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Distributionally robust geometric optimization

A geometric program can be formulated as:
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o ¢ [[;Z; t;” is called a monomial, and gi(t) is called posynomial.
o The posynomials might have different parameters ¢/ > 0 and aj.
@ Geometric programs are not convex with respect to t
@ They are convex with respect to {r:rj=log t;, j=1,..., M}.



Distributionally robust geometric optimization

Applications (cf. S. Boyd, 2007, R. Wiebking, 1977, M. Luptacik, 1981,
S. Kim et al., 2007)

Wireless communications
Semiconductor device engineering
Floor planning

Digital circuit gate sizing
Economic and managerial problems
Wire sizing



Distributionally robust geometric optimization

Individual chance constraints are studied in S. Rao (1996) and J.
Dupacova (2009):
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@ c¥ is random (normally distributed), a,fj is constant.

@ Reformulated as geometric programs.

Dupacova J (2009) Stochastic geometric programming: approaches and applications. In Brozova

V,Kvasnicka R, eds. Proceedings of MMEQ9, 63-66.



Distributionally robust geometric optimization

Recently, L. and A. Lisser (2016) studied stochastic geometric problems
with joint chance constraints; i.e.;

S

(JSGP) min Ef,
teRrY

++

e ¢/ is random (normally distributed), af is constant.

o Reformulated as convex programming problems when ¢ <1 — ®(1).
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Distributionally robust geometric optimization

We consider the distributionally robust geometric programs with
individual chance constraints and the ambiguity of Fy, Fx or F:
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where g, Fx, k =1,..., K are the uncertainty sets, which contain
all the distributions of Fy, Fx, k=1,..., K.

e cX is random, afj is constant.



Uncertainty sets with known moments

o We consider the uncertainty sets %, k =0, ..., K, with known two
first order moments information (L. El Ghaoui et al, 2003, L. Chen
et al, 2011).

Assumption 1
The uncertainty sets are

yk = {Fk | EFk[Ck] = ,uk, COVFk[Ck] = l‘"}, k = 07 o00g) K.

where Covg[ck] = EF, [(Ck —Ef, [Ck]) (Ck - EFk[Ck])T}f

k ko k k1T K K
LAY :[N17N27"'7H1k] andr :{Uf,j}'

o X is the reference value of the expected value of cX.

° aff ; is the reference value of the covariance between cf and cf,

o We assume that uk >0, is positive definite matrix, and O‘,-‘i,- > 0.




Distributionally robust geometric optimization

Theorem 1

Suppose that Assumption 1 holds. Then (IRGP) is equivalent to
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Sketch of the proof:

@ Lemma 2.1 (L. Chen et al., 2011)
o Chebytchev inequality (N. Rujeerapaiboon et al., 2016)



Distributionally robust geometric optimization

Problem (/RGP;) is not convex w.r.t t, it can be transformed into a
convex problem using r; = log(t;), j=1,...,M
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Distributionally robust geometric optimization

Uncertainty sets with unknown moments

We consider the uncertainty sets %, k =0, ..., K, for (IRGP). (E.
Delage and Y. Ye, 2010; J. Cheng et al. 2003; N. Rujeerapaiboon et al.,
2015).

Assumption 2

@ The uncertainty sets are

G {Fk (Brle] - 1) " ()7 (Brlc] - 1) < mk,}

Covr, [c*] <p msT*.
o We assume that ;¥ > 0, T is positive definite matrix, and affj >0,
k=0,1,...K.
o i, &k € R are two scale parameters controlling the size of the
uncertainty sets.
e A =<p B means that for any x € R", we have x" Ax < x " Bx.




Distributionally robust geometric optimization

Uncertainty sets with unknown moments

Theorem 2

Given Assumption 2, (IRGP) is equivalent to
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Sketch of the proof:

@ Same ingredients as the previous Theorem extended to this case.

Distributionally robust chance constrained geometric optimization



Distributionally robust geometric optimization

Uncertainty sets with unknown moments

With the standard variable transformation r; = log(t;), j=1,..., M, we
can transform (IRGP,) into

; o0
min ,':p“ieXp{ . laUI:, + 4/7 \/Z p la'lpexp{zj 1(a + a0 )r}

rerRM

[1—c¢ Y
s.t. ( Tkk 7r§+ \/Z p1 ,pexp{zj:1(35+azj)rj}

+Zi":1ui exp{zjzlaijrj} <1, k=1,...,K.

which is a convex optimization problem.

