Distributionally robust chance constrained geometric optimization

Liu Jia Xi'an Jiaotong University

Joint work with Abdel Lisser^a and Zhiping Chen^b ^a LRI, Université Paris Sud, France **b** Xi'an Jiaotong University

Dalian March 23, 2019

A + + = + + = +

4 Introduction

- ² Individual robust geometric chance constraints
- ³ Joint robust geometric chance constraints
- Φ Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

 η are 重

A geometric program can be formulated as:

$$
\min_t g_0(t) \text{ s.t. } g_k(t) \leq 1, \ k = 1, \ldots, K, \ t \in \mathbb{R}_{++}^M
$$

with

$$
g_k(t) = \sum_{i=1}^{l_k} c_i^k \prod_{j=1}^M t_j^{a_{ij}^k}, \ k = 0, \ldots, K.
$$

- $c_i^k\prod_{j=1}^M t_j^{\mathcal{a}^k_{ij}}$ is called a monomial, and $\boldsymbol{g}_k(t)$ is called posynomial.
- The posynomials might have different parameters $c_i^k \geq 0$ and a_{ij}^k .
- \bullet Geometric programs are not convex with respect to t
- They are convex with respect to $\{r : r_j = \log t_j, j = 1, \ldots, M\}$.

 \Box \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box

Applications (cf. S. Boyd, 2007, R. Wiebking, 1977, M. Luptáčik, 1981, S. Kim et al., 2007)

- **.** Wireless communications
- Semiconductor device engineering
- **•** Floor planning
- Digital circuit gate sizing
- Economic and managerial problems
- Wire sizing
- *. . .*

オート オート オート

重

 QQ

Individual chance constraints are studied in S. Rao (1996) and J. Dupačová (2009):

$$
(ISGP) \quad \min_{t \in \mathbb{R}_{++}^M} \quad \mathbb{E}_{\mathcal{F}_0} \left[\sum_{i=1}^{l_0} c_i^0 \prod_{j=1}^M t_j^{a_{ij}^0} \right]
$$
\n
$$
\text{s.t.} \quad \mathbb{P}_{\mathcal{F}_k} \left(\sum_{i=1}^k c_i^k \prod_{j=1}^M t_j^{a_{ij}^k} \le 1 \right) \ge 1 - \epsilon_k, \ k = 1, ...K
$$

- c_i^k is random (normally distributed), a_{ij}^k is constant.
- Reformulated as geometric programs.

Dupacova J (2009) Stochastic geometric programming: approaches and applications. In Brozova V,Kvasnicka R, eds. Proceedings of MME09, 63-66.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \rightarrow \mathcal{B}$

 OQ

Recently, L. and A. Lisser (2016) studied stochastic geometric problems with joint chance constraints; i.e.;

$$
\begin{array}{ll}\n\text{(JSGP)} & \displaystyle\min_{t\in\mathbb{R}^M_{++}} & \mathbb{E}_{\mathcal{F}_0}\left[\sum_{i=1}^{l_0}c_i^0\prod_{j=1}^Mt_j^{a_{ij}^0}\right] \\
& \text{s.t.} & \displaystyle\mathbb{P}_{\mathcal{F}}(\sum_{i=1}^{l_k}c_i^k\prod_{j=1}^Mt_j^{a_{ij}^k}\leq 1, \,\,k=1,...K) \geq 1-\epsilon,\n\end{array}
$$

- c_i^k is random (normally distributed), a_{ij}^k is constant.
- Reformulated as convex programming problems when $\epsilon \leq 0.5$.

 $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$

Outline of the talk

4 Introduction

² **Individual** robust geometric chance constraints

- Uncertainty with **known** moments
- Uncertainty with unknown moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

We consider the distributionally robust geometric programs with individual chance constraints and the ambiguity of F_0 , F_k or F:

$$
\begin{array}{ll}\n\text{(IRGP)} & \min_{t \in \mathbb{R}_{++}^M} & \sup_{F \in \mathscr{F}_0} \mathbb{E}_{F_0} \left[\sum_{i=1}^{l_0} c_i^0 \prod_{j=1}^M t_j^{a_{ij}^0} \right] \\
& \text{s.t.} & \inf_{F_k \in \mathscr{F}_k} \mathbb{P}_{F_k} \left(\sum_{i=1}^{l_k} c_i^k \prod_{j=1}^M t_j^{a_{ij}^k} \le 1 \right) \ge 1 - \epsilon_k, \ k = 1, \dots K.\n\end{array}
$$

where \mathscr{F}_0 , \mathscr{F}_k , $k = 1, ..., K$ are the uncertainty sets, which contain all the distributions of F_0 , F_k , $k = 1, \ldots, K$.

 c_i^k is random, a_{ij}^k is constant.

Uncertainty sets with known moments

• We consider the uncertainty sets \mathscr{F}_k , $k = 0, ..., K$, with known two first order moments information (L. El Ghaoui et al, 2003, L. Chen et al, 2011).

Assumption 1

The uncertainty sets are

$$
\mathscr{F}_k = \{F_k \mid \mathbb{E}_{F_k}[c^k] = \mu^k, Cov_{F_k}[c^k] = \Gamma^k\}, k = 0, ..., K.
$$

where
$$
Cov_F[c^k] = \mathbb{E}_{F_k} [(c^k - \mathbb{E}_{F_k}[c^k]) (c^k - \mathbb{E}_{F_k}[c^k])^{\top}],
$$

- $\mu^k = [\mu_1^k, \mu_2^k, \dots, \mu_{l_k}^k]^\top$ and $\Gamma^k = \{\sigma_{i,j}^k\}.$
- μ_i^k is the reference value of the expected value of c_i^k .
- $\sigma_{i,j}^k$ is the reference value of the covariance between c_i^k and c_j^k ,
- We assume that $\mu^k \geq 0$, Γ^k is positive definite matrix, and $\sigma_{i,j}^k \geq 0$.

