllplk(,uk,rk, @x) with ik = [uk,u];, . ’“];k]T > 0, and
= {o-ﬁp, i,p=1,...,I) positive definite, k = 1,...,K.

Elliptical distribution

A L-dimensional random vector ¢ follows an elliptical distribution
Ellip; (u, T, p) if its characteristic function is given by

Eei?'¢ = eiZT"t,o(zTFz) where ¢ is the characteristic generator
function, u is the location parameter, and I' is the scale matrix.

Moreover, we assume that ¢*, k = 1,...,K are pairwise
independent.
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Elliptical distribution (Cont’d)

Elliptical distributions includes
e normal distribution with ¢(f) = exp{—11}

@ student’s t distribution with ¢(#) varying with its degree of
freedom

@ Cauchy distribution with ¢(f) = exp{— v}
e Laplace distribution with ¢(1) = (1 + 117!

2 \ﬁ
ViV

@ logistic distribution with ¢(7) =
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Elliptical distribution (Cont’d)

Ellipr(u.T', ¢)

@ mean value is u,

o covariance matrix is - LT, where r is the random radius.

Proposition[Embrechts et al., 2005]

If a L-dimensional random vector ¢ follows an elliptical distribution
Ellip;(u, T, ), then for any (L x N)-matrix A and any N-vector b,
A¢ + b follows an N-dimensional elliptical distribution

Ellipy(Au + b,ATAT, ¢).
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Assumptions on the parameters

Assumption 1

We assume that

¢}, (V1 (1-6)
Py (<D;,!(1—6))
° (D,!(1- e))%rjgp -l >0,ip=1,... I, k=1,... K,

-1 —
o,l(1-e)<-1k=1,... K,

3, (D) (2)
k _ Tek ¢k -1 -1 2k _ .k, k) _
® 20,|1 mk(@;;(z»q)wk (Z)) (((Dwk @) o, “i”p)

(2a§pq>;,}(z))2zo,1—eszs Lip=1,....Ir,k=1,...,K.
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Equivalent formulation (Con

Given Assumption 1, the joint rectangular geometric chance
constrained programs can be equivalently reformulated as

oy MW
min > ] [1” 1)
1eRM, ’

=1 j=1

1 1
s.t. CDW(Z)\Zk:ZA:a'wl_[t" n Zﬂ,rlt”S—ak,k:I,...,K.(2)
i=1 p=1
I I
@;g(z;)\zzalp]_[z'f b Zu]_[ < B k=1, K, (3
i=1 p=1 j=1
zk+zk—l>yk,0<zk,zk<l k=1,. (4)
rlykzl—e,Osyksl,kzl,...,K. (5)

k=1
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Convex approximations of constraint (2)

Constraint (2) can be reformulated as

Tk T Ik

M M
2 Yt [ [+ D) D@ e, - [ [ €77 < a2 k= 1.k
j=1

i=1 Jj=1 i=1 p=1

standard variable transformation: r; = log(#)), j=1,...,.M

I M
2a Zk:pf‘ exp{z } Zk: Zk:exp{zmyrj + apjrj
i=1 Jj=1 i=1 p=1

(OGP, i) <t k= 1 K.

Hard to deal with: 1og((q>;k1(z,j))2 ok — k)
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Property of log(®;" ()0, — i)

Proposition

Given Assumption 1, i, x(z}) = log((®},! (z;))zo-ﬁp — b is
monotone increasing and convex for 7 € [1 — €, 1), i,p = 1,..., I,
k=1,...,K.

Piece-wise linear approximations
Choose points &1,&7,...,¢&sin[1 —€,1)
@ tangent lines at the points — lower approximation
@ segments between the points — uppser approximation
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Approximation of log((®, (z)))’o%, — piwy)

convex approximation of constraint (2):

M I Iy M
2o Yo Yo+ 22 Do { Yt

j=1 i=1 p=1 =1

+wzpk}<ak’ k= 1 ,K,

dS,kak +b5,pk<a) s=1,...,8, i,p=1,..., I, k=1,...,K

ip.k’

an inner approximation of the feasible set of (SRGP).
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Approximation of log((®, (z)))’o%, — piwy)

convex approximation of constraint (2):

M L Ik M
2a Z,ul exp { Z aj; rj} Z Z exp { Z(agrj + a i77)

j=1 i=1 p=1 j=1

+wlpk} <al k=1,...K,

~ v, 7 U .
dsipxZy + bsipk < Wippr = L,....8 L,p=1,.... 1 k=1,....K

an outer approximation of the feasible set of (SRGP).
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Approximation for (3)

variable transformation r; = log(z), j = 1,...,M to (3)

Iy I
J > exp { Z(ayr, +dry) + 2log(@, (z,;))}

tlpl

k k —
+Z;/Ji eXp{Z;aifrj}sﬁk’ k=1,...,K.
i= j=

To deal with : log(®,/(z;))
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Approximation of log(®; (z;))

Property of log(®,/(z}))

Given Assumption 1, log(<D;k‘ (z)) is monotone increasing and
convex on [1 — ¢, 1).

