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Distributionally robust geometric optimization

A geometric program can be formulated as:

min
t

g0(t) s.t. gk(t) ≤ 1, k = 1, . . . ,K , t ∈ RM
++

with

gk(t) =

Ik∑
i=1

cki
M∏
j=1

ta
k
ij

j , k = 0, . . . ,K .

cki
∏M

j=1 t
akij
j is called a monomial, and gk(t) is called posynomial.

The posynomials might have different parameters cki ≥ 0 and akij .
Geometric programs are not convex with respect to t
They are convex with respect to {r : rj = log tj , j = 1, . . . ,M}.
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Distributionally robust geometric optimization

Applications (cf. S. Boyd, 2007, R. Wiebking, 1977, M. Luptáčik, 1981,
S. Kim et al., 2007)

Wireless communications
Semiconductor device engineering
Floor planning
Digital circuit gate sizing
Economic and managerial problems
Wire sizing
. . .
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Distributionally robust geometric optimization

Individual chance constraints are studied in S. Rao (1996) and J.
Dupačová (2009):

(ISGP) min
t∈RM

++

EF0

[ I0∑
i=1

c0i
M∏
j=1

ta
0
ij

j

]

s.t. PFk (

Ik∑
i=1

cki
M∏
j=1

ta
k
ij

j ≤ 1) ≥ 1− εk , k = 1, ...K

cki is random (normally distributed), akij is constant.
Reformulated as geometric programs.

Dupacova J (2009) Stochastic geometric programming: approaches and applications. In Brozova
V,Kvasnicka R, eds. Proceedings of MME09, 63-66.
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Distributionally robust geometric optimization

Recently, L. and A. Lisser (2016) studied stochastic geometric problems
with joint chance constraints; i.e.;

(JSGP) min
t∈RM

++

EF0

[ I0∑
i=1

c0i
M∏
j=1

ta
0
ij

j

]

s.t. PF (

Ik∑
i=1

cki
M∏
j=1

ta
k
ij

j ≤ 1, k = 1, ...K ) ≥ 1− ε,

cki is random (normally distributed), akij is constant.
Reformulated as convex programming problems when ε ≤ 0.5.
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Distributionally robust geometric optimization

We consider the distributionally robust geometric programs with
individual chance constraints and the ambiguity of F0, Fk or F :

(IRGP) min
t∈RM

++

sup
F∈F0

EF0

[ I0∑
i=1

c0i
M∏
j=1

ta
0
ij

j

]

s.t. inf
Fk∈Fk

PFk

( Ik∑
i=1

cki
M∏
j=1

ta
k
ij

j ≤ 1
)
≥ 1− εk , k = 1, ...K .

where F0, Fk , k = 1, . . . ,K are the uncertainty sets, which contain
all the distributions of F0, Fk , k = 1, . . . ,K .
cki is random, akij is constant.
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Uncertainty sets with known moments

We consider the uncertainty sets Fk , k = 0, ...,K , with known two
first order moments information (L. El Ghaoui et al, 2003, L. Chen
et al, 2011).

Assumption 1

The uncertainty sets are

Fk = {Fk | EFk [ck ] = µk ,CovFk [ck ] = Γk}, k = 0, ...,K .

where CovF [ck ] = EFk

[(
ck − EFk [ck ]

) (
ck − EFk [ck ]

)>],
µk = [µk

1 , µ
k
2 , . . . , µ

k
Ik ]> and Γk = {σk

i,j}.

µk
i is the reference value of the expected value of cki .
σk
i,j is the reference value of the covariance between cki and ckj ,

We assume that µk ≥ 0, Γk is positive definite matrix, and σk
i,j ≥ 0.
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Distributionally robust geometric optimization

Theorem 1

Suppose that Assumption 1 holds. Then (IRGP) is equivalent to

(IRGP1) min
t∈RM

++

I0∑
i=1

µ0i

M∏
j=1

t
a0ij
j

s.t.
Ik∑
i=1

µki

M∏
j=1

t
akij
j +

√
1− εk
εk

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p

M∏
j=1

t
akij+akpj
j ≤ 1,

k = 1, ...K .

