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Introduction

Portfolio selection

utility preference maxx E[u(r>x)]
risk preference maxx E(r>x) − λρ(r>x)
probabilistic preference maxx E[r>x] s.t.P(r>x ≥ y) ≥ 1 − ε

Investment under preference ambiguity.

Stochastic dominance (with a benchmark)

- Dominance test (Levy, Post, Kuosmanen)

- optimization, (Dentcheva, Ruszczyński, Luedtke, Schultz)

Preference robust optimization

- pairwise, moments, nominal,

- Armbruster, Delage, Xu H.F., Homen-de-Mello,T., Hu J., Haskell

State-dependent risk-aversion parameter
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Introduction

Basic definitions of stochastic dominance:

Definition 1 (FSD)

X ∈ Lp dominates Y ∈ Lp in the first order, denoted X �(1) Y , if

P{X ≤ η} ≤ P{Y ≤ η}, ∀η ∈ R

We define expected shortfall function
F2(X; η) =

∫ η

−∞
F(X;α)dα = E[(η − X)+].

Definition 2 (SSD)

X ∈ Lp dominates Y ∈ Lp in the second order, denoted X �(2) Y , if

F2(X; η) ≤ F2(Y; η), ∀η ∈ R

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Introduction

Proposition 1

X �(1) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U1, here U1 denotes the set
of all nondecreasing functions u : R→ R.

X �(2) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U2, here U2 denotes the set
of all concave and nondecreasing functions u : R→ R.

Dentcheva and Ruszczyński (2003) first considered optimization
problem with SSD and derived the optimality conditions.

Dentcheva and Ruszczyński (2006) developed duality relations and
solved the dual problem by utilizing the piecewise linear structure of
the dual functional

Luedtke (2008) get new linear formulations for SSD with finite
distributed benchmark

Drapkin, Gollmer, Gotzes, Schultz, et al. (2011a,2011b) study cases
where the random variables are induced by mixed-integer linear
recourse

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Introduction

Solution methods

Sampling approaches are the most popular solution method (see,
Dentcheva and Ruszczyński, 2003, Liu, Sun and Xu, 2016)

Cut plane methods are the most efficient solution algorithm (see,
e.g., Rudolf and Ruszczyński, 2003; Homem-de-Mello and
Mehrotra, 2009; Sun, Xu, et al., 2013).

Strong application background in finance

e.g., portfolio selection, index tracking applications (Dentcheva and
Ruszczyński, 2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang,
L., 2019)

Our focus:

Dynamic extension: compare random sequences

Application: portfolio selection

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Related works

Multi-stage portfolio selection + Stochastic dominance

Introduce one univariate SD constraint on a certain random variable,
such as the terminal wealth (Moriggia et al., 2019), the final cost
(Singh and Djarmaraja, 2020) or the expected shortfall (Haskell and
Jain, 2013)
→ The risks at intermediate stages cannot be controlled.

Consider several univariate SD constraints (Yang et al., 2010; Kopa
et al., 2018)
→ The risks at intermediate and final stages are handled separately
and independently; Cannot reflect the dynamics of the random
sequences.

Adopt multivariate SD to characterize the risk in portfolio selection
problems (Petrová, 2019)
→ Treat components in the wealth sequence equally; A discount
rate sequence is needed.

What they loss: intertemporal preference ambiguity

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints



Introduction Introduction Model Scenario representation Numerical results Approximations Conclusions

Definition

Definition 3 (Dynamic SSD, Dentcheva and Ruszczyński, 2008)

Random sequence (x1, · · · , xT ) dynamically dominates (y1, · · · , yT ) in the
second order with respect to a discount rate sequence set D, if

T∑
t=1

ρtxt �(2)

T∑
t=1

ρtyt, ∀ρ ∈ D. (1)

Choices of set D:

Finite set: D1 = {ρ
1, · · · , ρk}

Decreasing discount rate sequence set:
D2 = {ρ ∈ [0, 1]T | ρt ≥ ρt+1, t = 1, . . . ,T − 1}
Product discount rate sequence set:
D3 = {[ρ1, ρ1ρ2, · · · ,

∏T
t=1 ρt]> | ρt ∈ Rt ⊂ [0, 1], t = 1, · · · ,T}

Discount rate sequence set based on a reference:
D4 = {ρ ∈ [0, 1]T | ρ ≥ ρ̂} ∩ D2

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Introduction

Our motivations

Dynamic extension: compare random sequences to control risks

Application: portfolio selection problems

Our contributions

Adopt the dynamic SSD constraints to better control intermediate
and final risks

Derive an upper bound approximation and a lower bound
approximation based on scenario tree representation

Establish the convergence of the upper bound approximation

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Model description

Dynamic settings

n risky assets and one risk-free asset

joins the market at time 0 with a positive initial wealth x0

invest for T periods

at the beginning of each period, the current wealth can be
reallocated

the whole investment process is self-financing

there exist transaction costs when buying or selling risky assets

consider all the random processes on a probability space (Ω,F ,P),
F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F

ut (cash amounts invested), bt (buy), st (sell) C Ft, t = 1, · · · ,T − 1

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Dynamic SSD constrained portfolio selection model

Make our investment wealth process {xt}t=0,··· ,T preferable over the
benchmark wealth process {yt}t=0,··· ,T . Assume that y0 = x0 and yt is also
Ft-measurable.