イロメ イ押 トラ ミュース

Theorem 1

Suppose that Assumption [1](#page-8-0) holds. Then (IRGP) is equivalent to

$$
(IRGP_1) \min_{t \in \mathbb{R}_{++}^M} \sum_{i=1}^{l_0} \mu_i^0 \prod_{j=1}^M t_j^{a_{ij}^0}
$$

s.t.
$$
\sum_{i=1}^{l_k} \mu_i^k \prod_{j=1}^M t_j^{a_{ij}^k} + \sqrt{\frac{1-\epsilon_k}{\epsilon_k}} \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k \prod_{j=1}^M t_j^{a_{ij}^k + a_{pj}^k}} \le 1,
$$

$$
k = 1, ...K.
$$

Sketch of the proof:

- Lemma 2.1 (L. Chen et al., 2011)
- Chebytchev inequality (N. Rujeerapaiboon et al., 2016)

4 桐 ト 4 三 ト 4 三 ト

Problem $(IRGP₁)$ is not convex w.r.t t, it can be transformed into a convex problem using $r_i = \log(t_i)$, $j = 1, \ldots, M$

$$
(IRGP1s) \min_{r \in \mathbb{R}^M} \sum_{i=1}^{l_0} \mu_i^0 \exp \left\{ \sum_{j=1}^M a_{ij}^0 r_j \right\}
$$

s.t.
$$
\sqrt{\frac{1-\epsilon_k}{\epsilon_k}} \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k \exp \left\{ \sum_{j=1}^M (a_{ij}^k + a_{pj}^k) r_j \right\}}
$$

$$
+ \sum_{i=1}^{l_k} \mu_i^k \exp \left\{ \sum_{j=1}^M a_{ij}^k r_j \right\} \le 1, k = 1, ..., K,
$$

 ORO

イ何 ト イヨ ト イヨ トー

Outline of the talk

4 Introduction

2 Individual robust geometric chance constraints

- **Uncertainty with known moments**
- Uncertainty with **unknown** moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

Uncertainty sets with unknown moments

We consider the uncertainty sets \mathscr{F}_k , $k = 0, ..., K$, for (IRGP). (E. Delage and Y. Ye, 2010; J. Cheng et al. 2003; N. Rujeerapaiboon et al., 2015).

Assumption 2

• The uncertainty sets are

$$
\mathscr{F}_k = \left\{ F_k \middle| \left(\mathbb{E}_{F_k} [c^k] - \mu^k \right)^\top (\Gamma^k)^{-1} \left(\mathbb{E}_{F_k} [c^k] - \mu^k \right) \leq \pi_1^k, \right\},
$$

- We assume that $\mu^k \geq 0$, Γ^k is positive definite matrix, and $\sigma_{i,j}^k \geq 0$, $k = 0, 1, ..., K$.
- $\pi_1^k, \pi_2^k \in \mathbb{R}$ are two scale parameters controlling the size of the uncertainty sets.
- $A \preceq_{D} B$ means that for any $x \in \mathbb{R}^n$, we have $x^\top Ax \leq x^\top Bx$.

イロ トラ 相 トラ ミ ヨ トラ ヨ ト

Uncertainty sets with unknown moments

Theorem 2

Given Assumption [2,](#page-12-0) (IRGP) is equivalent to

$$
(IRGP_2) \quad \min_{t \in \mathbb{R}_{++}^M} \quad \sum_{i=1}^{l_0} \mu_i^0 \prod_{j=1}^M t_j^{a_{ij}^0} + \sqrt{\pi_1^0} \sqrt{\sum_{i=1}^{l_0} \sum_{p=1}^{l_0} \sigma_{i,p}^0 \prod_{j=1}^M t_j^{a_{ij}^0 + a_{pj}^0}}
$$
\n
$$
s.t. \quad \sum_{i=1}^{l_k} \mu_i^k \prod_{j=1}^M t_j^{a_{ij}^k} + \sqrt{\pi_1^k} \sqrt{\sum_{i=1}^M \sum_{p=1}^M \sigma_{i,p}^k \prod_{j=1}^M t_j^{a_{ij}^k + a_{pj}^k}} \le 1, \ k = 1, \dots K.
$$

Sketch of the proof:

• Same ingredients as the previous Theorem extended to this case.

←ロト ←何ト ←ヨト ←ヨトー

 η a

后

Uncertainty sets with unknown moments

With the standard variable transformation $r_i = \log(t_i)$, $j = 1, \ldots, M$, we can transform $(IRGP₂)$ into

$$
\min_{r \in \mathbb{R}^M} \sum_{i=1}^{l_0} \mu_i^0 \exp\left\{ \sum_{j=1}^M a_{ij}^0 r_j \right\} + \sqrt{\pi_1^0} \sqrt{\sum_{i=1}^{l_0} \sum_{p=1}^{\ell_0} \sigma_{i,p}^0} \exp\left\{ \sum_{j=1}^M (a_{ij}^0 + a_{pj}^0) r_j \right\}
$$
\n
$$
\text{s.t.} \qquad \left(\sqrt{\frac{1-\epsilon_k}{\epsilon_k}} \sqrt{\pi_2^k} + \sqrt{\pi_1^k} \right) \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{\ell_k} \sigma_{i,p}^k} \exp\left\{ \sum_{j=1}^M (a_{ij}^k + a_{pj}^k) r_j \right\}
$$
\n
$$
+ \sum_{i=1}^{l_k} \mu_i^k \exp\left\{ \sum_{j=1}^M a_{ij}^k r_j \right\} \le 1, \ k = 1, \dots, K.
$$

which is a convex optimization problem.

Avoid SDP reformulation (Delage and Ye 2010; Cheng, Delage and Lisser 2014)

KEL KALK KELKELKAN KELK

Outline of the talk

4 Introduction

² **Individual** robust geometric chance constraints

- **Uncertainty with known moments**
- Uncertainty with unknown moments
- Uncertainty with **density** uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

Uncertainty sets controlled by the distance between the true distribution and the reference distribution of c^k (A. Ben-Tal, 2013; Z. Hu and J. Hong, 2013; R. Jiang and Y. Guan, 2016).

