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Mixed-binary QPs, key condition

Consider (for indefinite Q and {c, ai, b} ⊂ Rn)

z∗ = min x>Qx + 2c>x

s. t. a>i x = bi for i∈ [1:m]

x ∈ Rn+
xj ∈ {0,1} for j ∈ B ,


(P )

B ... binary variables

[1:n] \B ... continuous variables

A = [a>1 , . . . , a
>
m]> m× n constraint matrix.

Polyhedron Z =
{
x ∈ Rn+ : Ax = b

}
contains feasible set.

Assume Burer’s key condition: Z gives linear relaxation,

x ∈ Z ⇒ xj ∈ [0,1] for all j ∈ B . (K)



Burer’s reformulation: enter copositivity

Linearizing by squaring equalities like RLT: put Xij = xixj.

If (K) holds, then (P ) is equivalent to the copositive problem

min 〈Q,X〉+ 2c>x

s. t. a>i x = bi for i∈ [1:m]

〈aia>i ,X〉 = b2i for i∈ [1:m]

Xjj = xj for j ∈ B(
1 x>

x X

)
∈ CPn+1 ,


(B)

where 〈Q,X〉 = trace(QX) and

CPn = conv
{
xx> : x ∈ Rn+

}
is the cp cone. Its dual is the copositive cone

[CPn]∗ =
{
C = C> n× n-matrix : x>Cx ≥ 0 if x ∈ Rn+

}
.



Counting variables/constraints

Original formulation: 2m+ |B| constraints,

symmetric matrix variable of order n+ 1 (one entry fixed).

Aggregation [Arima/Kim/Kojima ’14]:

min 〈Q,X〉+ 2c>x

s. t.
m∑
i=1

(
a>i Xai − 2bi a

>
i x + b2i

)
= 0 ,∑

j∈B
(Xjj − xj) = 0 ,(

1 x>

x X

)
∈ CPn+1 ,


(A)

gives equivalent reformulation with only two constraints.



Doubly NonNegative relaxation

In both formulations, cone constraint can be relaxed

– DNN-relaxation:

replace

(
1 x>

x X

)
∈ CPn+1 with

(
1 x>

x X

)
∈ Sn+1

+ ∩Nn+1 .

Motivation: any cp matrix is psd and has no negative entries.

(B)→ (DB), (A)→ (DA)

Leads to SDP with
(
n
2

)
additional nonnegativity constraints, for

both formulations: (DB) and (DA).



Exploiting linear constraints

Idea: use equality constraints to reduce order of matrix variable:

choose x0 ∈ Z (only need Ax0 = b) and linearly independent{
am+1, . . . , an

}
⊂ {a1, . . . , am}⊥

and form

B =

[
1 0 0 · · · 0
x0 am+1 am+2 · · · an

]
.

Have

Az = ζb ⇔
[
ζ
z

]
= By for some y ∈ Rn+1−m .



Reduced equivalent formulation

[Burer]: (DB) is equivalent to

min 〈Q,X〉+ 2c>x

s. t.

(
1 x>

x X

)
= BYB> ,

Xjj = xj, for j ∈ B,(
1 x>

x X

)
∈ Nn+1 , Y ∈ Sn+1−m

+ .


(DR)

... has smaller psd Y but additional equalities.

Same holds for original reformulation (R) of (B) where(
1 x>

x X

)
∈ CPn+1 replaces weaker

(
1 x>

x X

)
∈ Nn+1,Y ∈ Sn+1−m

+ .



Motivation

We shall prove the equivalence of problems (B), (A) and (R) and

similar results for the relaxations, from which, we aim at finding

new reformulations.

• Reformulations of linear constraints

• Reformulations of binary constraints

From the combinations of the reformulations of different cons-

traints, we find new reformulations of (B).



Linear constraints: aggregation and facial reduction

We shall consider the following four linear subspaces in Sn+1:

L1 =

{(
x0 x>

x X

)
∈ Sn+1 : ∃Y ∈ Sn+1−m s.t. BYB> =

(
x0 x>

x X

)}
,

L2 =


(
x0 x>

x X

)
∈ Sn+1 :

a>i x = bix0 for i∈ [1:m] ,

a>i X = bix
> for i∈ [1:m]

 ,
L3 =


(
x0 x>

x X

)
∈ Sn+1 :

a>i x = bix0 for i∈ [1:m] ,

a>i Xai = b2i x0 for i∈ [1:m]

 ,
L4 =

{(
x0 x>

x X

)
∈ Sn+1 :

∑m
i=1

(
a>i Xai − 2bi a

>
i x + b2i x0

)
= 0

}
.



Equivalence when intersecting with psd cone

Notice that L1 = BSn+1−mB>.

We will now show that in fact when intersecting with the positive

semidefinite cone these four cones coincide.

Theorem 1. We have

(a) L1 = L2 ⊆ L3 ⊆ L4 ,

(b) L1 ∩ Sn+1
+ = L2 ∩ Sn+1

+ = L3 ∩ Sn+1
+ = L4 ∩ Sn+1

+

(c) L1 ∩ Sn+1
+ = BSn+1−m

+ B> .



Binary constraints: aggregation

We further look at what can be done with the constraints related

to the binary constraints. We consider the following cones:

B1 =

{(
x0 x>

x X

)
∈ Sn+1 : Xjj = xj for j ∈ B

}
,

B2 =

{(
x0 x>

x X

)
∈ Sn+1 :

∑
j∈B(Xjj − xj) = 0

}
.



Equivalence when intersecting with psd cone and linear

constrained set

We shall show the following results:

Lemma 2. Let i∈ [1:4] and

(
x0 x>

x X

)
∈ Li ∩ Sn+1

+ ∩Nn+1. Then

Xjk ≤ xk for all k∈ [1:n], j ∈ B.