Typical benchmarks:

a market index

the equally weighted portfolio

a portfolio suggested by a fund manager

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Dynamic SSD constrained portfolio selection model

Our model:

max
u,b,s,x

E[xT ] (2)

s.t. xt+1 = r>t+1ut + rrf
t+1[xt − cb‖bt‖1 − cs‖st‖1], t = 0, 1, · · · ,T − 1,(3)

u0 = b0, s0 = 0, ut = ut−1 + bt − st, t = 1, · · · ,T − 1, (4)
T∑

t=1

ρtxt �(2)

T∑
t=1

ρtyt, ∀ρ ∈ D, (5)

‖ut‖1 ≤ xt − cb‖bt‖1 − cs‖st‖1, t = 0, 1, · · · ,T − 1, (6)

ut, bt, st ∈ R
n
+, ut, bt, st C Ft, t = 0, 1, · · · ,T − 1, (7)

xt ∈ R+, t = 1, · · · ,T . (8)
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Model description

Polyhedral discount rate sequence set:

Assumption 1

D is a polyhedral set with m constraints, that is, D := {ρ ∈ RT | Cρ ≤ d},
C ∈ Rm×T , d ∈ Rm.

Such D is a convex set

Covers D2, D3, and D4 summarized aforementioned

Difficulties in solving the model:

stochastic: the randomness of multi-stage return rates (Sec. 3)

semi-infinite: infinitely many constraints (Sec. 4)

non-smooth: (·)+ (linearization)

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Scenario tree approach

Scenario tree:

Represents a discretised estimate of the random data process and
associated appearing probabilities at future stages (Gülpınar and
Rustem, 2007)

Can be generated by different approaches without relying on any
distribution assumption (Topaloglou et al., 2008)

rk
1

rk
2 rk

3
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Scenario generation methodology

Use the mixed normal distribution composed of two Gaussian
components to characterize the residual item in the ARMA model.

The Gaussian distributions of the two components are specified in
advance.

The time-varying weights are dynamically adjusted by a
autoregression type model.

Estimate the parameters by expectation maximization algorithm and
the maximum likelihood estimation method.

Generate the scenario tree sequentially by Monte Carlo sampling
and K-means clustering algorithm.

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Scenario tree

A 4-stage scenario tree with the branching structure 6-5-2-2:

6 nodes

...

30 × 2 = 60
nodes

6 × 5 = 30
nodes

60 × 2 = 120
nodes

...
...

...

...

...

...
...
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Reformulation

The dynamic SSD constraints can be equivalently described as:

for all nondecreasing and concave functions u : R→ R and all
ρ ∈ D, it holds true that

E
[
u
( T∑

t=1

ρtxt

)]
≥ E

[
u
( T∑

t=1

ρtyt

)]
.

for any η ∈ R and ρ ∈ D, it holds true that

E
[(
η −

T∑
t=1

ρtxt

)
+

]
≤ E

[(
η −

T∑
t=1

ρtyt

)
+

]
, (9)

where (·)+ = max(0, ·).

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Reformulation of dynamic SSD

According to reformulation in Luedtke (2008), the dynamic SSD
constraints hold if and only if for any ρ ∈ D, there is a π ∈ RK×K

+ satisfying

K∑
j=1

T∑
t=1

ρty
j
tπkj ≤

T∑
t=1

ρtxk
t , k = 1, · · · ,K, (10)

K∑
j=1

πkj = 1, k = 1, · · · ,K, (11)

K∑
k=1

pk
s−1∑
j=1

πkj ≤

s−1∑
j=1

pj, s = 2, · · · ,K. (12)

(10)-(12) can be written in a compact form as

max
ρ∈D

min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
≤ 0, (13)

where f k(ρ, π, x) =
∑K

j=1
∑T

t=1 ρty
j
tπkj −

∑T
t=1 ρtxk

t , and

Π =

{
π ∈ RK×K

+

∣∣∣∣ ∑K
j=1 πkj = 1, k = 1, · · · ,K,∑K
k=1 pk ∑s−1

j=1 πkj ≤
∑s−1

j=1 pj, s = 2, · · · ,K

}
.
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Scenario tree representation