Assumption 3

The uncertainty sets are

$$
\mathscr{F}_k = \{F_k \mid D_{DL}(F_k||F_k^0) \leq \kappa_k\}, \ k = 0, ..., K.
$$

where D_{DL} is the Kullback-Leibler divergence distance

$$
D_{DL}(F_k||F_k^0)=\int_{\Omega}\phi\left(\frac{f_{F_k}(c^k)}{f_{F_k^0}(c^k)}\right)f_{F_k^0}(c^k)d c^k,
$$

- F^0_k is the reference distribution of c^k , $f_{F_k}(c^k)$ and $f_{F^0_k}(c^k)$ are the density functions of the true distribution and the reference distribution of c^k on Ω ,
- **•** κ_k is a parameter controlling the size of the uncertainty set, $k = 0, ..., K$. $\phi(t) = t \log t - t + 1$, for $t > 0$, and $\phi(t) = \infty$, ow.

イロメ イ押 トラ ミュース

Uncertainty in the density

Distributionally robust geometric optimization

We use Theorem 1 in Z. Hu and J. Hong (2013) for the following proposition:

Proposition 3

Given Assumption [3,](#page-16-0) the objective function is equivalent to

$$
\inf_{\alpha \in (0,\infty)} \alpha \log \mathbb{E}_{F_0^0}\left[\exp\left\{ \left(\sum_{i=1}^{l_0} c_i^0 \prod_{j=1}^M t_j^{a_{ij}^0} \right) / \alpha \right\} \right] + \alpha \kappa_0.
$$

and Theorem 1 and Proposition 4 in R. Jiang and Y. Guan (2016),

Proposition 4

Given Assumption [3,](#page-16-0) the constraint is equivalent to

$$
\mathbb{P}_{\digamma^{\mathsf{Q}}_k}(\sum_{i=1}^{l_k}c^k_i\prod_{j=1}^M t_j^{\mathsf{a}^k_j}\leq 1)\geq 1-\epsilon'_k,\ \ k=1,...K,
$$

$$
\text{ where } \epsilon_k' = 1 - \inf_{\mathbf{x} \in (0,1)} \left\{ \tfrac{e^{-\kappa_k} \mathbf{x}^{1-\epsilon_k} - 1}{\mathbf{x}^{-1}} \right\}, \, k = 1,...K.
$$

イロメ イ何 トイヨ トイヨメ

E

 299

Uncertainty in the density (IRGP) with normal reference distribution

Assume that the reference distribution F_k^0 follows a normal distribution:

- mean vector $\mu^k = [\mu_1^k, \mu_2^k, \dots, \mu_{l_k}^k]^\top \geq 0$
- positive definite covariance matrix $\Gamma^k = \{\sigma^k_{i,j}, \,\, i,j = 1,\ldots, I_k\}, \, \forall k.$

Theorem 5

Given Assumption [3](#page-16-0) and normal distribution assumption for F_k^0 , $k = 0, 1, ..., K$, (IRGP) is equivalent to

$$
(IRGP_{3N}) \quad \min_{t \in \mathbb{R}_{++}^{M}} \quad \sum_{i=1}^{l_0} \mu_i^0 \prod_{j=1}^{M} t_j^{s_{ij}^0} + \sqrt{2\kappa_0 \sum_{i=1}^{l_0} \sum_{p=1}^{l_0} \sigma_{i,p}^0 \prod_{j=1}^{M} t_j^{s_{ij}^0 + s_{pj}^0}}
$$
\n
$$
s.t. \quad \sum_{i=1}^{l_k} \mu_i^k \prod_{j=1}^{M} t_j^{s_{ij}^k} + \Phi^{-1}(1 - \epsilon_k^l) \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k \prod_{j=1}^{M} t_j^{s_{ij}^k + s_{pj}^k}} \le 1, \ k = 1, ... K.
$$

Here, $\Phi^{-1}(\cdot)$ is the quantile of the standard normal distribution $N(0, 1)$.

Proof: Based on previous theorems

イロト イ押 トイモト イモト

Historical data based discrete reference distribution F_k^0 .

Theorem 6

Given Assumption [3,](#page-16-0) we further assume F_k^0 follows a discrete distribution with H possible scenarios $\tilde{c}^k(1)$, $\tilde{c}^k(2)$, $\tilde{c}^k(H)$, associated with their probabilities $\frac{1}{H}$, $k = 0, 1, \ldots, K$. Then, problem (IRGP) is equivalent to $(IRGP_{3D})$

$$
\min_{r \in \mathbb{R}^M, \alpha \in (0, \infty), \varsigma} \alpha \log \left(\frac{1}{H} \sum_{h=1}^H \exp \left\{ \left(\sum_{i=1}^{l_0} \tilde{c}_i^0(h) \exp \left\{ \sum_{j=1}^M a_{ij}^0 r_j \right\} \right) / \alpha \right\} \right) + \alpha \kappa_0,
$$
\ns.t.\n
$$
\frac{1}{H} \sum_{h=1}^H (1 - s_h^k) \ge 1 - \epsilon_k', \ k = 1, 2, ..., K,
$$
\n
$$
\sum_{i=1}^{l_k} \tilde{c}_i^k(h) \exp \left\{ \sum_{j=1}^M a_{ij}^k r_j \right\} \le M s_h^k + 1, \ h = 1, ..., H, \ k = 1, 2, ..., K,
$$
\n
$$
s_h^k \in \{0, 1\}, \ h = 1, ..., H, \ k = 1, 2, ..., K.
$$

Proof: Propositions 4 and 5 and previous theorems.