Sketch of the proof:

Lemma 2.1 (L. Chen et al., 2011)
Chebytchev inequality (N. Rujeerapaiboon et al., 2016)
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Distributionally robust geometric optimization

Problem (IRGP1) is not convex w.r.t t, it can be transformed into a
convex problem using rj = log(tj), j = 1, . . . ,M

(IRGP1s) min
r∈RM

I0∑
i=1

µ0i exp
{ M∑

j=1
a0ij rj

}

s.t.
√

1− εk
εk

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p exp
{ M∑

j=1
(akij + akpj)rj

}

+

Ik∑
i=1

µki exp
{ M∑

j=1
akij rj

}
≤ 1, k = 1, . . . ,K ,
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Distributionally robust geometric optimization
Uncertainty sets with unknown moments

We consider the uncertainty sets Fk , k = 0, ...,K , for (IRGP). (E.
Delage and Y. Ye, 2010; J. Cheng et al. 2003; N. Rujeerapaiboon et al.,
2015).

Assumption 2

The uncertainty sets are

Fk =

{
Fk

∣∣∣∣∣
(
EFk [ck ]− µk)> (Γk)−1

(
EFk [ck ]− µk) ≤ πk

1 ,

CovFk [ck ] �D π
k
2Γk .

}
,

We assume that µk ≥ 0, Γk is positive definite matrix, and σki,j ≥ 0,
k = 0, 1, ...,K.
πk1 , π

k
2 ∈ R are two scale parameters controlling the size of the

uncertainty sets.
A �D B means that for any x ∈ Rn, we have x>Ax ≤ x>Bx.
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Distributionally robust geometric optimization
Uncertainty sets with unknown moments

Theorem 2

Given Assumption 2, (IRGP) is equivalent to

(IRGP2) min
t∈RM

++

I0∑
i=1

µ
0
i

M∏
j=1

t
a0ij
j +

√
π0
1

√√√√ I0∑
i=1

I0∑
p=1

σ0
i,p

M∏
j=1

t
a0ij+a0pj
j

s.t.

Ik∑
i=1

µ
k
i

M∏
j=1

t
akij
j +

(√
1− εk
εk

√
πk
2 +
√
πk
1

)√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j ≤ 1, k = 1, ...K .

Sketch of the proof:

Same ingredients as the previous Theorem extended to this case.
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Distributionally robust geometric optimization
Uncertainty sets with unknown moments

With the standard variable transformation rj = log(tj), j = 1, . . . ,M, we
can transform (IRGP2) into

min
r∈RM

∑I0
i=1 µ

0
i exp

{∑M
j=1 a

0
ij rj
}

+
√
π01

√∑I0
i=1

∑I0
p=1 σ

0
i,p exp

{∑M
j=1(a0ij + a0pj )rj

}
s.t.

(√
1−εk
εk

√
πk2 +

√
πk1

)√∑Ik
i=1

∑Ik
p=1 σ

k
i,p exp

{∑M
j=1(akij + akpj )rj

}
+
∑Ik

i=1 µ
k
i exp

{∑M
j=1 a

k
ij rj
}
≤ 1, k = 1, . . . ,K .

which is a convex optimization problem.

Avoid SDP reformulation (Delage and Ye 2010; Cheng, Delage and
Lisser 2014)
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Uncertainty in the density
Distributionally robust geometric optimization

Uncertainty sets controlled by the distance between the true distribution
and the reference distribution of ck (A. Ben-Tal, 2013; Z. Hu and J.
Hong, 2013; R. Jiang and Y. Guan, 2016).