@ Avoid SDP reformulation (Delage and Ye 2010; Cheng, Delage and
Lisser 2014)
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Uncertainty in the density

Distributionally robust geometric optimization

Uncertainty sets controlled by the distance between the true distribution
and the reference distribution of ¢k (A. Ben-Tal, 2013; Z. Hu and J.
Hong, 2013; R. Jiang and Y. Guan, 2016).

Assumption 3

The uncertainty sets are
Fi = {Fx | DoL(Fil|FY) < ri}, k=0,..., K.

where Dp, is the Kullback-Leibler divergence distance

fF Ck
DDL(FkHFE):/¢ —fk( k) fro(ck)dc,
Q FE(C ) k

@ FQ is the reference distribution of cX, fr, (ck) and fro(ck) are the density
K
functions of the true distribution and the reference distribution of cX on Q,

@ Ky is a parameter controlling the size of the uncertainty set, k =0, ..., K.
¢(t) =tlogt —t+1, for t > 0, and ¢(t) = oo, ow.




Uncertainty in the density

Distributionally robust geometric optimization

We use Theorem 1 in Z. Hu and J. Hong (2013) for the following proposition:

Proposition 3

Given Assumption 3, the objective function is equivalent to

Io Mo
a..

inf  alogELo |exp E c?]:[t.“ /a + akg.
ag(0,00) 0 E

i=1 Jj=1

and Theorem 1 and Proposition 4 in R. Jiang and Y. Guan (2016),

Proposition 4
Given Assumption 3, the constraint is equivalent to

I Mo
a..
PFE(E cf t! <1)>1—¢, k=1,..K,

— 1—
where €, =1 — inf,c (0,1 {%}, k=1,..K.




Uncertainty in the density

(IRGP) with normal reference distribution

Assume that the reference distribution FE follows a normal distribution:

@ mean vector /Jk = [p‘{,ué, .- -:lek]T >0
@ positive definite covariance matrix ¥ = {a,-kJ, ihj=1,..., I}, Vk.
Theorem 5

Given Assumption 3 and normal distribution assumption for FO, k = 0,1, ..., K, (IRGP) is
equivalent to

o Mo o I
a.. .
(IRGPsy)  min E ”?I |tjU + . | 2ko E E p| | ,, L
terM "
++ i=1 j=1 =1 p=1
e Ik
s.t. E H'll ”+¢ lfek) E E ’pll UPJ<1 k=1,.
i=1  p=1

Here, ®~(-) is the quantile of the standard normal distribution N(0, 1).

Proof: Based on previous theorems




Uncertainty in the density
Data-driven (/IRGP)

Historical data based discrete reference distribution F,?.

Theorem 6

Given Assumption 3, we further assume Fk follows a discrete distribution with H possible scenarios

gk(1), &4 (2), & (H), associated with their probabilities %, k = 0,1, ..., K. Then, problem
(IRGP) is equivalent to (IRGP3p)

mn et (30, o0 { (S0, B0en (X0, 0}) /) o

reRM,aE(U,oo),g
H k
s.t. %E hl(l—gh)zl—e;, k=1,2,..., K,

Zk “(h) exp{z laurj}gMg,f+1, h=1,...,H k=12, ... K,
ke {01}, h=1,...,H, k=1,2,..., K.

Proof: Propositions 4 and 5 and previous theorems.
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Distributionally robust geometric optimization

Uncertainty sets with known moments and nonnegative support

o We consider the uncertainty sets %, k =0, ..., K, with known first
order moments information on the nonnegative support.

Assumption 4

The uncertainty sets are

Tk ={F« | EFk[Ck] :,ukv]P)[Ck >0=1}, k=0,1,..,K,

l’l’k = [u‘f?/‘tlz(, ca 7HZ<]T and rk = {Ulk,j}

U is the reference value of the expected value of c¥

Support information: nonnegative cone! K. Natarajan, M. Sim
(2008,2010)

o W. Wiesemann, D. Kuhn, M. Sim (2014); G. Hanasusanto, V. Roitch, D.
Kuhn, W. Wiesemann (2017), support on convex, closed, and solid cone

4




Distributionally robust geometric optimization

Theorem 7

Suppose that Assumption 4 holds. Then (IRGP) is equivalent to

0
)