KORK E KERKERKERKER

Outline of the talk

4 Introduction

2 Individual robust geometric chance constraints

- **Uncertainty with known moments**
- Uncertainty with unknown moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with **known** moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

We consider the distributionally robust geometric programs with joint chance constraints and the ambiguity of F_0 or F :

$$
(JRGP) \quad \min_{t \in \mathbb{R}_{++}^M} \quad \sup_{F_0 \in \mathscr{F}_0} \mathbb{E}_{F_0} \left[\sum_{i=1}^{l_0} c_i^0 \prod_{j=1}^M t_j^{a_{ij}^0} \right]
$$
\ns.t.
$$
\inf_{F \in \mathscr{F}} \mathbb{P}_F \left(\sum_{i=1}^{l_k} c_i^k \prod_{j=1}^M t_j^{a_{ij}^k} \le 1, \ k = 1, ... K \right) \ge 1 - \epsilon,
$$

where \mathscr{F}_0 and \mathscr{F} are the uncertainty sets, which contain all the distributions of F_0 and F_1 .

 c_i^k is random, a_{ij}^k is constant.

• We consider an uncertainty sets $\mathscr F$ for (*JRGP*), with known two first order moments, and with pairwise independent marginal distributions.

Assumption 4

- • The uncertainty set $\mathscr{F} = \mathscr{F}_1 \times \cdots \times \mathscr{F}_K$
- For any joint distribution F in $\mathscr F$, its marginal distributions F_1, \ldots, F_k are pairwise independent.

$$
\mathscr{F}_k = \{F_k \mid E_{F_k}[c^k] = \mu^k, Cov_{F_k}[c^k] = \Gamma^k\}, k = 0, 1, \ldots, K.
$$

We assume that $\mu^k \geq 0$, Γ^k is positive definite matrix, and $\sigma_{i,j}^k \geq 0$, $k = 0, 1, ..., K$.

イロメ イ押 トイモ トイモトー

Uncertainty with known moments

Joint chance constraints case

Non convex due to the bi-linear term.

 $AB + AB + AB + AB$

Uncertainty with known moments

Joint chance constraints case

• We transform $(JRGP_1)$ using $r_i = \log(t_i)$, $j = 1, \ldots, M$ and $x_k = \log(y_k), k = 1, ..., K$:

$$
(JRGP_{1s}) \quad \min_{r \in \mathbb{R}^{M}, x \in \mathbb{R}^{K}} \quad \sum_{i=1}^{l_{0}} \mu_{i}^{0} \exp \left\{ \sum_{j=1}^{M} a_{ij}^{0} r_{j} \right\}
$$
\n
$$
s.t. \quad \sqrt{\sum_{i=1}^{l_{k}} \sum_{p=1}^{l_{k}} \sigma_{i,p}^{k} \exp \left\{ \sum_{j=1}^{M} \left((a_{ij}^{k} + a_{pj}^{k}) r_{j} \right) + \log \left(\frac{e^{x_{k}}}{1 - e^{x_{k}}} \right) \right\}}
$$
\n
$$
+ \sum_{i=1}^{l_{k}} \mu_{i}^{k} \exp \left\{ \sum_{j=1}^{M} a_{ij}^{k} r_{j} \right\} \leq 1, k = 1, ..., K,
$$
\n
$$
\sum_{k=1}^{K} x_{k} \geq \log(1 - \epsilon), x_{k} \leq 0, k = 1, ..., K.
$$

 (MGP_{1s}) is a convex programming problem as log $\left(\frac{e^{x_k}}{1-e^{x_k}}\right)$ $\frac{e^{x_k}}{1-e^{x_k}}$) is convex. Can be rewritten as $x_k - \log{(1-e^{x_k})}$ to meet the rules of disciplined convex programming of CVX. $rac{1}{2}$

Outline of the talk

4 Introduction

2 Individual robust geometric chance constraints

- **Uncertainty with known moments**
- Uncertainty with unknown moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with **unknown** moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

Assumption 5

The uncertainty set $\mathscr{F} = \mathscr{F}_1 \times \cdots \times \mathscr{F}_K$, and for any distribution F in $\mathscr F$, its marginal distributions F_1, \ldots, F_K are pairwise independent. Moreover,

$$
\mathscr{F}_k = \left\{ F_k \middle| \begin{array}{l} \left(\mathbb{E}_{F_k} [c^k] - \mu^k \right)^\top (\Gamma^k)^{-1} \left(\mathbb{E}_{F_k} [c^k] - \mu^k \right) \leq \pi_1^k, \\ Cov_{F_k} [c^k] \preceq_D \pi_2^k \Gamma^k. \end{array} \right\},
$$

We assume that $\mu^k \geq 0$, Γ^k is positive definite matrix, and $\sigma_{i,j}^k \geq 0$, $k = 0, 1, ..., K$.

オート オート オート

 \equiv \cap \cap

Uncertainty with unknown moments

Joint chance constraints case

Theorem 8

Given Assumption [5,](#page-26-0) (JRGP) is equivalent to

$$
(JRGP_2) \quad \min_{t \in \mathbb{R}_{++}^M, y \in \mathbb{R}_{++}^K} \quad \sum_{i=1}^{l_0} \mu_i^0 \prod_{j=1}^M t_j^{a_{ij}^0} + \sqrt{\pi_1^0} \sqrt{\sum_{i=1}^{l_0} \sum_{p=1}^{l_0} \sigma_{i,p}^0 \prod_{j=1}^M t_j^{a_{ij}^0 + a_{pj}^0}}
$$
\ns.t.
$$
\sum_{i=1}^{l_k} \mu_i^k \prod_{j=1}^M t_j^{a_{ij}^k} + \sqrt{\pi_1^k} \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k \prod_{j=1}^M t_j^{a_{ij}^k + a_{pj}^k}}
$$
\n
$$
+ \sqrt{\frac{y_k}{1 - y_k}} \sqrt{\pi_2^k} \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k \prod_{j=1}^M t_j^{a_{ij}^k + a_{pj}^k}} \le 1, k = 1, ... K.
$$
\n
$$
\prod_k y_k \ge 1 - \epsilon.
$$

 $(JRGP₂)$ can be reformulated as a convex programming problem by changing the decision variables. **YO A HER YEAR A HARRY YOU A LOT**

Outline of the talk

4 Introduction

2 Individual robust geometric chance constraints

- **.** Uncertainty with known moments
- Uncertainty with unknown moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with **density** uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

We consider uncertainty sets for (JRGP) with a reference distribution.

