Stochastic geometric programming with joint probabilistic constraints

Liu Jia

^a LRI, Université Paris Sud, France ^b Xi'an Jiaotong University, China

TEL:033-0668777866, E-mail: liujia@lri.fr

Joint work with Abdel Lisser^a, and Zhiping Chen^b

(ICSP 2016, Búzios)

イロト イボト イヨト イヨ

Outline

- 2 Piecewise linear approximation
- Sequential convex approximation
- 4 Numerical experience

イロト イボト イヨト イヨ

Geometric programs

A geometric program can be formulated as

(*GP*)
$$\min_{t} g_0(t)$$
 s.t. $g_k(t) \le 1, \ k = 1, \cdots, K, \ t \in \mathbb{R}^M_{++}$

with

$$g_k(t) = \sum_{i \in I_k} c_i \prod_{j=1}^M t_j^{a_{ij}}, \ k = 0, \cdots, K.$$

 $\{I_k, k = 0, \dots, K\}$ is the disjoint index sets of $\{1, \dots, Q\}$.

We call $c_i \prod_{j=1}^{M} t_j^{a_{ij}}$ a monomial and $g_k(t)$ a posynomial.

・ロト ・日下・日下・日下・

Geometric programs (Cont'd)

Geometric programs have a number of practical problems, such as

- shape optimization problems (Boyd et al., 2007)
- electrical circuit design problems (Boyd et al., 2007)
- mechanical engineering problems (Wiebking, 1977)
- economic and managerial problems (Luptáčik, 1981)
- nonlinear network problems (Kim et al., 2007)

イロト イボト イヨト イヨト

Stochastic geometric programs

Usually, c_i are preset non-negative coefficients.

In practice use, c_i is not known deterministically but randomly.

Considering the randomness of c_i , one can formulate stochastic geometric programs.

Probabilistic constraints are frequently used to control the uncertainty of posynomial constraints.

Stochastic geometric programs (Cont'd)

Stochastic geometric programs with individual probabilistic constraints:

$$(SGPIPC) \quad \min_{t \in \mathbb{R}_{++}^{M}} \quad E\left[\sum_{i \in I_{0}} c_{i} \prod_{j=1}^{M} t_{j}^{a_{ij}}\right]$$

s.t.
$$P\left(\sum_{i \in I_{k}} c_{i} \prod_{j=1}^{M} t_{j}^{a_{ij}} \le 1\right) \ge 1 - \epsilon_{k}, \ k = 1, \cdots, K.$$

where $\epsilon_k \in (0, 0.5]$ is the tolerance probability for the *k*-th posynomial constraint.

イロト イポト イヨト イヨト

Stochastic geometric programs (Cont'd)

Stochastic geometric programs with joint probabilistic constraints:

$$(SGPJPC) \quad \min_{t \in \mathbb{R}_{++}^{M}} \quad E\left[\sum_{i \in I_{0}} c_{i} \prod_{j=1}^{M} t_{j}^{a_{ij}}\right]$$

s.t.
$$P\left(\sum_{i \in I_{k}} c_{i} \prod_{j=1}^{M} t_{j}^{a_{ij}} \le 1, \ k = 1, \cdots, K\right) \ge 1 - \epsilon.$$

where $\epsilon \in (0, 0.5]$ is the tolerance probability for all the posynomial constraints.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Literature reviews

- Dupačová (2009) discussed the (SGPIPC) problem.
- They find a deterministic formulation of the probabilistic constraint when c_i are normally distributed and independent of each other
- However, as far as we know, there is no in-depth research works on the (SGPJPC) problem.

(日)

Literature reviews (Cont'd)

(SGPJPC) problem are a generalization of stochastic linear program with joint probabilistic constraints

- Miller and Wagner (1965) showed that joint probabilistic constrained problems are equivalent to concave deterministic problems under some independence assumptions
- For some specific cases, such as the right hand side random vector being multivariate normally distributed, Prékopa (1995) showed that the joint probabilistic constraint problems are convex.
- Cheng and Lisser (2012) propose some approximations for linear programs with joint probabilistic constraints.

イロト イボト イヨト イヨト

Our work

We work on stochastic geometric program with joint probabilistic constraints.

