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Introduction

Introduction

Portfolio selection
o utility preference  max, E[u(r"x)]
o risk preference  max, E(r"x) — 1o(r"x)
@ probabilistic preference  max, E[r'x] stP(r'x>y)>1-¢€
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Introduction

Portfolio selection

o utility preference  max, E[u(r"x)]

o risk preference  max, E(r"x) — 1o(r"x)

@ probabilistic preference  max, E[r'x] stP(r'x>y)>1-¢€
Investment under preference ambiguity.

@ Stochastic dominance (with a benchmark)

- Dominance test (Levy, Post, Kuosmanen)

- optimization, (Dentcheva, Ruszczynski, Luedtke, Schultz)

@ Preference robust optimization

- pairwise, moments, nominal,

- Armbruster, Delage, Xu H.F., Homen-de-Mello,T., Hu J., Haskell

@ State-dependent risk-aversion parameter
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Introduction

Basic definitions of stochastic dominance:

Definition 1 (FSD)

X € £, dominates Y € .Z, in the first order, denoted X >(;) Y, if

PIX<ny<P{Y<n}, VneR

We define expected shortfall function
FX;n) = [ FX;@)da = E[(7 - X)4].

Definition 2 (SSD)

X € £, dominates Y € .%, in the second order, denoted X >, ¥, if

Fr(X;m) < Fo(Ysm), VpeR

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.
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Introduction

Proposition 1

® X > Y iff E[u(X)] > E[u(Y)] for all u € 2, here %, denotes the set
of all nondecreasing functions u: R — R.

@ X > Y iff E[u(X)] > E[u(Y)] for all u € %, here %, denotes the set
of all concave and nondecreasing functions u: R — R.

@ Dentcheva and Ruszczynski (2003) first considered optimization
problem with SSD and derived the optimality conditions.

@ Dentcheva and Ruszczynski (2006) developed duality relations and
solved the dual problem by utilizing the piecewise linear structure of
the dual functional

@ Luedtke (2008) get new linear formulations for SSD with finite
distributed benchmark

@ Drapkin, Gollmer, Gotzes, Schultz, et al. (2011a,2011b) study cases
where the random variables are induced by mixed-integer linear
recourse
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Introduction

Solution methods

@ Sampling approaches are the most popular solution method (see,
Dentcheva and Ruszczynski, 2003, Liu, Sun and Xu, 2016)

@ Cut plane methods are the most efficient solution algorithm (see,
e.g., Rudolf and Ruszczynski, 2003; Homem-de-Mello and
Mehrotra, 2009; Sun, Xu, et al., 2013).

Strong application background in finance

@ e.g., portfolio selection, index tracking applications (Dentcheva and
Ruszczynski, 2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang,
L., 2019)

Our focus:
@ Dynamic extension: compare random sequences
@ Application: portfolio selection
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Related works

Multi-stage portfolio selection + Stochastic dominance

@ Introduce one univariate SD constraint on a certain random variable,
such as the terminal wealth (Moriggia et al., 2019), the final cost
(Singh and Djarmaraja, 2020) or the expected shortfall (Haskell and
Jain, 2013)

— The risks at intermediate stages cannot be controlled.

@ Consider several univariate SD constraints (Yang et al., 2010; Kopa
et al., 2018)
— The risks at intermediate and final stages are handled separately
and independently; Cannot reflect the dynamics of the random
sequences.

@ Adopt multivariate SD to characterize the risk in portfolio selection
problems (Petrova, 2019)
— Treat components in the wealth sequence equally; A discount
rate sequence is needed.