Choose points £1,&3,...,&sin[1 —€,1)
@ tangent lines at the points — lower approximation
@ segments between the points — upper approximation
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Main result

Approximation (SRGP): lower bound of (SRGP)

rzte xwL ok Z#l exp{z }
Ik M I Tk
s.t. 2(1k2yfexp{2al } ZZexp{Z(a?‘/rj+awrj)+wlpk}<ak,k 1,...,K

i=1 Jj= i=1 p=1
dx,i,p,kz;cr"'bs,i,p < w Wipks S = 1,....S, l,P= l,...,[k, k=1,...,K

/Jl exp a 3y exp 3 (af.‘.r]+a7r])+2w <Pr. k=1,....K,
4 L Pi
i=1 p= =

lrkZ;+QYl\<a)k,S:1 S, k=1,...,K,
Z,(+z,‘—1>eA 0<zk,zk 1, k= 1,..A,K,
K

Zxkzlog(l—e),xkso,kzl,...,K.

k=1

The bound is tight!
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Main result

Approximation (SRGPy): upper bound of (SRGP)

+ sz/mu Z”’ exp{Za }
I I Ik M
s.t. ZQkaf.‘exp{Za } ZZexp{Z arj +a, r])+a)lpk}<ak,k 1,.

i=1 p=1 Jj=1
s=1,....8 i,p=1,....Ix, k=1,....K

rz

dwpl\zk +bvzpk <wzpk’

Iy
Z#l exp{z } sz xp{Z(a”r/ +amr,)+2wk} <Br, k=1,....K,
i=1 p=1

Lz +qsx <@, s=1,...,8, k=1,..,K,
g —12e* 0<zg,7 <1, k=1,...,K,

K

Dixzlogl—€), x <0, k=1,....K
k=1

The bound is tight!
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Shape optimization problem

Consider a joint probabilistic constrained rectangular shape
optimization problem,

(SCP) min A w7t
hw,{

s.t. P >1-—e¢,

Ayall < (Z/Awall)hw + (Z/Awall)h§ < ﬁwall )
anr < (1/Ag)wd < Bar
Yurh™'w < 1, (1 ym)hw™ < 1,

YW < L (U ypow™ ' < 1.
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Example 1

@ Seta=y=05,=06=2,¢=5%,
@ Assume 1/A,,,; ~ N(0.005,0.01) and 1/Ag ~ N(0.01,0.01).

@ By using CVX software, we solve the approximation problems
with Matlab R2012b, on a PC with a 2.6 Ghz Intel Core
i7-5600U CPU and 12.0 GB RAM.

@ We solve 6 groups of approximation problems with different
number of segments, S.
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Computational results

Table 1: Computational results of approximations for normal distribution

S Var.  Con. uB CPU(s) | Var. Con. LB CPU(s) | Gap(%)
1 16 18 59119  1.2795 19 19 5.7587  1.2102 2.66
2 16 25 5.8188  0.9406 19 26 5.7587  1.0237 1.04
5 16 46 5.7644  0.9360 19 47 5.7639  1.0676 0.01
10 16 81 5.7645 1.1247 19 82 5.7643 0.9494 0.00
20 16 151 5.7644  1.2374 19 152 57643 1.2228 0.00
100 16 711 5.7644 2.0650 19 712 5.7643 1.9789 0.00

The bound is tight!
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Example 1

Set 2/A,,.u follows a Student’s ¢ distribution

@ location parameter uy/4,,, = 0.01
@ the scale parameter I';/4,,, = 0.01
@ the degree of freedom vy 4, = 4

@ 2/A,q and 1/Ag, are pairwise independent.

- Solved in CVX software

- We solve 7 groups of approximation problems with different
number of segments, S.
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Computational results

Table 2: Computational results of approximations for Student’s ¢ distribution

S Var.  Con. UB CPU(s) | Var. Con. LB CPU(s) | Gap(%)
1 16 18 13.8794 11772 19 19 5.8498 1.2815 137.26
2 16 25 8.8903 1.0984 19 26 5.8498 1.1373 51.98
5 16 46 6.0468 0.9796 19 47 5.8699 0.8857 3.01
10 16 81 5.9111 1.0510 19 82 5.8716  1.0800 0.67
20 16 152 5.8915 1.2446 19 152 58717 1.0739 0.34
100 16 711 5.8760 2.1234 19 712 5.8717 1.8112 0.07
500 16 3511 5.8725 5.9124 19 3512 58717 57727 0.01

The bound is also tight! Not that good than the normal case.




Conclusions

@ Convex reformulation of joint chance constrained
(rectangular) geometric problems

@ Asymptotic tight upper and lower bounds
Further work

@ Mixture-normal distributions, hyperbolic distribution et al.
@ Random a;;.
@ Ambiguity of the distribution: distributional robust cases.
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