Io M
(IRGPy) min Z ud H tj"
teRY \a,8 =

s.t. (L= =218k <1, k=1,..,K,
Bk <0,0<A <1, k=1,.,K,
Nlag>1, k=1,.,K,

M
k
(7[3;‘)_1(1;(1_[5?'7 <1,i=1,.... 0, k=1,.., K.
j=1

Sketch of the proof:

@ Duality; Classification;



Distributionally robust geom

etric optimization

Problem (IRGP,) is not convex w.r.t t, it can be transformed into a

convex problem using new variables

Io M
. 0 0
(IRGPa4,) rGR’\T,I;,d,ﬁ ;ui exp ;aijrj
Iy
s.t. (1- ek)e’Xk + Zexp {—/\~k + ,BNf + Iog(uf-‘)} <1, k=1,..
i=1
\ <0, k=1,..,K,
\ <, k=1,...,K,

M
ozk+za§rj—g~ikgo, i=1,.. 0, k=1,.., K.

Jj=1

@ convex programming form

Distributionally robust chance constrained geometric optimization
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Distributionally robust geometric optimization

Uncertainty sets with known first two order moments and nonnegative support

We consider the uncertainty sets %k, k =0, ..., K, with known first two order
moments information and nonnegative support.

Assumption 5
The uncertainty sets are

T = {F | B [c"] = u*, Covg [c*] =s T¥, P[c* > 0] =1},
k=0,1,.. K.

@ X > 0and " is a positive definite matrix,
@ A>xs Bmeans A— B €S, where S is the n-dimensional positive
semi-definite cone.

@ Checking for the existence of multivariate distributions with nonnegative
support satisfying a given mean and second-moment matrix is, however, a
difficult problem (Bertsimas and Popescu 2005, Kemperman and
Skibinsky 1993, Murty and Kabadi 1987).

@ Always lead to NP-hard. Research on distributionally robust mixed 0-1
linear programs: K. Natarajan, C. Teo, Z. Zheng (2011)



Distributionally robust geometric optimization

Uncertainty sets with known first two order moments and nonnegative support

Given Assumption 5, (IRGP) is equivalent to the following optimization

problem (/RGPs):

,é,S\,W
i=1 j=1
M k
s.t Htj’"f'gw;,lzl, e k=1, K,
j=1
Y =3B
" . < eCp, k=1,...,K,
( —3B80 &— "
_S}k _%(Bk+wk)7 k=1,..,K,
- ~ e€Cp k=1,...,
< ~3(Bic+wh)T 1- X ’

B b+ Mt < Vi, TE 4 i (1) T >> (1= e)én, k=1, K,

Y50, k=1,...K.

C, is the co-positive cone, say C, = {A € S,|x"Ax >0, Vx > 0}.

Distributionally robust chance constrained geometric optimization

(1)

()

®3)

«)

(5)
(6)



Distributionally robust geometric optimization

Uncertainty sets with known first two order moments and nonnegative support

We can further reformulate (/RGPs,) in a convex programming form, by
bringing new auxiliary variables, r; = log(t;),j =1,..., M.

Io M
IRGPs min 1l exp r
URCP) o B Zl 2
i=

j=1
M
s.t. EXP{ZB,’-}G}SWL, i=1,....l, k=1,...,K,
j=1
(3)-(6)-

o Although (/IRGPs,) is a convex optimization problem,

@ (IRGPs,) is a NP-hard problem due to the co-positive cone
(Hiriart-Urruty and Seeger, 2010).

e C, approximated by doubly nonnegative cone S7 (1N,
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Distributionally robust geometric optimization

We consider the distributionally robust geometric programs with joint
chance constraints and the ambiguity of Fy or F:

(JRGP) min  sup Eg
fERTJr FoE S0

I Mo,
s.t. Finf Pe ( KTl <1, k= 1,...K> >1—c¢,

where %y and % are the uncertainty sets, which contain all the
distributions of Fo and F.

e cX is random, afj is constant.



Uncertainty with known moments

Joint chance constraints case

@ We consider an uncertainty sets .# for (JRGP), with known two
first order moments, and with pairwise independent marginal
distributions.

Assumption 6

@ The uncertainty set = F; X --- X Fg

e For any joint distribution F in %, its marginal distributions
Fi,..., Fk are pairwise independent.

Fi= {Fe | Er[c] = . Covp [ = TH}, k=0.1..... K.

o We assume that (/¥ > 0, T* is positive definite matrix, and of; > 0,
k=0,1,...,K.