Assumption 6

The uncertainty sets are

 $\mathscr{F}_0 = \{F_0 \mid D_{DL}(F_0 || F_0^0) \leq \kappa_0\}$ and $\mathscr{F} = \{F \mid D_{DL}(F || F^0) \leq \kappa\},$

where

- \bullet D_{DL} is defined in Assumption [3,](#page-16-0)
- F_0^0 is the reference distribution for c^0 ,
- F^0 is the reference joint distribution for c^1 , c^2 , ..., c^K , such that $\mathcal{F}^0 = \mathcal{F}^0_1 \times \cdots \times \mathcal{F}^0_K$ and the marginal distributions $\mathcal{F}^0_1, \ldots, \mathcal{F}^0_K$ are pairwise independent.

イロメ イ相 メラエンション・コ

Uncertainty sets with density uncertainty

Joint chance constraints case

Theorem 9

Given Assumption [7,](#page-29-0) we assume that $F_0^0, F_1^0, \ldots, F_{K-1}^0$ are normal distributions with mean vector $\mu^k = [\mu_1^k, \mu_2^k, \dots, \mu_{l_k}^k]^\top$ and covariance $matrix \; \Gamma^k = \{ \sigma^k_{i,j}, \; i,j = 1, \ldots, l_k \}, \; k = 0, 1, ..., K. \;$ Then (JRGP) is equivalent to $(JRGP_{3N})$

$$
\min_{t \in \mathbb{R}_{++}^M, y \in \mathbb{R}_{++}^K} \sum_{j=1}^{l_0} \mu_j^0 \prod_{j=1}^M t_j^{\frac{a_j^0}{ij}} + \sqrt{2\kappa_0 \sum_{i=1}^{l_0} \sum_{p=1}^{l_0} \sigma_{i,p}^0 \prod_{j=1}^M t_j^{\frac{a_j^0}{ij} + \frac{a_j^0}{pi}}}}}
$$
\ns.t. $\sum_{i=1}^{l_k} \mu_i^k \prod_{j=1}^M t_j^{\frac{a_j^k}{ij}} + \Phi^{-1}(y_k) \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k \prod_{j=1}^M t_j^{\frac{a_j^k}{ij} + \frac{a_j}{pi}}}} \le 1, k = 1, ...K,$
\n $\prod_k y_k \ge 1 - \epsilon'.$
\nwhere $\epsilon' = 1 - \inf_{x \in (0,1)} \left\{ \frac{e^{-\kappa} x^{1 - \epsilon} - 1}{x - 1} \right\}.$

Convex reformulation can be obtained when $\epsilon' \leq 0.5$ and $\sigma_{i,p}^k \geq 0$.

←ロ ▶ → 何 ▶ → ヨ ▶ → ヨ ▶ →

Theorem 10

Given Assumption [7,](#page-29-0) we assume that F_k^0 is a discrete distribution with H possible values $\tilde{c}^k(h)$, $h = 1, \ldots, H$, associated with their probabilities $\frac{1}{H}$, $k = 0, 1, \ldots, K$. Then (JRGP) is equivalent to (JRGP_{3D})

$$
\min_{r \in \mathbb{R}^M, \alpha \in (0, \infty), \varsigma} \alpha \log \left(\frac{1}{H} \sum_{h=1}^H \exp \left\{ \left(\sum_{i=1}^{l_0} \tilde{c}_i^0(h) \exp \left\{ \sum_{j=1}^M a_{ij}^0 r_j \right\} \right) / \alpha \right\} \right) + \alpha \kappa_0,
$$
\ns.t.\n
$$
\frac{1}{H} \sum_{h=1}^H (1 - \varsigma_h) \ge 1 - \epsilon',
$$
\n
$$
\sum_{i=1}^{l_k} \tilde{c}_i^k(h) \exp \left\{ \sum_{j=1}^M a_{ij}^k r_j \right\} \le M \varsigma_h + 1, \ h = 1, \dots, H, \ k = 1, 2, \dots, K,
$$
\n
$$
\varsigma_h \in \{0, 1\}, \ h = 1, \dots, H.
$$

 \sqrt{m} , \sqrt{m} , \sqrt{m} , \sqrt{m}

Outline of the talk

4 Introduction

2 Individual robust geometric chance constraints

- **.** Uncertainty with known moments
- Uncertainty with unknown moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

Individual chance constraints case

We consider uncertainty sets for (IRGP) with a reference distribution.

Assumption 7

The uncertainty sets are

$$
\mathscr{G}_k = \left\{ G_k \middle| \begin{aligned} G_k(a^k = a^k(m)) &= p_m^k, \ m = 1, \dots, M_k, \\ G_k(c|a^k = a^k(m)) &= F_k^m(c), \forall c \in \text{supp}(F_k), \ F_k^m \in \mathscr{F}_k^m, \ m = 1, \dots, M_k. \\ k &= 0, 1, \dots, K. \end{aligned} \right\},
$$

where \mathscr{F}^m_k could be an uncertainty set defined in Assumptions 1, 2, or 3.

イ何 ト イヨ ト イヨ トー

Individual chance constraints case

Theorem 11

Given Assumption 7, (IRGP) is equivalent to the following geometric program:

$$
(IRGPa) \quad \min_{t \in \mathbb{R}_{++}^{M}, z} \quad \sum_{m=1}^{M_0} p_m^0 \left(\sup_{F_0^m \in \mathscr{F}_0^m} \mathbb{E}_{F_0^m} \left[\sum_{m=1}^{l_0} c_m^0 \prod_{j=1}^M t_j^{a_{ij}^0(m)} \right] \right) \quad (1)
$$

s.t.
$$
\sum_{m=1}^{M_k} p_m^k z_m^k \ge 1 - \epsilon_k, \ k = 1, ..., K, \qquad (2)
$$