Assumption 3

The uncertainty sets are

Fk = {Fk | DDL(Fk ||F 0
k ) ≤ κk}, k = 0, ...,K .

where DDL is the Kullback-Leibler divergence distance

DDL(Fk ||F 0
k ) =

∫
Ω

φ

(
fFk (ck)

fF0
k

(ck)

)
fF0

k
(ck)dck ,

F 0
k is the reference distribution of ck , fFk (ck) and fF0

k
(ck) are the density

functions of the true distribution and the reference distribution of ck on Ω,
κk is a parameter controlling the size of the uncertainty set, k = 0, ...,K.
φ(t) = t log t − t + 1, for t ≥ 0, and φ(t) =∞, ow.
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Uncertainty in the density
Distributionally robust geometric optimization

We use Theorem 1 in Z. Hu and J. Hong (2013) for the following proposition:

Proposition 3

Given Assumption 3, the objective function is equivalent to

inf
α∈(0,∞)

α log EF00

[
exp

{(
I0∑
i=1

c0i

M∏
j=1

t
a0ij
j

)
/α

}]
+ ακ0.

and Theorem 1 and Proposition 4 in R. Jiang and Y. Guan (2016),

Proposition 4

Given Assumption 3, the constraint is equivalent to

PF0k
(

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ 1) ≥ 1− ε′k , k = 1, ...K ,

where ε′k = 1− infx∈(0,1)

{
e−κk x1−εk−1

x−1

}
, k = 1, ...K.
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Uncertainty in the density
(IRGP) with normal reference distribution

Assume that the reference distribution F 0
k follows a normal distribution:

mean vector µk = [µk
1 , µ

k
2 , . . . , µ

k
Ik ]> ≥ 0

positive definite covariance matrix Γk = {σk
i,j , i , j = 1, . . . , Ik}, ∀k.

Theorem 5

Given Assumption 3 and normal distribution assumption for F 0
k , k = 0, 1, ...,K, (IRGP) is

equivalent to

(IRGP3N ) min
t∈RM

++

I0∑
i=1

µ
0
i

M∏
j=1

t
a0ij
j +

√√√√2κ0

I0∑
i=1

I0∑
p=1

σ0
i,p

M∏
j=1

t
a0ij+a0pj
j

s.t.

Ik∑
i=1

µ
k
i

M∏
j=1

t
akij
j + Φ−1(1− ε′k )

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j ≤ 1, k = 1, ...K .

Here, Φ−1(·) is the quantile of the standard normal distribution N(0, 1).

Proof: Based on previous theorems
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Uncertainty in the density
Data-driven (IRGP)

Historical data based discrete reference distribution F 0
k .

Theorem 6

Given Assumption 3, we further assume F 0
k follows a discrete distribution with H possible scenarios

c̃k (1), c̃k (2), c̃k (H), associated with their probabilities 1
H , k = 0, 1, . . . ,K. Then, problem

(IRGP) is equivalent to (IRGP3D)

min
r∈RM ,α∈(0,∞),ς

α log
(

1
H

∑H
h=1

exp
{(∑I0

i=1
c̃0i (h) exp

{∑M
j=1

a0ij rj
})

/α
})

+ ακ0,

s.t. 1
H

∑H
h=1

(1− ςkh ) ≥ 1− ε′k , k = 1, 2, ...,K ,∑Ik
i=1

c̃ki (h) exp
{∑M

j=1
akij rj
}
≤ Mςkh + 1, h = 1, . . . ,H, k = 1, 2, ...,K ,

ςkh ∈ {0, 1}, h = 1, . . . ,H, k = 1, 2, ...,K .

Proof: Propositions 4 and 5 and previous theorems.
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Distributionally robust geometric optimization

We consider the distributionally robust geometric programs with joint
chance constraints and the ambiguity of F0 or F :

(JRGP) min
t∈RM

++

sup
F0∈F0

EF0

[ I0∑
i=1

c0i
M∏
j=1

ta
0
ij

j

]

s.t. inf
F∈F

PF

( Ik∑
i=1

cki
M∏
j=1

ta
k
ij

j ≤ 1, k = 1, ...K
)
≥ 1− ε,

where F0 and F are the uncertainty sets, which contain all the
distributions of F0 and F .
cki is random, akij is constant.
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Uncertainty with known moments
Joint chance constraints case

We consider an uncertainty sets F for (JRGP), with known two
first order moments, and with pairwise independent marginal
distributions.