Uncertainty with known moments

Joint chance constraints case

Theorem 8

Given Assumption 6, (JRGP) is equivalent to

(JRGPy)

min E p,, II ”
M K
f€R++;YG]R++

i=1

M
B a:‘.+a.
s.t. E ”’II f I—Yk E E a}jp”tjf P<1, k=1,..K.

Non convex due to the bi-linear term.

Distributionally robust chance constrained geometric optimization



Uncertainty with known moments

Joint chance constraints case

e We transform (JRGP:) using r; = log(t;), j=1,..., M and
x, = log(yk), k=1,...,K:

Io M
(JRGP4s) min E ;L? exp E ag.rj
reRM xerK -

ek
k k LAY [
s.t. E E ol exp{ E ((aij + apj)rj) + log (1 — ) }
=1 p=1 j=1
I M
2 : k 2 : K
+ i exp agtj <1, k=1,...,K,
i=1 j=1
K
E xk > log(l—¢€), xx <0, k=1,...,K.
k=1

o (JRGPy;) is a convex programming problem as log (%) is

convex. Can be rewritten as x, — log (1 — ) to meet the rules of
disciplined convex programming of CVX.
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Uncertainty with unknown moments

Joint chance constraints case

Assumption 7

The uncertainty set F = 1 X --- X Fk, and for any distribution F in

Z , its marginal distributions Fy, ..., Fx are pairwise independent.
Moreover,

%:{Fk

o We assume that (i > 0, T* s positive definite matrix, and of; > 0,
k=0,1,.. K.

(Brlck] — u4) " (M) (Brlck] — ) < wlk,}
Covr, [c¥] =p m&Tk. 7




Uncertainty with unknown moments

Joint chance constraints case

Theorem 9

Given Assumption 7, (JRGP) is equivalent to

Io Mo o o 0
i 0 %ij 0 u+ Pi
(JRGP2) min > W[5+ VDD ,pl I
terM yerK
++ ++ = j=1 i=1 p=1
Ik M [P
§ kIl v K § E | I uag
EHE Hi 5" = \/Z i
i=1 j=1 =1 p=1
ek
Yk K K A
+ \/mh E E .11 <1, k=1,..K
1—y
i=1 p=1 j=1

(JRGP,) can be reformulated as a convex programming problem by
changing the decision variables.

Distributionally robust chance constrained geometric optimization
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Uncertainty sets with density uncertainty

Joint chance constraints case

We consider uncertainty sets for (JRGP) with a reference distribution.
Assumption 8

The uncertainty sets are
Fo={Fo | DpL(Fo||FY) < ko} and F = {F | Dp(F||F°) < &},

where
e Dp, is defined in Assumption 3,
o FQ is the reference distribution for c°,

o FO is the reference joint distribution for c*, c?,...,cX, such that
FO = F? x --- x FY and the marginal distributions FY, ... FY are
pairwise independent.




Uncertainty sets with density uncertainty

Joint chance constraints case

Theorem 10
Given Assumption 11, we assume that FQ,F? ... FY are normal
distributions with mean vector pi* = [k k. . .. ,u,k]T and covariance

matrix Tk = {O"J, ihj=1,...,Ik}, k=0,1,....K. Then (JRGP) is
equivalent to (JRGPsy)

020

. I a.+a-.
o }:o 0 "J 2,%}: 2: p t iR
i1 ,11 i=1 2ap=1%ip le

M K
t€R++,Y€]R++

k k k
e kTTM i =il I gk M "ij pi _
se SR TTY €0+ 0700y Th, T, ot T, 6P <1 k=1,

[[w=>1-¢.

where ¢ =1 —inf (0 1) {%}

x—1

K

Convex reformulation can be obtained when ¢ < 1 — ®(1) and of, > 0.



Data-driven case

Joint chance constraints case

Theorem 11

Given Assumption 11, we assume that FP is a discrete distribution with
H possible values &X(h), h =1, ..., H, associated with their probabilities
%, k=0,1,..., K. Then (JRGP) is equivalent to (JRGP3p)

rERM,?eiTO,OO),c alog (% 27:1 P {( /IO 1 ~’0(h) P {Z aUrJ}) /a}) o,

H
s.t. ﬁzhllfch)>lfe',
/ k
ok ekn exp{z aur,}<M<,,+1 h=1,...,H, k=1,2,... K,
¢ €{0,1}, h=1,... H.