 We suppose that *a_{ij}* is deterministic and *c_i* is normally distributed and independent of each other, i.e., *c_i* ~ *N*(*E_{c_i}*, σ²_i).

The following techniques are used:

- standard variable transformation from geometric programming
- piecewise linear approximation
- Sequential convex approximation

Equivalent formulation

As c_i are independent of each other, we have

$$P\left(\sum_{i\in I_k} c_i \prod_{j=1}^M t_j^{a_{ij}} \le 1, \ k = 1, \cdots, K\right) \ge 1 - \epsilon$$

is equivalent to

$$\prod_{k=1}^{K} P\left(\sum_{i \in I_k} c_i \prod_{j=1}^{M} t_j^{a_{ij}} \le 1\right) \ge 1 - \epsilon.$$

イロト イヨト イヨト イヨ

Equivalent formulation (Cont'd)

By introducing auxiliary variables $y_k \in \mathbb{R}$, $k = 1, \dots, K$, (SGPJPC) problem can be equivalently transformed into

$$\min_{\boldsymbol{y} \in \mathbb{R}_{++}^{M}, \boldsymbol{y} \in \mathbb{R}^{K}} E\left[\sum_{i \in I_{0}} c_{i} \prod_{j=1}^{M} t_{j}^{a_{ij}}\right]$$

s.t.
$$P(\sum_{i \in I_{k}} c_{i} \prod_{j=1}^{M} t_{j}^{a_{ij}} \leq 1) \geq y_{k}, \ k = 1, \cdots, K,$$
$$\prod_{k=1}^{K} y_{k} \geq 1 - \epsilon, \ y_{k} \geq 0.$$

ヘロト ヘヨト ヘヨト ヘヨト

Equivalent formulation (Cont'd)

As $c_i \sim N(E_{c_i}, \sigma_i^2)$, (SGPJPC) problem is further equivalent to

$$\min_{t \in \mathbb{R}_{++}^{M}, y \in \mathbb{R}^{K}} \sum_{i \in I_{0}} E_{c_{i}} \prod_{j=1}^{M} t_{j}^{a_{ij}}$$
s.t.
$$\sum_{i \in I_{k}} E_{c_{i}} \prod_{j=1}^{M} t_{j}^{a_{ij}} + \Phi^{-1}(y_{k}) \sqrt{\sum_{i \in I_{k}} \sigma_{i}^{2} \prod_{j=1}^{M} t_{j}^{2a_{ij}}} \leq 1, \ k = 1, \cdots, K,$$

$$\prod_{k=1}^{K} y_{k} \geq 1 - \epsilon, \ y_{k} \geq 0.$$

 $\Phi^{-1}(y_k)$ is the quantile of standard normal distribution N(0, 1).

・ロト ・ 四ト ・ ヨト ・ ヨト

Equivalent formulation (Cont'd)

The standard variable transformation $r_j = \log(t_j)$, $j = 1, \dots, M$ and $x_k = \log(y_k)$, $k = 1, \dots, K$ leads to the equivalent formulation:

$$\begin{split} \min_{r \in \mathbb{R}^M, x \in \mathbb{R}^K} & \sum_{i \in I_0} E_{c_i} \exp\left\{\sum_{j=1}^M a_{ij} r_j\right\} \\ \text{s.t.} & \sum_{i \in I_k} E_{c_i} \exp\left\{\sum_{j=1}^M a_{ij} r_j\right\} + \sqrt{\sum_{i \in I_k} \sigma_i^2 \exp\left\{\sum_{j=1}^M (2a_{ij} r_j + \log(\Phi^{-1}(e^{x_k})^2))\right\}} \\ & \leq 1, \ k = 1, \cdots, K, \\ & \sum_{k=1}^K x_k \ge \log(1 - \epsilon), \ x_k \le 0, \ k = 1, \cdots, K. \end{split}$$

Property of $\Phi^{-1}(\cdot)$

 $\Phi^{-1}(\cdot)$ is also called the probit function:

$$\Phi^{-1}(z) = \sqrt{2} \operatorname{erf}^{-1}(2z - 1), \quad z \in (0, 1).$$

The inverse error function is a nonelementary function which can be represented by the Maclaurin series:

$$\operatorname{erf}^{-1}(z) = \sum_{p=0}^{\infty} \frac{\lambda_p}{2p+1} \left(\frac{\sqrt{\pi}}{2}z\right)^{2p+1},$$

where $\lambda_0 = 1$ and

$$\lambda_p = \sum_{i=0}^{p-1} \frac{\lambda_i \lambda_{p-1-i}}{(i+1)(2i+1)} > 0, \ p = 1, 2, \cdots$$