Assumption 4

The uncertainty set F = F1 × · · · ×FK

For any joint distribution F in F , its marginal distributions
F1, . . . ,FK are pairwise independent.

Fk = {Fk | EFk [ck ] = µk ,CovFk [ck ] = Γk}, k = 0, 1, . . . ,K .

We assume that µk ≥ 0, Γk is positive definite matrix, and σki,j ≥ 0,
k = 0, 1, ...,K.
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Uncertainty with known moments
Joint chance constraints case

Theorem 7
Given Assumption 4, (JRGP) is equivalent to

(JRGP1)

min
t∈RM

++
,y∈RK

++

I0∑
i=1

µ
0
i

M∏
j=1

t
a0ij
j

s.t.

Ik∑
i=1

µ
k
i

M∏
j=1

t
akij
j +

√
yk

1− yk

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j ≤ 1, k = 1, ...K .

∏
k

yk ≥ 1− ε.

Non convex due to the bi-linear term.
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Uncertainty with known moments
Joint chance constraints case

We transform (JRGP1) using rj = log(tj), j = 1, . . . ,M and
xk = log(yk), k = 1, . . . ,K :

(JRGP1s ) min
r∈RM ,x∈RK

I0∑
i=1

µ
0
i exp

{
M∑
j=1

a0ij rj

}

s.t.

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p exp

{ M∑
j=1

(
(akij + akpj )rj

)
+ log

(
exk

1− exk

)}

+

Ik∑
i=1

µ
k
i exp

{
M∑
j=1

akij rj

}
≤ 1, k = 1, . . . ,K ,

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, . . . ,K .

(JRGP1s) is a convex programming problem as log
(

exk
1−exk

)
is

convex. Can be rewritten as xk − log (1− exk ) to meet the rules of
disciplined convex programming of CVX.
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Uncertainty with unknown moments
Joint chance constraints case

Assumption 5

The uncertainty set F = F1 × · · · ×FK , and for any distribution F in
F , its marginal distributions F1, . . . ,FK are pairwise independent.
Moreover,

Fk =

{
Fk

∣∣∣∣∣
(
EFk [ck ]− µk

)>
(Γk)−1

(
EFk [ck ]− µk

)
≤ πk1 ,

CovFk [ck ] �D π
k
2Γk .

}
,

We assume that µk ≥ 0, Γk is positive definite matrix, and σki,j ≥ 0,
k = 0, 1, ...,K.
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Uncertainty with unknown moments
Joint chance constraints case

Theorem 8
Given Assumption 5, (JRGP) is equivalent to

(JRGP2) min
t∈RM

++
,y∈RK

++

I0∑
i=1

µ
0
i

M∏
j=1

t
a0ij
j +

√
π0
1

√√√√ I0∑
i=1

I0∑
p=1

σ0
i,p

M∏
j=1

t
a0ij+a0pj
j

s.t.

Ik∑
i=1

µ
k
i

M∏
j=1

t
akij
j +

√
πk
1

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j

+

√
yk

1− yk

√
πk
2

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j ≤ 1, k = 1, ...K .

∏
k

yk ≥ 1− ε.

(JRGP2) can be reformulated as a convex programming problem by
changing the decision variables.
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Uncertainty sets with density uncertainty
Joint chance constraints case

We consider uncertainty sets for (JRGP) with a reference distribution.