Distributionally robust chance constrained geometric optimization
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Joint chance constraints case

Uncertainty sets with known first order moment and nonnegative support

@ We consider an uncertainty sets .# for (JRGP), with known first
order moments and nonnegative support, and with pairwise
independent marginal distributions.

Assumption 9

@ The uncertainty set % = F1 X --- X Fg
@ For any joint distribution F in %, its marginal distributions

Fi,..., Fx are pairwise independent.
Fr = {Fc | Eg[c¥] = u*,P[ck > 0] =1}, k=0,1,...,K,

o We assume that (/¥ > 0, T* is positive definite matrix, and of; > 0,
k=0,1,.., K.




Joint chance constraints case

Uncertainty sets with known first order moment and nonnegative support

Theorem 12

Given Assumption 9, (JRGP) is equivalent to the following geometric
program (JRGP3):

Io M 2
min oy 211
teRY yeRK, a,B,) P
K
S [[w=1-c0<y<1 k=1..K
k=1

yk)\k_l - )‘;1/81—<er S 17 k = 17"'7 Ka
Bk <0,0< X <1, k=1,..K,
Mlag>1, k=1,..,K,

M k
(-8 e[| £ <1, =1,k k=1,..,
j=1




Joint chance constraints case

Uncertainty sets with known first order moment and nonnegative support

By bringing some auxiliary variables, we can transform the (JRGP;) into
the following convex programming problem.

Io M
(JRGP4,) min Z w2 exp Z ag-rj
rx,A,&,08 - -
i=1 j=1
K
s.t. ZkaIOg(lfe), xx <0, k=1,...,K,
k=1

Ik
exp {x — X } +Zexp{f& + Bk +Iog(u,-k)} <1, k=1,..,K,
i=1

kSO, k:17"'7K7

\k < ik, k=1,.., K,
M

ak+zagrj—,3lk<o, i=1,.. .0 k=1,..,K.
j=1

Constraints with exponential terms.



Joint chance constraints case

Uncertainty sets with known first two order moment and nonnegative support

Assumption 10
The uncertainty set F = %1 X --- X Fk, and for any distribution F in

F, its marginal distributions Fy, ..., Fx are pairwise independent.
Moreover,

Fi = {Fr | Be [c*] = p*, Cove[c¥] =<sTX, P[ck >0] =1}, k=0,

where ¥ >0, k =0,1,..., K.




Joint chance constraints case

Uncertainty sets with known first two order moment and nonnegative support

Theorem 13
Given Assumption 10, (JRGP) is equivalent to the following program (JRGPa):
o M
0 i
min 1 t
ty. V585w Z ’ H !
i=1 j=1
LT
s.t. Htj.”gw,’(,izl,...,lk,k:l,...,K,
j=1

v 15
~ . @ eCp, k=1,...,K,
( -8y & — "

_¥, —L(Bk + wh), k=1,.,K, > €Cpy k=1,...

—1(Bk+wh)T 1— A
—Ye=s0, k=1,.... K,
BTk + 534+ < VT + k(1) T > > &, k=1,..., K,

[[z1-co<n<t k=1 K
k

v
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Joint uncertainty set of afj and cf

Individual chance constraints case

We consider uncertainty sets for (IRGP) with a reference distribution.

Assumption 11

The uncertainty sets are

M
Gu(a¥ = a"(m) =pX, m=1,..., M,, pk =1,
g = o | GG = m) = ; 2

Gi(clak = a¥(m)) = Fl(c),Vc € supp(Fi), F' € Z', m=1,..., M.
k=0,1,.., K.

e where Z[" could be an uncertainty set defined in Assumptions 1, 2,
or 3.




Joint uncertainty set of afj and cf

Individual chance constraints case

Theorem 14

Given Assumption 7, (IRGP) is equivalent to the following geometric
program:

I M
(IRGP;)  min me< sup Epp ZOCS,Htf”(m)D (7)

teRM, z Fme

7 m=1  j=1
k
s.t. Zpﬁ,z,’f,zl—ek,kzl,...,K, (8)
T )
a;\m
o (eI <1) >,
m=1 j=1
m=1,... M,k=1,... K, (9)

zZKe0,1], m=1,...,M,k=1,..K. (10)




Joint uncertainty set of afj and cf

Individual chance constraints case

Choosing #" to be an uncertainty sets with known first two order

moments, we can reformulate (IRGP,) as

M

(11)

(12)

a-.(m
min E ud tj”( )
tGJRT \Z v} -1
My
s.t. E p,’;,z,’;,>1—ek, k=1,...,K,
m=1
Iy eIk
k k
K aji(m) z
g Ni(m)Htjj + 1_mzk § :§ :U;fp
m

i=1 p=1
m=1,...,M,k=1,..., K,
K e0,1], m=1,..., M, k=1,..K.