イロト イポト イヨト イヨト

Property of $\log(\Phi^{-1}(e^{x_k})^2)$

- $\log(\Phi^{-1}(e^{x_k})^2)$ is convex for $1 > y_k \ge 1 \epsilon \ge 0.5$.
- Moreover, $log(\Phi^{-1}(e^{x_k})^2)$ is always monotonic increasing.
- We can approximate log(Φ⁻¹(e^{xk})²) by a piecewise linear function from below:

$$F_s(x_k) = d_s x_k + b_s, \ s = 1, \cdots, S,$$

such that

$$F_s(x_k) \le \log(\Phi^{-1}(e^{x_k})^2), \ \forall x_k \in [\log(1-\epsilon), 0), \ s = 1, \cdots, S.$$

Piecewise linear approximation

- For a practical use, we can choose the tangent lines of $\log(\Phi^{-1}(e^{x_k})^2)$ at different points in $[\log(1 \epsilon), 0)$, say $\xi_1, \xi_2, \cdots, \xi_s$.
- Then, we have

$$d_s = \frac{2e^{\xi_s}(\Phi^{-1})^{(1)}(e^{\xi_s})}{\Phi^{-1}(e^{\xi_s})}$$

and

$$b_s = -d_s\xi_s + \log(\Phi^{-1}(e^{\xi_s})^2), \ s = 1, \cdots, S.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem

Using the piecewise linear function $F(x_k)$, we can found an approximation of (SGPJPC) problem:

$$(SGP_A)$$

$$\min_{r \in \mathbb{R}^M, x \in \mathbb{R}^K} \sum_{i \in I_0} E_{c_i} \exp\left\{\sum_{j=1}^M a_{ij}r_j\right\}$$

$$\sum_{i \in I_k} E_{c_i} \exp\left\{\sum_{j=1}^M a_{ij}r_j\right\} + \sqrt{\sum_{i \in I_k} \sigma_i^2 \exp\left\{\sum_{j=1}^M (2a_{ij}r_j + d_s x_k + b_s)\right\}}$$

$$\leq 1, \ s = 1, \cdots, S, \ k = 1, \cdots, K,$$

$$\sum_{k=1}^K x_k \geq \log(1 - \epsilon), \ x_k \leq 0, \ k = 1, \cdots, K.$$

The optimal value is a lower bound of the (SGPJPC) problem. When *S* goes to infinity, the approximation is tight.

イロト イボト イヨト イヨ

Sequential convex approximation

- Sequential convex approximation \Rightarrow upper bound
- Basic idea: decomposing into subproblems where a subset of variables is fixed alternatively.
- We first fix $y = y^n$ and update *t* by solving

$$(SQ_{1}) \quad \min_{t \in \mathbb{R}_{++}^{M}} \quad \sum_{i \in I_{0}} E_{c_{i}} \prod_{j=1}^{M} t_{j}^{a_{ij}}$$

s.t.
$$\sum_{i \in I_{k}} E_{c_{i}} \prod_{j=1}^{M} t_{j}^{a_{ij}} + \Phi^{-1}(y_{k}^{n}) \sqrt{\sum_{i \in I_{k}} \sigma_{i}^{2}} \prod_{j=1}^{M} t_{j}^{2a_{ij}} \le 1,$$
$$k = 1, \cdots, K$$

Sequential convex approximation (Cont'd)

• and then fix $t = t^n$ and update y by solving

$$(SQ_{2}) \min_{y \in \mathbb{R}^{K}_{+}} \sum_{k=1}^{K} \phi_{k} y_{k}$$

s.t. $y_{k} \leq \Phi \left(\frac{1 - \sum_{i \in I_{k}} E_{c_{i}} \prod_{j=1}^{M} (t_{j}^{n})^{a_{ij}}}{\sqrt{\sum_{i \in I_{k}} \sigma_{i}^{2} \prod_{j=1}^{M} (t_{j}^{n})^{2a_{ij}}}} \right), \ k = 1, \cdots, K.$
$$\prod_{k=1}^{K} y_{k} \geq 1 - \epsilon, \ y_{k} \geq 0, \ k = 1, \cdots, K.$$

• ϕ_k is a chosen searching direction.