Scenario tree representation:

max
u,b,s,x

K∑
k=1

pkxk
T

s.t. xk
t+1 = (rk

t+1)>uk
t + rrf

t+1[xk
t − cb‖bk

t ‖1 − cs‖sk
t ‖1], t = 0, 1, · · · ,T − 1, k = 1, · · · ,K,

uk
0 = bk

0, sk
0 = 0, uk

t = uk
t−1 + bk

t − sk
t , t = 1, · · · ,T − 1, k = 1, · · · ,K,

‖uk
t ‖1 ≤ xk

t − cb‖bk
t ‖1 − cs‖sk

t ‖1, t = 0, 1, · · · ,T − 1, k = 1, · · · ,K, (14)

uj
0 = uk

0, j, k = 1, · · · ,K,

uj
t = uk

t , bk
t = bj

t, sk
t = sj

t, j ∈ A(k, t), k = 1, · · · ,K, t = 1, · · · ,T − 1,

max
ρ∈D

min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
≤ 0,

u ∈ Rn×T×K
+ , b ∈ Rn×T×K

+ , s ∈ Rn×T×K
+ ,x ∈ RT×K .

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Upper approximation

Upper approximation:

We properly select L samples to form a subset DL ⊂ D. Then
maxρ∈DL minπ∈Π

{
maxk=1,··· ,K f k(ρ, π, x)

}
provides a lower bound to the

left-hand side of (13) and an upper bound to the original optimization
problem.

Proposition 2

We have

max
ρ∈D

min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
≥ max

ρ∈DL
min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
. (15)

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Upper approximation
An upper bound formulation for problem (14):

max
u,b,s,x,π,τ

K∑
k=1

pkxk
T

s.t. xk
t+1 = (rk

t+1)>uk
t + rrf

t+1[xk
t − cb‖bk

t ‖1 − cs‖sk
t ‖1], t = 0, · · · ,T − 1, k = 1, · · · ,K,

uk
0 = bk

0, sk
0 = 0, uk

t = uk
t−1 + bk

t − sk
t , t = 1, · · · ,T − 1, k = 1, · · · ,K,

‖uk
t ‖1 ≤ xk

t − cb‖bk
t ‖1 − cs‖sk

t ‖1, t = 0, 1, · · · ,T − 1, k = 1, · · · ,K,

uj
0 = uk

0, k, j = 1, · · · ,K,

uj
t = uk

t , bk
t = bj

t , sk
t = sj

t , j ∈ A(k, t), k = 1, · · · ,K, t = 1, · · · ,T − 1,

τl ≤ 0, l = 1, · · · ,L, (16)

τl ≥

K∑
j=1

T∑
t=1

ρl
ty

j
tπ

l
kj −

T∑
t=1

ρl
tx

k
t , k = 1, · · · ,K, l = 1, · · · ,L,

K∑
j=1

πl
kj = 1, k = 1, · · · ,K, l = 1, · · · ,L,

K∑
k=1

pk
s−1∑
j=1

πl
kj ≤

s−1∑
j=1

pj, s = 2, · · · ,K, l = 1, · · · ,L,

u ∈ Rn×T×K
+ , b ∈ Rn×T×K

+ , s ∈ Rn×T×K
+ ,x ∈ RT×K , π ∈ RK×K×L

+ , τ ∈ RL.
Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Upper approximation: Convergence

Assumption 2

There exist positive numbers A1 and A2 such that for any positive integer
L and vector ρ ∈ D, there exists a ρL ∈ DL with ‖ρ − ρL‖2 ≤

1
A1LA2

.

Example of DL:

ρ1

ρ2

O

1

1L = 3
ρ1

ρ2

O

1

1L = 6
ρ1

ρ2

O

1

1L = 10

A1 =
1
√

2
and A2 =

1
2
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Upper approximation: Convergence

Convergence:

Proposition 3

Under Assumption 2, we have

lim
L→∞

max
ρ∈DL

min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
= max

ρ∈D
min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
. (17)

Denote the feasible solution sets of problem (14) and upper
approximation problem by F and FL, the optimal solution sets by S and
SL, and the optimal values by v and vL, respectively. Write the decision
variable as z = (u, b, s, x).

Theorem 4

We have F = limL→∞ FL, lim supL→∞ SL ⊂ S, v = limL→∞ vL.

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Lower approximation

Lower approximation and error estimate:

Proposition 4

We have

max
ρ∈D

min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
≤ min

π∈Π
max
ρ∈D

{
max

k=1,··· ,K
f k(ρ, π, x)

}
. (18)

Proposition 5

There exists a positive constant C1 < ∞ such that

min
π∈Π

max
ρ∈D

{
max

k=1,··· ,K
f k(ρ, π, x)

}
−max

ρ∈D
min
π∈Π

{
max

k=1,··· ,K
f k(ρ, π, x)

}
≤ C1µ(Π), (19)

where µ(Π) = maxa,b∈Π ‖a − b‖∞ is the diameter of Π under the ∞-norm
for matrix.