Proposition 15

If e < %minm{p,’;}, and affp >0, foranyi,p=1,..
(IRGP.1,) is a convex programming problem.

i ak(m)+ak.
ij pi
m ]
j=1
o k=1,...

m _

)

(13)
(14)

Distributionally robust chance constrained geometric optimization



Joint uncertainty set of afj and cf
Ambiguity of the distribution of ak

Assumption 12

The uncertainty sets for the joint distribution of c* and a* are

= {Gk

here, P is the uncertainty set of the distribution of a*.

G(a¥ =a*(m)) =pk, m=1,... .M, pXe 2,

@ box uncertainty,
P ={pH|p" = P+, T =0, 1, < <7k}
o ellipsoidal uncertainty,
P =A{p*Ip* = P+ Ak, € A = 0, B 4+Awmi > 0, [Imill < 1}

@ Similar convex reformulations.

Gi(c|ak = a¥(m)) = F™(c),Vc € supp(F), F" € F, m=1,...



Joint uncertainty set of afj and cf

Joint chance constraints case

Assumption 13

The uncertainty set ¢ = % X --- X 9k, and for any distribution G in &, its marginal
distributions Gi, ..., Gk are pairwise independent. Where, % is a marginal
uncertainty set defined in Assumption 7.

Theorem 16

Given Assumption 13, (JRGP) is equivalent to the following program:

Mo I Mo
(JRGP;) r’?ﬂin Z P2, sup ]EF[;U Z ) H t;,"j
t€]R++,y,z - F(;"E?é” o -1

K

st J[m=@-a 0<n < k=1..,k,
k=1

M
E k _k —
PmZmZ}’k: k=1,...,K,
m=1
(9) — (10).
_ Distributionally robust chance constrained geometric optimization
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Joint uncertainty set of afj and cf

Joint chance constraints case

Similarly, choosing unknown moments uncertainty set .#/", We can reformulate

(JRGP;) as
Io M
(JRGP1r) Txl,r; Z,u? exp Z agrj
i=1 j=1
K
s.t. Zxk >log(l—c¢), x¢ <0, k=1,...,K,
k=1
M
Zp,’;z,’;, >ek k=1,...,K,
m=1
(13) — (14).

Similarly to (15), a sufficient condition for the convexity of (JRGP.1,) is
e < %minkym{p,‘;} and Ufp >0, forany i,p=1,..., I, k=1,... K.



Outline of the talk

@ Introduction
@ Individual robust geometric chance constraints
o Uncertainty with first two order moments
e Uncertainty with density uncertainty (Continuous/Data-driven cases)
o Uncertainty with first order moment and nonnegative support
o Uncertainty with first two order moments and nonnegative support
© Joint robust geometric chance constraints
o Uncertainty with first two order moments
e Uncertainty with density uncertainty (Continuous/Data-driven cases)
o Uncertainty with first order moment and nonnegative support
o Uncertainty with first two order moments and nonnegative support

@ Joint uncertainty of aj and ¢/

@ Numerical results



Numerical results

Distributionally robust geometric optimization

@ We consider a distributionally robust shape optimization problem
with individual chance constraints

m
(RSOP;))  min H o
m

X1y--
i=1
m—
E H xi) < Buwant | 21— €wan

[ j=1 i=2,i7j

m
ij <Ba| =1—en
j:2

<ij, Vi#J.



Numerical results

Distributionally robust geometric optimization

@ and a distributionally robust shape optimization problem with joint
chance constraints

m
(RSOPy) min Hxi_l

X1 3e-esXm

m
m —
st. P (=t H %) < Buatls 5 ij<5f,, >1-e

—
Il
~
LS

<y, Vi,



Numerical results

Distributionally robust geometric optimization

e 1/Aa4 and 1/A;, j=1,...,m—1, are considered as random
variables.

@ We assume 1/A4 to be independent to 1/A;, j=1,...,m—1.