Assumption 6

The uncertainty sets are

F0 = {F0 | DDL(F0||F 0
0 ) ≤ κ0} and F = {F | DDL(F ||F 0) ≤ κ},

where
DDL is defined in Assumption 3,
F 0
0 is the reference distribution for c0,

F 0 is the reference joint distribution for c1, c2, . . . , cK , such that
F 0 = F 0

1 × · · · × F 0
K and the marginal distributions F 0

1 , . . . ,F 0
K are

pairwise independent.
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Uncertainty sets with density uncertainty
Joint chance constraints case

Theorem 9
Given Assumption 7, we assume that F 0

0 ,F 0
1 , . . . ,F 0

K are normal
distributions with mean vector µk = [µk1 , µ

k
2 , . . . , µ

k
Ik ]> and covariance

matrix Γk = {σki,j , i , j = 1, . . . , Ik}, k = 0, 1, ...,K. Then (JRGP) is
equivalent to (JRGP3N)

min
t∈RM

++
,y∈RK

++

∑I0
i=1
µ0
i

∏M
j=1

t
a0ij
j +

√
2κ0
∑I0

i=1

∑I0
p=1

σ0
i,p

∏M
j=1

t
a0ij+a0pj
j

s.t.
∑Ik

i=1
µk
i

∏M
j=1

t
akij
j + Φ−1(yk )

√∑Ik
i=1

∑Ik
p=1

σk
i,p

∏M
j=1

t
akij+akpj
j ≤ 1, k = 1, ...K ,∏

k
yk ≥ 1− ε′.

where ε′ = 1− infx∈(0,1)

{
e−κx1−ε−1

x−1

}
.

Convex reformulation can be obtained when ε′ ≤ 0.5 and σki,p ≥ 0.
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Data-driven case
Joint chance constraints case

Theorem 10
Given Assumption 7, we assume that F 0

k is a discrete distribution with H
possible values c̃k(h), h = 1, . . . ,H, associated with their probabilities 1

H ,
k = 0, 1, . . . ,K. Then (JRGP) is equivalent to (JRGP3D)

min
r∈RM ,α∈(0,∞),ς

α log
(

1
H

∑H
h=1

exp
{(∑I0

i=1
c̃0i (h) exp

{∑M
j=1

a0ij rj
})

/α
})

+ ακ0,

s.t. 1
H

∑H
h=1

(1− ςh) ≥ 1− ε′,∑Ik
i=1

c̃ki (h) exp
{∑M

j=1
akij rj
}
≤ Mςh + 1, h = 1, . . . ,H, k = 1, 2, ...,K ,

ςh ∈ {0, 1}, h = 1, . . . ,H.
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Joint uncertainty set of akij and ck
i

Individual chance constraints case

We consider uncertainty sets for (IRGP) with a reference distribution.

Assumption 7

The uncertainty sets are

Gk =

Gk

∣∣∣∣Gk(ak = ak(m)) = pkm, m = 1, . . . ,Mk ,

Mk∑
m=1

pkm = 1,

Gk(c|ak = ak(m)) = Fm
k (c),∀c ∈ supp(Fk), Fm

k ∈ Fm
k , m = 1, . . . ,Mk .

 ,

k = 0, 1, ...,K .

where Fm
k could be an uncertainty set defined in Assumptions 1, 2,

or 3.
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Joint uncertainty set of akij and ck
i

Individual chance constraints case

Theorem 11

Given Assumption 7, (IRGP) is equivalent to the following geometric
program:

(IRGPa) min
t∈RM

++,z

M0∑
m=1

p0m

(
sup

Fm
0 ∈Fm

0

EFm
0

[ I0∑
m=1

c0m
M∏
j=1

ta
0
ij (m)

j

])
(1)

s.t.
Mk∑
m=1

pkmzkm ≥ 1− εk , k = 1, . . . ,K , (2)

inf
Fm
k ∈Fm

k

PFm
k

( Ik∑
m=1

ckm
M∏
j=1

ta
k
ij (m)

j ≤ 1
)
≥ zkm,

m = 1, . . . ,Mk , k = 1, . . . ,K , (3)
zkm ∈ [0, 1], m = 1, . . . ,Mk , k = 1, ...K . (4)
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Joint uncertainty set of akij and ck
i

Individual chance constraints case

Choosing Fm
k to be an uncertainty sets with known first two order

moments, we can reformulate (IRGPa) as

min
t∈RM

++
,z

I0∑
i=1

µ0i

M∏
j=1

t
a0ij (m)

j (5)

s.t.
Mk∑
m=1

pkmzkm ≥ 1− εk , k = 1, . . . ,K , (6)