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Lower approximation
A lower bound formulation for problem (14) using the duality theory:

max
u,b,s,x,π,α

K∑
k=1

pkxk
T

s.t. xk
t+1 = (rk

t+1)>uk
t + rrf

t+1[xk
t − cb‖bk

t ‖1 − cs‖sk
t ‖1], t = 0, 1, · · · ,T − 1, k = 1, · · · ,K,

uk
0 = bk

0, sk
0 = 0, uk

t = uk
t−1 + bk

t − sk
t , t = 1, · · · ,T − 1, k = 1, · · · ,K,

‖uk
t ‖1 ≤ xk

t − cb‖bk
t ‖1 − cs‖sk

t ‖1 t = 0, 1, · · · ,T − 1, k = 1, · · · ,K,

uj
0 = uk

0, k, j = 1, · · · ,K,

uj
t = uk

t , bk
t = bj

t , sk
t = sj

t , j ∈ A(k, t), k = 1, · · · ,K, t = 1, · · · ,T − 1,

d>αk ≤ 0, k = 1, · · · ,K, (20)
K∑

j=1

πkjy
j
t − xk

t − C>t α
k ≤ 0, t = 1, · · · ,T , k = 1, · · · ,K,

K∑
j=1

πkj = 1, k = 1, · · · ,K,

K∑
k=1

pk
s−1∑
j=1

πkj ≤

s−1∑
j=1

pj, s = 2, · · · ,K,

u ∈ Rn×T×K
+ , b ∈ Rn×T×K

+ , s ∈ Rn×T×K
+ , x ∈ RT×K , π ∈ RK×K

+ , α ∈ Rm×K
+ .

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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In-sample tests

Convergence of the gap:

Table: Computation results of the upper bound formulation (16) and the lower
bound formulation (20).

upper bound formulation (16) lower bound formulation (20)
L Var.# Con.# Upper B. CPU(s) Var.# Con.# Lower B. CPU(s) Gap(%)
1 27841 2399 1.0712 186.35 28320 2878 1.0709 529.34 0.0289
5 85445 3839 1.0711 200.19 28320 2878 1.0709 529.34 0.0205
20 301460 9239 1.0711 1275.91 28320 2878 1.0709 529.34 0.0159
50 733490 20039 1.0710 6582.56 28320 2878 1.0709 529.34 0.0075

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Performance of rolling window test
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Figure: Evolution of logarithmic return rates w.r.t the investment period for the
multi-stage dynamic SSD constrained model.
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Performance of rolling window test
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Figure: Comparison of logarithmic return rates w.r.t the investment period of
different models.
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Out-of-sample tests

Table: Out-of-sample performance statistics of the optimal portfolios’ excess
return rates got under different models.

Model Stage Mean(%) Std. Sharpe
ratio

Proportion
below
S&P500

Mean
below S&P
500(%)

CVaR0.1(%)

Multi-
stage

Dynamic
SSD (Lower
B.) (20)

T = 4 0.3664 0.0302 0.1214 48.5% -0.8513 -6.7194
T = 3 0.2939 0.0326 0.0903 52.7% -0.8864 -6.7557
T = 2 0.2051 0.0303 0.0677 48.1% -1.1322 -7.3125

Componentwise
SSD

T = 4 0.3070 0.0316 0.0971 49.6% -0.9344 -7.1828
T = 3 0.2662 0.0317 0.0841 52.7% -0.8317 -6.7427
T = 2 0.2176 0.0301 0.0724 48.5% -1.0393 -7.2125

Single-
stage

SSD T = 1 0.2911 0.0308 0.0945 46.2% -1.0621 -6.7657

S&P500 T = 1 0.2664 0.0250 0.1064 - - -5.7020

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Observations

The dynamic SSD with T = 4 provides the largest mean value and
the largest Sharpe ratio among all the models.

Compared with the single-stage SSD constrained model, the
multi-stage models have a larger conditional mean of return rates
below that of S&P500.

For dynamic SSD, the mean value of return rates, the Sharpe ratio,
the conditional mean value of return rates below that of S&P500,
and CVaR0.1 increase with the number of stages.

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Conclusions

Summary:

Study multi-stage dynamic SSD constrained portfolio selection
model

Derive an upper approximation and a lower approximation, by
solving linear programming problems

The upper approximation is convergent

The numerical results verifies the validity of the proposed model

Further works:

Dynamic preference robust optimization model

How to design the discount rate sequence set?

Jia Liu Multi-stage portfolio selection problem with dynamic stochastic dominance constraints
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Thank you!
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