@ Fuay and F; are the distributions of 1/Ag and 1/A;,
j=1...,m—1.

e F is the joint distribution of 1/A,,y and 1/A;, j=1,...,m—1.

@ Mean values and covariances in all uncertainty sets are set the same.



Numerical results

Distributionally robust geometric optimization

o MOSEK solver from CVX package with Matlab R2012b; PC with a
2.6 Ghz Intel Core i7-5600U CPU and 12.0 GB RAM.

e m=100

@ Mean value of 1/Ag, is 0.02; the variance of 1/Ag, is 0.02; the mean
value of 1/A; is 0.01, j =1,..., m —1; the variance of 1/A; is 0.01,
j=1,...,m—1, all the covariance between 1/Ag and 1/A;,
j=1,...,m—1, are zero.

o for (IRGP,) and (JRGP;), we set 71'{‘ = 0.0001, 7T§ =12 k=1,2

e for (IRGPsy) and (JRGPsp), we set kg = k = k1 = kp = 0.02.



Numerical results

Distributionally robust geometric optimization

@ Individual vs Joint geometric chance constraints.

@ Test 9 groups of instances with €,.; and €4, such that
(1 — fwall)(]- — Ef/r) = 1 — €.

Table: Optimal values of (IRGP) and (JRGP)

3 < wall i (IRGP]) __(JRGP]) | _(IRGP,) __(JRGP,) | (I5GP) _ (JSGP) | (IRGP3y) _ (JRGP3p)
005| 0045 00052 | 289.98 277.05 313.50 29935 13824 13561 162.96 159.35
005| 0040 00104 | 305.27 277.05 330.27 299.35 14110 135.61 167.03 159.35
005| 003 00155 | 323.66 277.05 350.44 299.35 14429 135.61 171.66 159.35
005| 0030 00206 | 346.47 277.05 375.44 299.35 147.87  135.61 177.08 159.35
005| 0025 00256 | 375.74 277.05 407.52 299.35 151.07  135.61 183.61 159.35
005| 002 00306 | 41534 277.05 450.97 299.35 156.85  135.61 191.87 159.35
005| 0015 00355 | 473.29 277.05 514.50 299.35 16280  135.61 203.06 159.35
005| 0010 00404 | 570.38 277.05 620.92 299.35 17102 135.61 220.46 159.35
005| 0005 00452 | 789.58 277.05 861.26 299.35 18401 135.61 257.39 159.35

Distributionally robust chance constrained geometric optimization



Numerical results

Distributionally robust geometric optimization

@ Comparisons between DRO and SP for geometric optimization

@ We generate 50 groups of normal distributions with different mean
values and variances 1/Ag, and 1/A;, j=1,...,m—1.

@ Compute the satisfaction probabilities by optimal solutions of
(ISGP), (IRGPy), (IRGP,) and (IRGPsy)

Table 3: Values of Pg, , and Pg, with €,y = 0.02 and €5, = 0.0306

Real distribution (ISGP) (IRGPy) (IRGPy) (IRGP3)
1/A 1/A e P P P P P P P
/Awalt /M Foall Far | Fuay  Far | Fuan  Far | Fuay —Fpr

N( 0.0297 , 0.0337 0.0356 , 0.0232) - - - | 0.0971 1.0000 | 0.9991 1.0000 | 05176 1.0000 | 0.6601 1.0000

N( )

N( 0.0208 , 0.0261 ) - - 0.9976 1.0000 | 0.9993 1.0000 | 0.5486 1.0000 | 0.6879 1.0000
N( 0.0264 , 0.0105) - -- | 0.9981 1.0000 | 0.9995 1.0000 | 0.5801 1.0000 | 0.7151 1.0000
N( 0.0329, 0.0259 ) - - 0.9985 1.0000 | 0.9996 1.0000 | 0.6103 1.0000 | 0.7406 1.0000
N( 0.0355, 0.0267 ) - - 0.9987 1.0000 | 0.9997 1.0000 | 0.5886 1.0000 | 0.7268 1.0000
N( 0.0155,0.0177 ) - -- | 0.9988 1.0000 | 0.9997 1.0000 | 0.6015 1.0000 | 0.7372 1.0000
N( 0.0357,0.0214 ) - -- | 0.9990 1.0000 | 0.9997 1.0000 | 0.6199 1.0000 | 0.7530 1.0000
N(0.0124,0.0319) --- | 0.9992 1.0000 | 0.9998 1.0000 | 0.6294 1.0000 | 0.7629 1.0000




Numerical results

Distributionally robust geometric optimization

Individual DRG Chance Constraints
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Figure 1 shows the values of P = Pg,, x Pg, , the product of the
satisfaction probabilities of individual chance constraints.