What they loss: intertemporal preference ambiguity
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Definition

Definition 3 ( , Dentcheva and Ruszczynski, 2008)

Random sequence (xi, - - - ,x7) dynamically dominates (y;,--- ,yr) in the
second order with respect to a discount rate sequence set D, if

T T
Zptxt Z@2) Zpt)’t, Vp € D. (1)
t=1 =1

Choices of set D:

@ Finite set: D = {p!,---, p}

@ Decreasing discount rate sequence set:
Dy ={pel0,1)"p; 2 prr,t=1,....,T =1}

@ Product discount rate sequence set:
D3 = {lpi,p1p2, -+ 1 o7 1 €R [0, 1], £ =1, T}

@ Discount rate sequence set based on a reference:
Dy={pe[0,1]"|p=p}ND,
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Introduction

Our motivations

@ Dynamic extension: compare random sequences to control risks
@ Application: portfolio selection problems

Our contributions
@ Adopt the dynamic SSD constraints to better control intermediate
and final risks

@ Derive an upper bound approximation and a lower bound
approximation based on scenario tree representation

@ Establish the convergence of the upper bound approximation
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Model description

Dynamic settings

@ n risky assets and one risk-free asset

@ joins the market at time 0 with a positive initial wealth x,
@ invest for T periods
o

at the beginning of each period, the current wealth can be
reallocated

the whole investment process is self-financing
@ there exist transaction costs when buying or selling risky assets

@ consider all the random processes on a probability space (2, %, P),
ﬁ] CgZQC'HCﬁTCﬁ

@ u, (cash amounts invested), b, (buy), s, (sell) < %, t=1,--- , T -1
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Dynamic SSD constrained portfolio selection model

Make our investment wealth process {x;},~... r preferable over the
benchmark wealth process {y;}=o... 7. Assume that yo = xo and y; is also
F,-measurable.

Typical benchmarks:
@ a market index
@ the equally weighted portfolio
@ a portfolio suggested by a fund manager
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Dynamic SSD constrained portfolio selection model

Our model:

max E[x7] (2

u,b,s.x

St Xy = r;l;lut + ril[xt = cpllbaly = csllsli], £ =0,1,---,T = 1,(3)

uy=bo, s0=0, uy =u_y +b;—s;, t=1,--- , T -1, (4)
T T

Zptxt Z(2) Zpt}’t’ Yp €D, ()
t=1 t=1

el < xe = cpllbilly = csllselly, £=0,1,--- T =1, (6)
U by, €RY, u,byysy < F, t=0,1,--- ,T—1, (7)

xeR,t=1,---,T. (8)
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Model description

Polyhedral discount rate sequence set:

D is a polyhedral set with m constraints, that is, D := {p € RT| Cp < d},
C e R™T JeR™

@ Such D is a convex set
@ Covers D,, D5, and D4 summarized aforementioned

Difficulties in solving the model:
@ stochastic: the randomness of multi-stage return rates (Sec. 3)
@ semi-infinite: infinitely many constraints (Sec. 4)
@ non-smooth: (-), (linearization)
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Scenario tree approach

Scenario tree:

@ Represents a discretised estimate of the random data process and
associated appearing probabilities at future stages (Gilpinar and
Rustem, 2007)

@ Can be generated by different approaches without relying on any
distribution assumption (Topaloglou et al., 2008)

]
<r]l( 2<:. r'§
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Scenario generation methodology

@ Use the mixed normal distribution composed of two Gaussian
components to characterize the residual item in the ARMA model.

@ The Gaussian distributions of the two components are specified in
advance.

@ The time-varying weights are dynamically adjusted by a
autoregression type model.

@ Estimate the parameters by expectation maximization algorithm and
the maximum likelihood estimation method.

@ Generate the scenario tree sequentially by Monte Carlo sampling
and K-means clustering algorithm.
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Scenario tree

A 4-stage scenario tree with the branching structure 6-5-2-2:

//:.

=
.

6 nodes g

6x5‘k°
nodes “t:::::.
30x2 =60

®
nodes g% 2 = 120
nodes
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Reformulation

The dynamic SSD constraints can be equivalently described as:

@ for all nondecreasing and concave functions u : R — R and all
p € D, it holds true that

LOWBI BERpo0)

@ forany n e R and p € D, it holds true that

]E[(r] - gp,x,>+] < E[(U - gpr}’r)+]’ 9)

where (-), = max(0, -).
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Reformulation of dynamic SSD

According to reformulation in Luedtke (2008), the dynamic SSD
constraints hold if and only if for any p € D, there is a 7 € RX*X satisfying