Ik∑
i=1

µki (m)

M∏
j=1

t
akij (m)

j +

√
zkm

1− zkm

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p(m)

M∏
j=1

t
akij (m)+akpj (m)

j ≤ 1,

m = 1, . . . ,Mk , k = 1, . . . ,K , (7)
zkm ∈ [0, 1], m = 1, . . . ,Mk , k = 1, ...K . (8)

Proposition 12

If εk ≤ 1
2 minm{pkm}, and σki,p ≥ 0, for any i , p = 1, . . . , Ik , k = 1, . . . ,K,

(IRGPa1r ) is a convex programming problem.
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Joint uncertainty set of akij and ck
i

Ambiguity of the distribution of ak

Assumption 8

The uncertainty sets for the joint distribution of ck and ak are

Gk =

{
Gk

∣∣∣∣∣Gk(ak = ak(m)) = pkm, m = 1, . . . ,Mk , pk ∈Pk ,

Gk(c|ak = ak(m)) = Fm
k (c),∀c ∈ supp(Fk), Fm

k ∈ Fm
k , m = 1, . . . ,Mk .

}
, k = 0, 1, ...,K .

here, Pk is the uncertainty set of the distribution of ak .

box uncertainty,

Pk = {pk |pk = p̃k + ηk , e>ηk = 0, ηk ≤ ηk ≤ η̄k},

ellipsoidal uncertainty,

Pk = {pk |pk = p̃k +Akηk , e>Akηk = 0, p̃k +Akηk ≥ 0, ‖ηk‖ ≤ 1}.

Similar convex reformulations.
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Joint uncertainty set of akij and ck
i

Joint chance constraints case

Assumption 9

The uncertainty set G = G1 × · · · × GK , and for any distribution G in G , its marginal
distributions G1, . . . ,GK are pairwise independent. Where, Gk is a marginal
uncertainty set defined in Assumption 7.

Theorem 13

Given Assumption 9, (JRGP) is equivalent to the following program:

(JRGPa) min
t∈RM

++
,y,z

M0∑
m=1

p0m

(
sup

Fm
0 ∈Fm

0

EFm
0

[
I0∑

m=1

c0m

M∏
j=1

t
a0ij
j

])

s.t.
K∏

k=1

yk ≥ (1− ε), 0 ≤ yk ≤ 1, k = 1, . . . ,K ,

Mk∑
m=1

pkmzkm ≥ yk , k = 1, . . . ,K ,

(3)− (4).
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Joint uncertainty set of akij and ck
i

Joint chance constraints case

Similarly, choosing unknown moments uncertainty set Fm
k , We can reformulate

(JRGPa) as

(JRGPa1r ) min
r,x,z

I0∑
i=1

µ0i exp

{
M∑
j=1

a0ij rj

}

s.t.
K∑

k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, . . . ,K ,

Mk∑
m=1

pkmzkm ≥ exk , k = 1, . . . ,K ,

(7)− (8).

Similarly to (12), a sufficient condition for the convexity of (JRGPa1r ) is
ε ≤ 1

2 mink,m{pkm} and σki,p ≥ 0, for any i , p = 1, . . . , Ik , k = 1, . . . ,K .
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Outline of the talk

1 Introduction
2 Individual robust geometric chance constraints

Uncertainty with known moments
Uncertainty with unknown moments
Uncertainty with density uncertainty (Continuous/Data-driven cases)

3 Joint robust geometric chance constraints
Uncertainty with known moments (Outer/inner approximations)
Uncertainty with unknown moments
Uncertainty with density uncertainty (Continuous/Data-driven cases)

4 Joint uncertainty of akij and cki
5 Numerical results
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Numerical results
Distributionally robust geometric optimization

We consider a distributionally robust shape optimization problem
with individual chance constraints