Numerical results

Distributionally robust geometric optimization

Joint DRG Chance Constraints

Table: Values of joint satisfaction probabilities P with ¢ = 0.05

Real distribution Values of P
1/A 1/A; L (JSGP) __ (JRGPy) (JRGPy) (JRGP3py)
N(0.0199, 0.0385)  N( 0.0317 , 0.0338 ) : 0.9047 0.9383 0.4332 0.5321
N(0.0220,0.0457 )  N(0.0182, 0.0353 ) 0.9177 0.9475 0.4670 0.5655
N(0.0279,0.0521)  N( 0.0157 , 0.0203 ) 0.9208 0.9499 0.4688 0.5684
N(0.0112,0.0502)  N( 0.0404 , 0.0229 ) o 0.9281 0.9549 0.4911 0.5900
N(0.0279,0.0344 )  N(0.0413,0.0441 ) A 0.9318 0.9579 0.4914 0.5920
N(0.0396,0.0173)  N( 0.0295, 0.0528 ) ce 0.9373 0.9622 0.4910 0.5945
N(0.0158,0.0335)  N(0.0202, 0.0478 ) 0.9483 0.9691 0.5432 0.6422
N(0.0162,0.0220)  N( 0.0318 , 0.0136 ) 0.9508 0.9709 0.5469 0.6466




Numerical results

Distributionally robust geometric optimization

Joint DRG Chance Constraints
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Figure 2 shows the values of salification probability of the joint constraint
P

Distributionally robust chance constrained geometric optimization



Numerical results

; : ; k
Effect of ignoring nonnegativeness of c;

Table: Optimal values of (IRGP4) and (JRGP4) with or without non-negative
support constraints

€ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
€wall 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005
Eflr 0.0052 0.0104 0.0155 0.0206 0.0256 0.0306 0.0355 0.0404 0.0452

With NS (IRGPy) 2337.4 2632.7 3012.9 3520.5 4232.4 5302.4 7090.5 10679.4 21508.8

(JRGPy) 2101.8 2101.8 2101.8 2101.8 2101.8 2101.8 2101.8 2101.8 2101.8

. individual™ +Inf

Without NS joint™ LInf

*. with only first order moment constraint

Distributionally robust chance constrained geometric optimization



Numerical results

Effect of ignoring randomness of af‘j

We consider variations of the distributionally robust individual/joint chance
constrained shape optimization problem,

m
(RSOP}) min Hx,._l
X1 3y Xm
i=1
m—1 1 m
m—
st. P E (Txf”"’” H Xy < Buair | =1 — €wan
= i=2,i]
1 m
P IIx < >1-c
Ay L197 = Bar| = fir
Jj=2
xixt < g, Vi#
m
RSOP? min Hx._l
( J) X1s-+eyXm !
i=1
m—1 1 m 1 m
m—
st. P E (Txfw"” H Xy < Buait, A, foﬂ’ <Bar| >1—e€
=1 7 i=2,ij " =2

xixt < vij, Vi .



Numerical results

Effect of ignoring randomness of af‘j

Table: Optimal values of (IRGP,1) and (JRGP:1)

€ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
€Ewall 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01
Eflr 0.0052 0.0104 0.0155 0.0206 0.0256 0.0306 0.0355 0.0404

(IRGP31) 20513.7  25315.0 31586.8 39822.6 50692.7 65106.5 84670.4  120878.0
(JRGP,;) | 16822.6 ~ 16822.6 ~ 16822.6  16822.6  16822.6  16822.6  16822.6 16822.6
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Figure: Values of Pr,_, x P, for  Figure: Values of Pjn: for JRGP>
IRGP: and IRGP2; and JRGPa;

Distributionally robust chance constrained geometric optimization



Conclusions

@ Propose tractable reformulations for distributionally robust chance
constrained geometric optimization problems with 3 different
ambiguity sets.

@ Show numerical feasibility on a stochastic optimization shape
problem.

@ Our results might be more conservative generally speaking due to
some strong assumptions.

@ Further research should be the extension of our results to more
general (standard) geometric optimization under uncertainty.

Thank you!