K T T
ZZpMﬂkJ-SZpﬂf,k:lqu (10)
j=1 =1 =1
K
dmg=1 k=1, K, (1)
j=1
K s—1 s—1
D I <Y s =2, K. (12)
k=1 j=1 j=1
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Reformulation of dynamic SSD

According to reformulation in Luedtke (2008), the dynamic SSD
constraints hold if and only if for any p € D, there is a 7 € RX*X satisfying

>

J=1

T
pt%”kjﬁzprxfyk=l9”',l(9 (10)

t=1

K
dmg=1 k=1, K, (1)
=1

s—1

k=1 Jj=1 J=1

(10)-(12) can be written in a compact form as

M=

Te%x min {knllax o, , x)} (13)

where fk(p,rr,x) Z, 12;_1Pt}/7rkj Zleptva and

I, k=1,-
17 = [ e mice| T = }
{ * Zklp Z]lﬂ'k/<2j=1p/vs_2’ K
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Numerical results

Scenario tree representation

Scenario tree representation:

K
max Z pri.
k=1

u,b,s.x

st xfy = Gl )Tl + I = allbfll - clisfil), £ = 0,1, T =1, k=1,--- K,

t

ub =08, sk =0, ub =ub  +bF -5 t=1,-- ,T-1,k=1,--- K,

Il < xf = collbfll = cillsfll, £=0,1,--- ., T =1, k=1,--- K,

u

L=y, k=1, K,

(14)

w=ub, =1, s =5, je Ak, k=1,--- K, t=1,---, T -1,

max min{ max fk(p, T, x)} <0,
o K

peD  nell | k=1,

ue RT(TXK, be R:XTXK’S c R:’_XTXK,X 5 RTXK.
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Upper approximation

Upper approximation:

We properly select L samples to form a subset D" c D. Then
max,epr MiNyery {maxk:L...,ka(p, , x)} provides a lower bound to the
left-hand side of (13) and an upper bound to the original optimization
problem.

Proposition 2

We have

maxmin{ max_fX(p, n,x)} > max min {kmax o, ﬂ,x)}. (15)

peD nell | k=1, K peDL mell =1, ,K
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Upper approximation

An upper bound formulation for problem (14):

max
u,b,s.x,m,T

s.t.

K
s
k=1
L= D TuE + T = bkl - eslisin], 1= 0, T =1, k=1, K,

k _ gk ok _ k_ k k_ ok _1 ... 7_ =1....
uo—bo,so—O,u,—u,_l+b, si, t=1, JIT-1, k=1, VK,

Nl < xF = cpllbfll = egllslly, £=0,1,-- , T =1, k=1,--- K,
wy=ul, kj=1,- K,
W=ub bk =0, sk =5, je Ak, k=1,- K, 1=1,--- ,T~1,

<0,1=1,--- L, (16)
K T T

TIZZZpiyinij—Zpixf,k=1,-~~,K,l=1,~~~,L,
j=1 =1 =1

K

Dimly= k=1 K =1, L

=1

K s—1 s—1

ZkaﬂijSZp’,s—Z, LK, I=1,--- L,

k=1 j=1 j=1

ue RT(TXK, be RKXTXK,S c RT(TXK,)C c RTXK,T( c RfXKXL’T e RL.
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Upper approximation: Convergence

There exist positive numbers A; and A, such that for any positive integer
L and vector p € D, there exists a p* € D" with |jo - p“ll, < -

Example of DE:
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Upper approximation: Convergence

Convergence:

Proposition 3

Under Assumption 2, we have

lim max min{ max_f*(p, 7, x)} = max min{ mafok(p, , x)} . (17
P

L—co pept nell | k=1, K eD nell | k=1,

Denote the feasible solution sets of problem (14) and upper
approximation problem by ¥ and 7, the optimal solution sets by S and
S1, and the optimal values by v and v, respectively. Write the decision
variable as z = (u, b, 5, x).