$$
\inf_{F_k^m \in \mathscr{F}_k^m} \mathbb{P}_{F_k^m} \left(\sum_{m=1}^{l_k} c_m^k \prod_{j=1}^M t_j^{a_{ij}^k(m)} \le 1 \right) \ge z_m^k,
$$

$$
m = 1, ..., M_k, k = 1, ..., K, \qquad (3)
$$

$$
z_m^k \in [0, 1], \ m = 1, ..., M_k, k = 1, ... K. \qquad (4)
$$

 2990

Individual chance constraints case

Choosing \mathcal{F}_k^m to be an uncertainty sets with known first two order moments, we can reformulate $(IRGP_a)$ as

$$
\min_{t \in \mathbb{R}_{++}^M, z} \sum_{i=1}^{l_0} \mu_i^0 \prod_{j=1}^M t_j^{a_{ij}^0(m)} \tag{5}
$$
\n
$$
\text{s.t.} \sum_{m=1}^{M_k} p_m^k z_m^k \ge 1 - \epsilon_k, \ k = 1, ..., K, \tag{6}
$$
\n
$$
\sum_{i=1}^{l_k} \mu_i^k(m) \prod_{j=1}^M t_j^{a_{ij}^k(m)} + \sqrt{\frac{z_m^k}{1 - z_m^k}} \sqrt{\sum_{i=1}^{l_k} \sum_{p=1}^{l_k} \sigma_{i,p}^k(m)} \prod_{j=1}^M t_j^{a_{ij}^k(m) + a_{pj}^k(m)} \le 1, \ m = 1, ..., M_k, k = 1, ..., K, \tag{7}
$$
\n
$$
z_m^k \in [0, 1], \ m = 1, ..., M_k, k = 1, ..., K, \tag{8}
$$

Proposition 12

If $\epsilon_k \leq \frac{1}{2} \min_m \{ p_m^k \}$, and $\sigma_{i,p}^k \geq 0$, for any $i, p = 1, \ldots, l_k$, $k = 1, \ldots, K$, $(IRGP_{a1r})$ is a convex programming problem.

Ambiguity of the distribution of \boldsymbol{s}^k

Assumption 8

The uncertainty sets for the joint distribution of c^k and a^k are

$$
\mathscr{G}_k = \left\{ G_k \middle| \begin{aligned} G_k(a^k = a^k(m)) &= p_m^k, \ m = 1, \dots, M_k, \ p^k \in \mathscr{P}_k, \\ G_k(c|a^k = a^k(m)) &= F_k^m(c), \forall c \in \text{supp}(F_k), \ F_k^m \in \mathscr{F}_k^m, \ m = 1, \dots, \end{aligned} \right.
$$

here, \mathscr{P}_k is the uncertainty set of the distribution of a^k.

 \bullet box uncertainty,

$$
\mathscr{P}_k = \{p^k | p^k = \tilde{p}^k + \eta_k, e^{\top} \eta_k = 0, \underline{\eta}_k \leq \eta_k \leq \bar{\eta}_k \},
$$

• ellipsoidal uncertainty,

$$
\mathscr{P}_k = \{p^k | p^k = \tilde{p}^k + A_k \eta_k, e^{\top} A_k \eta_k = 0, \ \tilde{p}^k + A_k \eta_k \ge 0, \ \|\eta_k\| \le 1\}.
$$

• Similar convex reformulations.

Joint chance constraints case

Assumption 9

The uncertainty set $\mathscr{G} = \mathscr{G}_1 \times \cdots \times \mathscr{G}_K$, and for any distribution G in \mathscr{G} , its marginal distributions G_1, \ldots, G_K are pairwise independent. Where, \mathscr{G}_k is a marginal uncertainty set defined in Assumption 7.

Theorem 13

Given Assumption [9,](#page-37-0) (JRGP) is equivalent to the following program:

$$
(JRGP_a) \min_{t \in \mathbb{R}_{++}^M, y, z} \sum_{m=1}^{M_0} p_m^0 \left(\sup_{F_0^m \in \mathscr{F}_0^m} \mathbb{E}_{F_0^m} \left[\sum_{m=1}^{l_0} c_m^0 \prod_{j=1}^M t_j^{a_j^0} \right] \right)
$$

s.t.
$$
\prod_{k=1}^K y_k \ge (1 - \epsilon), \ 0 \le y_k \le 1, \ k = 1, ..., K,
$$

$$
\sum_{m=1}^{M_k} p_m^k z_m^k \ge y_k, \ k = 1, ..., K,
$$

$$
(3) - (4).
$$

Joint chance constraints case

Similarly, choosing unknown moments uncertainty set \mathscr{F}_{k}^{m} , We can reformulate $(JRGP_a)$ as

$$
(JRGPalr) \min_{r,x,z} \sum_{i=1}^{h_0} \mu_i^0 \exp\left\{\sum_{j=1}^M a_{ij}^0 r_j\right\}
$$

s.t.
$$
\sum_{k=1}^K x_k \ge \log(1-\epsilon), x_k \le 0, k = 1,..., K,
$$

$$
\sum_{m=1}^{M_k} p_m^k z_m^k \ge e^{x_k}, k = 1,..., K,
$$

$$
(7) - (8).
$$

Similarly to [\(12\)](#page-35-0), a sufficient condition for the convexity of $(JRGP_{alr})$ is $\epsilon \leq \frac{1}{2}\min_{k,m}\{p_m^k\}$ and $\sigma_{i,p}^k \geq 0$, for any $i,p = 1,\ldots, l_k, \ k = 1,\ldots,K.$

イロト イ押 トイヨ トイヨ トー

Outline of the talk

4 Introduction

2 Individual robust geometric chance constraints

- **.** Uncertainty with known moments
- Uncertainty with unknown moments
- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- **3** Joint robust geometric chance constraints
	- Uncertainty with known moments (Outer/inner approximations)
	- Uncertainty with unknown moments
	- Uncertainty with density uncertainty (Continuous/Data-driven cases)
- \bullet Joint uncertainty of a_{ij}^k and c_i^k
- **6** Numerical results