イロト イヨト イヨト イヨト

Sequential convex approximation (Cont'd)

0

Algorithm 1 Sequential convex approximation

Initialization:

Choose an initial point y^0 of y feasible for (8). Set n = 0.

Iteration:

while $n \ge 1$ and $||y^{n-1} - y^n||$ is small enough do

- Solve problem (SQ_1) ; let t^n , θ^n and v^n denote an optimal solution of t, an optimal solution of the Lagrangian dual variable θ and the optimal value, respectively.
- Solve problem (SQ_2) with $\phi_k = \theta_k^n \cdot (\Phi^{-1})'(y_k^n) \sqrt{\sum_{i \in I_k} \sigma_i^2 \prod_{j=1}^M (t_j^n)^{2a_{ij}}};$ let \tilde{y} denote an optimal solution.

• $y^{n+1} \leftarrow y^n + \tau(\tilde{y} - y^n), n \leftarrow n+1$. Here, $\tau \in (0, 1)$ is the step length. end while

Output: t^n, v^n

Sequential convex approximation (Cont'd)

Theorem

Algorithm 1 converges in a finite number of iterations and the returned value v^n is a upper bound for problem (*SGP*).

• Problems (*SQ*₁) and (*SQ*₂) are both geometric programs, hence they can be transformed into a convex programming problem, and solved by interior point methods.

イロト イポト イヨト イヨト

Shape optimization problem

Consider a joint probabilistic constrained shape optimization problem,

$$\begin{split} \min_{h,w,\zeta} & h^{-1}w^{-1}\zeta^{-1} \\ \text{s.t.} & P\Big((2/A_{wall})hw + (2/A_{wall})h\zeta \le 1, \ (1/A_{flr})w\zeta \le 1\Big) \ge 1 - \epsilon, \\ & \alpha h^{-1}w \le 1, \ (1/\beta)hw^{-1} \le 1, \\ & \gamma w\zeta^{-1} \le 1, \ (1/\delta)w^{-1}\zeta \le 1. \end{split}$$

- maximize the volume of a box-shaped structure with height *h*, width *w* and depth ζ
- with constraint on total wall area $2(hw + h\zeta)$, and floor area $w\zeta$

イロト イボト イヨト イヨト

Settings

- Set $\alpha = \gamma = 0.5$, $\beta = \delta = 2$, $\epsilon = 5\%$,
- Assume $1/A_{wall} \sim N(0.005, 0.01)$ and $1/A_{flr} \sim N(0.01, 0.01)$.
- By using CVX software, we solve the approximation problems with Matlab R2012b, on a PC with a 2.6 Ghz Intel Core i7-5600U CPU and 12.0 GB RAM.
- We solve five groups of approximation problems with different number of segments, *S*.

イロト イポト イヨト イヨト

Computational results

Table 1: Computational results

S	Var. Num.	Con. Num.	Low. bound	CPU(s)	Upp. bound	CPU(s)	Gap(%)
1	133	60	0.232	0.5955	0.256	5.5274	9.655
2	184	91	0.234	0.6272	0.256	5.5274	8.789
5	283	153	0.241	0.9480	0.256	5.5274	6.044
10	513	273	0.252	1.3554	0.256	5.5274	1.713
20	973	513	0.256	1.9986	0.256	5.5274	0

Sequential convex approximation algorithm converges within 7 outer iterations

イロト イヨト イヨト イヨト

Conclusions

- We discussed (SGPJPC) problem under normal distribution
- We find an upper bound and a lower bound for (SGPJPC) problem

Further work

- (SGPJPC) problem under elliptical distributions, log-normal distribution et al.
- (SGPIPC) and (SGPJPC) problems with random a_{ij} .
- Distributional robust (SGPIPC) and (SGPJPC) problems with distribution uncertainty.

イロト イポト イヨト イヨト

Thank you!

イロト 不留 トイヨト イヨト

æ