(RSOPI) min
x1,...,xm

m∏
i=1

x−1i

s.t. P

[
m−1∑
j=1

(
m − 1
Aj

x1
m∏

i=2,i 6=j

xi ) ≤ βwall

]
≥ 1− εwall

P

[
1
Aflr

m∏
j=2

xj ≤ βflr

]
≥ 1− εflr

xix−1j ≤ γi,j , ∀i 6= j.
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Numerical results
Distributionally robust geometric optimization

and a distributionally robust shape optimization problem with joint
chance constraints

(RSOPJ ) min
x1,...,xm

m∏
i=1

x−1i

s.t. P

[
m−1∑
j=1

(
m − 1
Aj

x1
m∏

i=2,i 6=j

xi ) ≤ βwall ,
1
Aflr

m∏
j=2

xj ≤ βflr

]
≥ 1− ε

xix−1j ≤ γi,j , ∀i 6= j,
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Numerical results
Distributionally robust geometric optimization

1/Aflr and 1/Aj , j = 1, . . . ,m − 1, are considered as random
variables.
We assume 1/Afl to be independent to 1/Aj , j = 1, . . . ,m − 1.
Fwall and Fj are the distributions of 1/Aflr and 1/Aj ,
j = 1, . . . ,m − 1.
F is the joint distribution of 1/Awall and 1/Aj , j = 1, . . . ,m − 1.
Mean values and covariances in all uncertainty sets are set the same.
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Numerical results
Distributionally robust geometric optimization

MOSEK solver from CVX package with Matlab R2012b; PC with a
2.6 Ghz Intel Core i7-5600U CPU and 12.0 GB RAM.
m = 100
Mean value of 1/Aflr is 0.02; the variance of 1/Aflr is 0.02; the mean
value of 1/Aj is 0.01, j = 1, . . . ,m − 1; the variance of 1/Aj is 0.01,
j = 1, . . . ,m − 1; all the covariance between 1/Aflr and 1/Aj ,
j = 1, . . . ,m − 1, are zero.
for (IRGP2) and (JRGP2), we set πk1 = 0.0001, πk2 = 1.2, k = 1, 2;
for (IRGP3N) and (JRGP3N), we set κ0 = κ = κ1 = κ2 = 0.02.
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Numerical results
Distributionally robust geometric optimization

Individual vs Joint geometric chance constraints.
Test 9 groups of instances with εwall and εflr such that
(1− εwall)(1− εflr ) = 1− ε.

Table: Optimal values of (IRGP) and (JRGP)

ε εwall εflr (IRGP1) (JRGP1) (IRGP2) (JRGP2) (ISGP) (JSGP) (IRGP3N ) (JRGP3N )

0.05 0.045 0.0052 289.98 277.05 313.50 299.35 138.24 135.61 162.96 159.35
0.05 0.040 0.0104 305.27 277.05 330.27 299.35 141.10 135.61 167.03 159.35
0.05 0.035 0.0155 323.66 277.05 350.44 299.35 144.29 135.61 171.66 159.35
0.05 0.030 0.0206 346.47 277.05 375.44 299.35 147.87 135.61 177.08 159.35
0.05 0.025 0.0256 375.74 277.05 407.52 299.35 151.97 135.61 183.61 159.35
0.05 0.020 0.0306 415.34 277.05 450.97 299.35 156.85 135.61 191.87 159.35
0.05 0.015 0.0355 473.29 277.05 514.50 299.35 162.89 135.61 203.06 159.35
0.05 0.010 0.0404 570.38 277.05 620.92 299.35 171.02 135.61 220.46 159.35
0.05 0.005 0.0452 789.58 277.05 861.26 299.35 184.01 135.61 257.39 159.35
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Numerical results
Distributionally robust geometric optimization

Comparisons between DRO and SP for geometric optimization
We generate 50 groups of normal distributions with different mean
values and variances 1/Aflr and 1/Aj , j = 1, . . . ,m − 1.
Compute the satisfaction probabilities by optimal solutions of
(ISGP), (IRGP1), (IRGP2) and (IRGP3N)