Theorem 4
We have ¥ = lim;_,, 1, limsup; ,,,S;, C S, v = limy e vr.
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Lower approximation

Lower approximation and error estimate:

Proposition 4
We have

max min {knllax o, m, x)} < m11171 max{ ElllaXka(p, n,x)}. (18)

peD nell

Proposition 5

There exists a positive constant C; < o such that

minmax{ max f (o, x)} maxmln{ max f (p,m x)} < Gy, (19)

nell peD |k=1, peD  rmell

where u(IT) = max, pery lla — bl|w is the diameter of IT under the co-norm
for matrix.
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Lower approximation

A lower bound formulation for problem (14) using the duality theory:

max
u,b,s.x,ma

s.t.

K
e
k=1
x"'

=Bk, sk =0, uf =uk | +bf sf,t:l o, T=1,k=1,--- ,K
||u,||1 < —llbfllh — e lisflli t=0,1,-- . T~ 1, k=1,--- ,K,
W)y =uf, kj=1, K,
W=u, b=t s =, je Ak, k=1, K, t=1,--- , T—1,
dTd* <0, k=1,--- K

K
Dimgy -k - Clak <0, t=1, T, k=1, K,

Jj=1

an,: Lk=1,--,K,

=1

jl( s—1 s—1
Zkankszp’, s=2,--,K,
=1 =l =1

c R’iXTXK, be RKXTXK,S c RT(TXK,X c RTXK,R' e RIEXK,Q’ c RTXK.
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In-sample tests

Convergence of the gap:

Table: Computation results of the upper bound formulation (16) and the lower

bound formulation (20).

upper bound formulation (16) lower bound formulation (20)
L | Var# Con.# UpperB. CPU(s) | Var# Con# LowerB. CPU(s) | Gap(%)
1 27841 2399 1.0712 186.35 | 28320 2878  1.0709 529.34 | 0.0289
5 | 85445 3839 1.0711 200.19 | 28320 2878 1.0709 529.34 | 0.0205
20 | 301460 9239  1.0711 1275.91 | 28320 2878  1.0709 529.34 | 0.0159
50 | 733490 20039 1.0710 6582.56 | 28320 2878  1.0709 529.34 | 0.0075
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Performance of rolling window test

— Multi-stage dynamic SSD with T=4 /
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Figure: Evolution of logarithmic return rates w.r.t the investment period for the
multi-stage dynamic SSD constrained model.
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Performance of rolling window test
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Figure: Comparison of logarithmic return rates w.r.t the investment period of
different models.
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Out-of-sample tests

Table: Out-of-sample performance statistics of the optimal portfolios’ excess
return rates got under different models.

Model Stage Mean(%) Std. Sharpe Proportion Mean CVaRy (%)
ratio below below S&P
S&P500 500(%)
Dynamic T=4 0.3664 0.0302 0.1214 48.5% -0.8513 -6.7194
SSD (Lower T=3 0.2939 0.0326 0.0903 52.7% -0.8864 -6.7557
Multi- | B.) (20) T=2 0.2051 0.0303 0.0677 48.1% -1.1322 -7.3125
stage ComponentwiseT =4 0.3070 0.0316  0.0971 49.6% -0.9344 -7.1828
SSD T=3 0.2662 0.0317 0.0841 52.7% -0.8317 -6.7427
T=2 02176 0.0301 0.0724 48.5% -1.0393 -7.2125
. SSD T=1 0.2911 0.0308 0.0945 46.2% -1.0621 -6.7657
Single
s140° "5z p500 T=1 02664 00250 0.1064 - - -5.7020
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@ The dynamic SSD with T = 4 provides the largest mean value and
the largest Sharpe ratio among all the models.

@ Compared with the single-stage SSD constrained model, the
multi-stage models have a larger conditional mean of return rates
below that of S&P500.

@ For dynamic SSD, the mean value of return rates, the Sharpe ratio,
the conditional mean value of return rates below that of S&P500,
and CVaR,; increase with the number of stages.
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Conclusions

Summary:

@ Study multi-stage dynamic SSD constrained portfolio selection
model

@ Derive an upper approximation and a lower approximation, by
solving linear programming problems

@ The upper approximation is convergent
@ The numerical results verifies the validity of the proposed model

Further works:
@ Dynamic preference robust optimization model
@ How to design the discount rate sequence set?
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