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Geometric programs

A geometric program can be formulated as

(GP) min
t

g0(t) s.t. gk(t) ≤ 1, k = 1, · · · ,K, t ∈ RM
++

with

gk(t) =
∑
i∈Ik

ci

M∏
j=1

taij
j , k = 0, · · · ,K.

{Ik, k = 0, · · · ,K} is the disjoint index sets of {1, · · · ,Q}.

We call ci
∏M

j=1 taij
j a monomial and gk(t) a posynomial.
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Geometric programs (Cont’d)

Geometric programs have a number of practical problems, such as

shape optimization problems (Boyd et al., 2007)

electrical circuit design problems (Boyd et al., 2007)

mechanical engineering problems (Wiebking, 1977)

economic and managerial problems (Luptáčik, 1981)

nonlinear network problems (Kim et al., 2007)
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Stochastic geometric programs

Usually, ci are preset non-negative coefficients.

In practice use, ci is not known deterministically but randomly.

Considering the randomness of ci, one can formulate stochastic
geometric programs.

Probabilistic constraints are frequently used to control the
uncertainty of posynomial constraints.
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Stochastic geometric programs (Cont’d)

Stochastic geometric programs with individual probabilistic
constraints:

(SGPIPC) min
t∈RM

++

E

∑
i∈I0

ci

M∏
j=1

taij
j


s.t. P

∑
i∈Ik

ci

M∏
j=1

taij
j ≤ 1

 ≥ 1 − εk, k = 1, · · · ,K.

where εk ∈ (0, 0.5] is the tolerance probability for the k-th
posynomial constraint.
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Stochastic geometric programs (Cont’d)

Stochastic geometric programs with joint probabilistic constraints:

(SGPJPC) min
t∈RM

++

E

∑
i∈I0

ci

M∏
j=1

taij
j


s.t. P

∑
i∈Ik

ci

M∏
j=1

taij
j ≤ 1, k = 1, · · · ,K

 ≥ 1 − ε.

where ε ∈ (0, 0.5] is the tolerance probability for all the posynomial
constraints.
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Literature reviews

Dupačová (2009) discussed the (SGPIPC) problem.

They find a deterministic formulation of the probabilistic
constraint when ci are normally distributed and independent
of each other

However, as far as we know, there is no in-depth research
works on the (SGPJPC) problem.
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Literature reviews (Cont’d)

(SGPJPC) problem are a generalization of stochastic linear
program with joint probabilistic constraints

Miller and Wagner (1965) showed that joint probabilistic
constrained problems are equivalent to concave deterministic
problems under some independence assumptions

For some specific cases, such as the right hand side random
vector being multivariate normally distributed, Prékopa (1995)
showed that the joint probabilistic constraint problems are
convex.

Cheng and Lisser (2012) propose some approximations for
linear programs with joint probabilistic constraints.
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Our work

We work on stochastic geometric program with joint probabilistic
constraints.

We suppose that aij is deterministic and ci is normally
distributed and independent of each other, i.e., ci ∼ N(Eci , σ

2
i ).

The following techniques are used:

standard variable transformation from geometric programming

piecewise linear approximation

Sequential convex approximation
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Equivalent formulation

As ci are independent of each other, we have

P

∑
i∈Ik

ci

M∏
j=1

taij
j ≤ 1, k = 1, · · · ,K

 ≥ 1 − ε

is equivalent to

K∏
k=1

P

∑
i∈Ik

ci

M∏
j=1

taij
j ≤ 1

 ≥ 1 − ε.
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Equivalent formulation (Cont’d)

By introducing auxiliary variables yk ∈ R, k = 1, · · · ,K, (SGPJPC)
problem can be equivalently transformed into

min
t∈RM

++,y∈RK
E

∑
i∈I0

ci

M∏
j=1

taij
j


s.t. P(

∑
i∈Ik

ci

M∏
j=1

taij
j ≤ 1) ≥ yk, k = 1, · · · ,K,

K∏
k=1

yk ≥ 1 − ε, yk ≥ 0.
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Equivalent formulation (Cont’d)

As ci ∼ N(Eci , σ
2
i ), (SGPJPC) problem is further equivalent to

min
t∈RM

++,y∈RK

∑
i∈I0

Eci

M∏
j=1

taij
j

s.t.
∑
i∈Ik

Eci

M∏
j=1

taij
j + Φ−1(yk)

√√√∑
i∈Ik

σ2
i

M∏
j=1

t2aij
j ≤ 1, k = 1, · · · ,K,

K∏
k=1

yk ≥ 1 − ε, yk ≥ 0.

Φ−1(yk) is the quantile of standard normal distribution N(0, 1).
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Equivalent formulation (Cont’d)

The standard variable transformation rj = log(tj), j = 1, · · · ,M and
xk = log(yk), k = 1, · · · ,K leads to the equivalent formulation:

min
r∈RM ,x∈RK

∑
i∈I0

Eci exp

 M∑
j=1

aijrj


s.t.

∑
i∈Ik

Eci exp

 M∑
j=1

aijrj

 +

√√√∑
i∈Ik

σ2
i exp

 M∑
j=1

(2aijrj + log(Φ−1(exk )2))


≤ 1, k = 1, · · · ,K,

K∑
k=1

xk ≥ log(1 − ε), xk ≤ 0, k = 1, · · · ,K.
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Property of Φ−1(·)

Φ−1(·) is also called the probit function:

Φ−1(z) =
√

2 erf−1(2z − 1), z ∈ (0, 1).