イ何 ト イヨ ト イヨ ト

We consider a distributionally robust shape optimization problem with individual chance constraints

$$
(RSOP_l) \min_{x_1, \dots, x_m} \prod_{i=1}^m x_i^{-1}
$$

s.t.
$$
P\left[\sum_{j=1}^{m-1} \left(\frac{m-1}{A_j} x_1 \prod_{i=2, i \neq j}^m x_i\right) \le \beta_{wall}\right] \ge 1 - \epsilon_{wall}
$$

$$
P\left[\frac{1}{A_{flr}} \prod_{j=2}^m x_j \le \beta_{flr}\right] \ge 1 - \epsilon_{flr}
$$

$$
x_i x_j^{-1} \le \gamma_{i,j}, \ \forall i \neq j.
$$

KOD KARD KED KE DAGA

• and a distributionally robust shape optimization problem with joint chance constraints

$$
(RSOP_J) \min_{x_1, ..., x_m} \prod_{i=1}^m x_i^{-1}
$$

s.t.
$$
P\left[\sum_{j=1}^{m-1} \left(\frac{m-1}{A_j} x_1 \prod_{i=2, i \neq j}^m x_i\right) \le \beta_{wall}, \frac{1}{A_{thr}} \prod_{j=2}^m x_j \le \beta_{thr}\right] \ge 1 - \epsilon
$$

$$
x_i x_j^{-1} \le \gamma_{i,j}, \ \forall i \neq j,
$$

KOD KARD KED KE DAGA

- $1/A_{\mathit{flr}}$ and $1/A_j$, $j=1,\ldots,m-1$, are considered as random variables.
- We assume $1/A_{\textit{fl}}$ to be independent to $1/A_{\textit{j}}, \, j=1,\ldots,m-1.$
- F_{wall} and F_j are the distributions of $1/A_{flr}$ and $1/A_j,$ $j = 1, \ldots, m - 1.$
- F is the joint distribution of $1/A_{wall}$ and $1/A_j, \, j=1,\ldots,m-1.$
- Mean values and covariances in all uncertainty sets are set the same.

イロメ イ押 トイラ トイラメー

- MOSEK solver from CVX package with Matlab R2012b; PC with a 2.6 Ghz Intel Core i7-5600U CPU and 12.0 GB RAM.
- $m = 100$
- Mean value of $1/A_{\text{ffr}}$ is 0.02; the variance of $1/A_{\text{ffr}}$ is 0.02; the mean value of $1/A_j$ is 0.01, $j=1,\ldots,m-1;$ the variance of $1/A_j$ is 0.01, $j=1,\ldots,m-1;$ all the covariance between $1/A_{\textit{flr}}$ and $1/A_j,$ $j = 1, \ldots, m - 1$, are zero.
- for $\left(RGP_2\right)$ and $\left(RGP_2\right)$, we set $\pi_1^k = 0.0001$, $\pi_2^k = 1.2$, $k = 1, 2$;
- for (IRGP_{3N}) and (JRGP_{3N}), we set $\kappa_0 = \kappa = \kappa_1 = \kappa_2 = 0.02$.

マーティ ミューティー

- Individual vs Joint geometric chance constraints.
- Test 9 groups of instances with ϵ_{wall} and ϵ_{flr} such that $(1 - \epsilon_{wall})(1 - \epsilon_{fir}) = 1 - \epsilon.$

ϵ	™ wall	ϵ_{flr}	IRGP ₁	JRGP ₁	IRGP	JRGP	ISGP	JSGP	$(IRGP_{3N})$	JRGP $_{3N}$)
0.05	0.045	0.0052	289.98	277.05	313.50	299.35	138.24	135.61	162.96	159.35
0.05	0.040	0.0104	305.27	277.05	330.27	299.35	141.10	135.61	167.03	159.35
0.05	0.035	0.0155	323.66	277.05	350.44	299.35	144.29	135.61	171.66	159.35
0.05	0.030	0.0206	346.47	277.05	375.44	299.35	147.87	135.61	177.08	159.35
0.05	0.025	0.0256	375.74	277.05	407.52	299.35	151.97	135.61	183.61	159.35
0.05	0.020	0.0306	415.34	277.05	450.97	299.35	156.85	135.61	191.87	159.35
0.05	0.015	0.0355	473.29	277.05	514.50	299.35	162.89	135.61	203.06	159.35
0.05	0.010	0.0404	570.38	277.05	620.92	299.35	171.02	135.61	220.46	159.35
0.05	0.005	0.0452	789.58	277.05	861.26	299.35	184.01	135.61	257.39	159.35

Table: Optimal values of (IRGP) and (JRGP)

KED KARD KED KED E YA GA

- Comparisons between DRO and SP for geometric optimization
- We generate 50 groups of normal distributions with different mean values and variances $1/A_{\textit{flr}}$ and $1/A_{\textit{j}}, \, j=1,\ldots,m-1.$
- Compute the satisfaction probabilities by optimal solutions of (ISGP), (IRGP₁), (IRGP₂) and (IRGP_{3N})

Real distribution	(ISGP)		(IRGP ₁)		(IRGP ₂)		$(\overline{\textit{IRGP}}_{3N})$			
$1/A_{wall}$	$1/A_1$		F_{wall}	${}^{\perp\!}F_{flr}$	$\mathbb{P}_{F_{wall}}$	${}^{\mathbb{P}} F_{flr}$	$\mathbb{P}_{F_{\mathsf{wall}}}$	${}^{\psi}F_{flr}$	$\mathbb{P}_{F_{\text{wall}}}$	$P_{F_{flr}}$
N(0.0297,0.0337	N(0.0356,0.0232)	\cdots	0.9971	1.0000	0.9991	1.0000	0.5176	1.0000	0.6601	1.0000
N(0.0171,0.0212)	N(0.0208,0.0261	.	0.9976	1.0000	0.9993	1.0000	0.5486	1.0000	0.6879	1.0000
N(0.0228,0.0355)	N(0.0264,0.0105)	\cdots	0.9981	1.0000	0.9995	1.0000	0.5801	1.0000	0.7151	1.0000
N(0.0417,0.0117	N(0.0329,0.0259)	.	0.9985	1.0000	0.9996	1.0000	0.6103	1.0000	0.7406	1.0000
N(0.0362,0.0235	N(0.0355,0.0267	\cdots	0.9987	1.0000	0.9997	1.0000	0.5886	1.0000	0.7268	1.0000
N(0.0307,0.0357	N(0.0155,0.0177	\cdots	0.9988	1.0000	0.9997	1.0000	0.6015	1.0000	0.7372	1.0000
N(0.0144,0.0157	N(0.0357,0.0214)	\cdots	0.9990	1.0000	0.9997	1.0000	0.6199	1.0000	0.7530	1.0000
N(0.0106,0.0371	N(0.0124,0.0319)	\cdots	0.9992	1.0000	0.9998	1.0000	0.6294	1.0000	0.7629	1.0000