Table 3: Values of PFwall and PFflr with εwall = 0.02 and εflr = 0.0306
Real distribution (ISGP) (IRGP1) (IRGP2) (IRGP3N )

1/Awall 1/A1 · · · PFwall
PFflr

PFwall
PFflr

PFwall
PFflr

PFwall
PFflr

N( 0.0297 , 0.0337 ) N( 0.0356 , 0.0232 ) · · · 0.9971 1.0000 0.9991 1.0000 0.5176 1.0000 0.6601 1.0000
N( 0.0171 , 0.0212 ) N( 0.0208 , 0.0261 ) · · · 0.9976 1.0000 0.9993 1.0000 0.5486 1.0000 0.6879 1.0000
N( 0.0228 , 0.0355 ) N( 0.0264 , 0.0105 ) · · · 0.9981 1.0000 0.9995 1.0000 0.5801 1.0000 0.7151 1.0000
N( 0.0417 , 0.0117 ) N( 0.0329 , 0.0259 ) · · · 0.9985 1.0000 0.9996 1.0000 0.6103 1.0000 0.7406 1.0000
N( 0.0362 , 0.0235 ) N( 0.0355 , 0.0267 ) · · · 0.9987 1.0000 0.9997 1.0000 0.5886 1.0000 0.7268 1.0000
N( 0.0307 , 0.0357 ) N( 0.0155 , 0.0177 ) · · · 0.9988 1.0000 0.9997 1.0000 0.6015 1.0000 0.7372 1.0000
N( 0.0144 , 0.0157 ) N( 0.0357 , 0.0214 ) · · · 0.9990 1.0000 0.9997 1.0000 0.6199 1.0000 0.7530 1.0000
N( 0.0106 , 0.0371 ) N( 0.0124 , 0.0319 ) · · · 0.9992 1.0000 0.9998 1.0000 0.6294 1.0000 0.7629 1.0000
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Numerical results
Distributionally robust geometric optimization

Individual DRG Chance Constraints

Figure 1 shows the values of P = PFwall × PFflr , the product of the
satisfaction probabilities of individual chance constraints.
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Numerical results
Distributionally robust geometric optimization

Joint DRG Chance Constraints

Table: Values of joint satisfaction probabilities P with ε = 0.05
Real distribution Values of P

1/Awall 1/A1 · · · (JSGP) (JRGP1) (JRGP2) (JRGP3N )

N( 0.0199 , 0.0385 ) N( 0.0317 , 0.0338 ) · · · 0.9047 0.9383 0.4332 0.5321
N( 0.0220 , 0.0457 ) N( 0.0182 , 0.0353 ) · · · 0.9177 0.9475 0.4670 0.5655
N( 0.0279 , 0.0521 ) N( 0.0157 , 0.0203 ) · · · 0.9208 0.9499 0.4688 0.5684
N( 0.0112 , 0.0502 ) N( 0.0404 , 0.0229 ) · · · 0.9281 0.9549 0.4911 0.5900
N( 0.0279 , 0.0344 ) N( 0.0413 , 0.0441 ) · · · 0.9318 0.9579 0.4914 0.5920
N( 0.0396 , 0.0173 ) N( 0.0295 , 0.0528 ) · · · 0.9373 0.9622 0.4910 0.5945
N( 0.0158 , 0.0335 ) N( 0.0202 , 0.0478 ) · · · 0.9483 0.9691 0.5432 0.6422
N( 0.0162 , 0.0229 ) N( 0.0318 , 0.0136 ) · · · 0.9508 0.9709 0.5469 0.6466
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Numerical results
Distributionally robust geometric optimization

Joint DRG Chance Constraints

Figure 2 shows the values of salification probability of the joint constraint
P
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Conclusions

Propose tractable reformulations for distributionally robust chance
constrained geometric optimization problems with 3 different
ambiguity sets.
Show numerical feasibility on a stochastic optimization shape
problem.
Our results might be more conservative generally speaking due to
some strong assumptions.
Further research should be the extension of our results to more
general (standard) geometric optimization under uncertainty.

Thank you!
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