The inverse error function is a nonelementary function which can
be represented by the Maclaurin series:

erf−1(z) =

∞∑
p=0

λp

2p + 1

( √
π

2
z
)2p+1

,

where λ0 = 1 and

λp =

p−1∑
i=0

λiλp−1−i

(i + 1)(2i + 1)
> 0, p = 1, 2, · · · .
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Property of log(Φ−1(exk)2)

log(Φ−1(exk )2) is convex for 1 > yk ≥ 1 − ε ≥ 0.5.

Moreover, log(Φ−1(exk )2) is always monotonic increasing.

We can approximate log(Φ−1(exk )2) by a piecewise linear
function from below:

Fs(xk) = dsxk + bs, s = 1, · · · , S,

such that

Fs(xk) ≤ log(Φ−1(exk )2), ∀xk ∈ [log(1 − ε), 0), s = 1, · · · , S.
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Piecewise linear approximation

For a practical use, we can choose the tangent lines of
log(Φ−1(exk )2) at different points in [log(1 − ε), 0), say
ξ1, ξ2, · · · , ξS.

Then, we have

ds =
2eξs(Φ−1)(1)(eξs)

Φ−1(eξs)

and

bs = −dsξs + log(Φ−1(eξs)2), s = 1, · · · , S.
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Theorem
Using the piecewise linear function F(xk), we can found an
approximation of (SGPJPC) problem:

(SGPA)

min
r∈RM ,x∈RK

∑
i∈I0

Eci exp

 M∑
j=1

aijrj


∑
i∈Ik

Eci exp

 M∑
j=1

aijrj

 +

√√√∑
i∈Ik

σ2
i exp

 M∑
j=1

(2aijrj + dsxk + bs)


≤ 1, s = 1, · · · , S, k = 1, · · · ,K,

K∑
k=1

xk ≥ log(1 − ε), xk ≤ 0, k = 1, · · · ,K.

The optimal value is a lower bound of the (SGPJPC) problem.
When S goes to infinity, the approximation is tight.
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Sequential convex approximation

Sequential convex approximation⇒ upper bound

Basic idea: decomposing into subproblems where a subset of
variables is fixed alternatively.

We first fix y = yn and update t by solving

(SQ1) min
t∈RM

++

∑
i∈I0

Eci

M∏
j=1

taij
j

s.t.
∑
i∈Ik

Eci

M∏
j=1

taij
j + Φ−1(yn

k)

√√√∑
i∈Ik

σ2
i

M∏
j=1

t2aij
j ≤ 1,

k = 1, · · · ,K
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Sequential convex approximation (Cont’d)

and then fix t = tn and update y by solving

(SQ2) min
y∈RK

+

K∑
k=1

φk yk

s.t. yk ≤ Φ

1 −
∑

i∈Ik Eci

∏M
j=1(tn

j )aij√∑
i∈Ik σ

2
i
∏M

j=1(tn
j )2aij

 , k = 1, · · · ,K.

K∏
k=1

yk ≥ 1 − ε, yk ≥ 0, k = 1, · · · ,K.

φk is a chosen searching direction.

Liu Jia Stochastic geometric programming with joint probabilistic constraints



Introduction Piecewise linear approximation Sequential convex approximation Numerical experience Conclusions

Sequential convex approximation (Cont’d)
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Sequential convex approximation (Cont’d)

Theorem
Algorithm 1 converges in a finite number of iterations and the
returned value vn is a upper bound for problem (SGP).

Problems (SQ1) and (SQ2) are both geometric programs,
hence they can be transformed into a convex programming
problem, and solved by interior point methods.
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Shape optimization problem

Consider a joint probabilistic constrained shape optimization
problem,

min
h,w,ζ

h−1w−1ζ−1

s.t. P
(
(2/Awall)hw + (2/Awall)hζ ≤ 1, (1/Aflr)wζ ≤ 1

)
≥ 1 − ε,

αh−1w ≤ 1, (1/β)hw−1 ≤ 1,

γwζ−1 ≤ 1, (1/δ)w−1ζ ≤ 1.

maximize the volume of a box-shaped structure with height h,
width w and depth ζ

with constraint on total wall area 2(hw + hζ), and floor area wζ

Liu Jia Stochastic geometric programming with joint probabilistic constraints



Introduction Piecewise linear approximation Sequential convex approximation Numerical experience Conclusions

Settings

Set α = γ = 0.5, β = δ = 2, ε = 5%,

Assume 1/Awall ∼ N(0.005, 0.01) and 1/Aflr ∼ N(0.01, 0.01).

By using CVX software, we solve the approximation problems
with Matlab R2012b, on a PC with a 2.6 Ghz Intel Core
i7-5600U CPU and 12.0 GB RAM.

We solve five groups of approximation problems with different
number of segments, S.
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Computational results

Table 1: Computational results
S Var. Num. Con. Num. Low. bound CPU(s) Upp. bound CPU(s) Gap(%)
1 133 60 0.232 0.5955 0.256 5.5274 9.655
2 184 91 0.234 0.6272 0.256 5.5274 8.789
5 283 153 0.241 0.9480 0.256 5.5274 6.044

10 513 273 0.252 1.3554 0.256 5.5274 1.713
20 973 513 0.256 1.9986 0.256 5.5274 0

Sequential convex approximation algorithm converges within 7
outer iterations
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Conclusions

We discussed (SGPJPC) problem under normal distribution

We find an upper bound and a lower bound for (SGPJPC)
problem

Further work

(SGPJPC) problem under elliptical distributions, log-normal
distribution et al.

(SGPIPC) and (SGPJPC) problems with random aij.

Distributional robust (SGPIPC) and (SGPJPC) problems with
distribution uncertainty.
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Thank you!
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