Table 3: Values of $\mathbb{P}_{F_{wall}}$ and $\mathbb{P}_{F_{fir}}$ with $\epsilon_{wall} = 0.02$ and $\epsilon_{fir} = 0.0306$

KEL KALK KELKELKAN KELK

Individual DRG Chance Constraints

Figure 1 shows the values of $\mathbb{P} = \mathbb{P}_{F_{wall}} \times \mathbb{P}_{F_{fir}}$, the product of the satisfaction probabilities of individual chance con[str](#page-45-0)[ain](#page-47-0)[t](#page-45-0)[s.](#page-46-0)

[Distributionally robust chance constrained geometric optimization](#page-0-0)

 QQ

Joint DRG Chance Constraints

	Real distribution	Values of $\mathbb P$				
$1/A_{wall}$	$1/A_1$.	' JSGP)	(JRGP ₁)	(JRGP ₂)	$\left(JRGP_{3N}\right)$
N(0.0199,0.0385)	N(0.0317,0.0338)	\cdots	0.9047	0.9383	0.4332	0.5321
N(0.0220,0.0457)	N(0.0182,0.0353)	.	0.9177	0.9475	0.4670	0.5655
N(0.0279,0.0521)	N(0.0157,0.0203)	\cdots	0.9208	0.9499	0.4688	0.5684
N(0.0112,0.0502)	N(0.0404,0.0229)	.	0.9281	0.9549	0.4911	0.5900
N(0.0279,0.0344)	N(0.0413,0.0441)	.	0.9318	0.9579	0.4914	0.5920
N(0.0396,0.0173)	N(0.0295,0.0528)	\cdots	0.9373	0.9622	0.4910	0.5945
N(0.0158,0.0335)	N(0.0202,0.0478)	\cdots	0.9483	0.9691	0.5432	0.6422
N(0.0162,0.0229)	N(0.0318,0.0136)	.	0.9508	0.9709	0.5469	0.6466

Table: Values of joint satisfaction probabilities $\mathbb P$ with $\epsilon = 0.05$

KED KARD KED KED E YA GA

Joint DRG Chance Constraints

Figure 2 shows the values of salification probability of the joint constraint P $-10⁻¹$ 4個 ト 4目 ト 4目 ト Ξ

 QQ

We consider variations of the distributionally robust individual/joint chance constrained shape optimization problem,

$$
(R5OP_i^a) \min_{x_1, \dots, x_m} \prod_{i=1}^m x_i^{-1}
$$
\ns.t.
$$
\mathbb{P}\left[\sum_{j=1}^{m-1} \left(\frac{m-1}{A_j} x_1^{a_{wall}} \prod_{i=2, i \neq j}^m x_i^{a_{wall}}\right) \leq \beta_{wall}\right] \geq 1 - \epsilon_{wall}
$$
\n
$$
\mathbb{P}\left[\frac{1}{A_{fir}} \prod_{j=2}^m x_j^{a_{fl}} \leq \beta_{fir}\right] \geq 1 - \epsilon_{fr}
$$
\n
$$
x_i x_j^{-1} \leq \gamma_{i,j}, \forall i \neq j,
$$
\n
$$
(R5OP_j^a) \min_{x_1, \dots, x_m} \prod_{i=1}^m x_i^{-1}
$$
\ns.t.
$$
\mathbb{P}\left[\sum_{j=1}^{m-1} \left(\frac{m-1}{A_j} x_1^{a_{wall}} \prod_{i=2, i \neq j}^m x_i^{a_{wall}}\right) \leq \beta_{wall}, \frac{1}{A_{fir}} \prod_{j=2}^m x_j^{a_{ifr}} \leq \beta_{fir}\right] \geq 1 - \epsilon
$$
\n
$$
x_i x_j^{-1} \leq \gamma_{i,j}, \forall i \neq j.
$$
\n
$$
\text{s.t. } \mathbb{P}\left[\sum_{j=1}^{m-1} \left(\frac{m-1}{A_j} x_1^{a_{wall}} \prod_{i=2, i \neq j}^m x_i^{a_{wall}}\right) \leq \beta_{wall}, \frac{1}{A_{fir}} \prod_{j=2}^m x_j^{a_{ifr}} \leq \beta_{fir}\right] \geq 1 - \epsilon
$$

Table: Optimal values of $(IRGP_{a1})$ and $(JRGP_{a1})$

Figure: Values of $\mathbb{P}_{F_{wall}} \times \mathbb{P}_{F_{fir}}$ for $IRGP₂$ and $IRGP₂₁$

Figure: Values of \mathbb{P}_{joint} for JRGP₂ and $JRGP_{a1}$ \equiv \rightarrow

[Distributionally robust chance constrained geometric optimization](#page-0-0)

 299

÷,

- Propose tractable reformulations for distributionally robust chance constrained geometric optimization problems with 3 different ambiguity sets.
- Show numerical feasibility on a stochastic optimization shape problem.
- Our results might be more conservative generally speaking due to some strong assumptions.
- Further research should be the extension of our results to more general (standard) geometric optimization under uncertainty.

Thank you!

イロト イ押 トイヨ トイヨト

 \equiv