Theorem 3. For all i, j∈ [1:4] we have

B1 ∩ Li ∩ CPn+1 = B2 ∩ Lj ∩ CPn+1,

B1 ∩ Li ∩ Sn+1
+ ∩Nn+1 = B2 ∩ Lj ∩ Sn+1

+ ∩Nn+1.



Reformulations of (B)

From the equivalences between Li, i, j∈ [1:4], and Bk, k = 1,2,

we have

(B)⇔ min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B1 ∩ L3 ∩ CPn+1

}

(A)⇔ min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B2 ∩ L4 ∩ CPn+1

}

(R)⇔ min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B1 ∩ L1 ∩ CPn+1

}

(B)⇔ (A)⇔ (R)



Reformulations of (DB)

(DB)⇔ min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B1 ∩ L3 ∩ Sn+1

+ ∩Nn+1
}

means no merging

(DA)⇔ min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B2 ∩ L4 ∩ Sn+1

+ ∩Nn+1
}

means merging both linear and binary constraints

(DR)⇔ min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B1 ∩ (BSn+1−m

+ B>) ∩Nn+1
}

means reduced psd without merging binary constraints

(DB)⇔ (DA)⇔ (DR)



Merging only linear constraints

Merging only linear constraints leans a new reformulations of

(DB): min{〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B1 ∩ L4 ∩ Sn+1

+ ∩Nn+1}, i.e.

min 〈Q,X〉+ 2c>x
s. t.

∑m
i=1

(
a>i Xai − 2bi a

>
i x + b2i

)
= 0

Xjj = xj for j ∈ B,(
1 x>

x X

)
∈ Nn+1 ∩ Sn+1

+ .

(DML)

Meanwhile, it is a reformulation of (B) when

CPn+1 replaces Nn+1 ∩ Sn+1
+ .



Merging only binary constraints

Merging only binary constraints also leans a new reformulations

of (DB): min{〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B2 ∩ L3 ∩ Sn+1

+ ∩Nn+1},

min 〈Q,X〉+ 2c>x
s. t. a>i x = bi for i∈ [1:m]

〈aia>i ,X〉 = b2i for i∈ [1:m]∑
j∈B(Xjj − xj) = 0(
1 x>

x X

)
∈ Sn+1

+ ∩Nn+1.

(DMB)

Meanwhile, it is a reformulation of (B) when

CPn+1 replaces Nn+1 ∩ Sn+1
+ .



Merging strategy for reduced problem

Merging binary constraints of (R), we have a reformulation of

(R): min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B2 ∩ L1 ∩ CPn+1

}

min 〈Q,X〉+ 2c>x
s. t.

∑
j∈B(Xjj − xj) = 0

BYB> =

(
1 x>

x X

)
(

1 x>

x X

)
∈ CPn+1 , Y ∈ Sn+1−m .

(MR)



Reformulation of (DR)

Replacing

(
1 x>

x X

)
∈ CPn+1 , Y ∈ Sn+1−m in (DR) by

(
1 x>

x X

)
∈

Nn+1 , Y ∈ Sn+1−m
+ gives a reformulation of (DR).

min

{
〈Q,X〉+ 2c>x :

(
1 x>

x X

)
∈ B2 ∩ (BSn+1−m

+ B>) ∩Nn+1
}

(DMR)

(DB)⇔ (DA)⇔ (DR)

⇔ (DML)⇔ (DMB)⇔ (DMR)



An example

Consider a multidimensional quadratic knapsack problems

max x>Qx
s. t. ã>i x ≤ bi for i∈ [1:m]

x ∈ {0,1}n.
(1)

Adding slack variables to remove the inequality constraints

max x>Qx
s. t. ã>i x + vi = bi for i∈ [1:m]

x ∈ {0,1}n
v ∈ Rm+.

(2)

Add m slack variables!



Reformulation to satisfy condition (K)

Adding slack variables to guarantee the variables are restricted

in [0,1].

max x>Qx
s. t. ã>i x + vi = bi for i∈ [1:m]

xj + zj = 1 for j∈ [1:n]
x ∈ {0,1}n
v ∈ Rm+, z ∈ Rn+, x ∈ Rn+.

(3)



Numerical results

A MQKP with 2 knapsacks and 5 goods.

Statistics of solution status
(DB) (DML) (DMB) (DA) (DR) (DMR)

SDPT3 25.0888 26.5766∗ 25.0888 28.744∗ 25.0888 25.0888
SeDuMi 25.0888 26.5767∗ 25.0888 28.744∗ 25.0888 25.0888
Mosek 25.0888 NaN∗∗ 25.0888 NaN∗∗ 25.0888 25.0888

Sdpnal+ NaN∗∗ NaN∗∗ NaN∗∗ NaN∗∗ 25.0888 25.0888

∗: Inaccurate solved, the algorithm converge only to a near op-

timal or dual feasible solution.
∗∗: Failed, the sdp problem is unsolvable by solvers

When the problem is precisely solved, all sdp relaxation problems

have the same optimal value.



Statistics of solution status

We choose 4 different sizes and run 100 groups of sdp problems
with different parameters under the same size.

(DB) (DML) (DMB) (DA) (DR) (DMR)
’Solved’ 12 0 10 0 100 100

6*10 ’Inacc./Solved’ 88 100 90 100 0 0
’Failed’ 0 0 0 0 0 0
’Solved’ 0 0 0 0 99 98

10*10 ’Inacc./Solved’ 100 100 98 100 1 2
’Failed’ 0 0 2 0 0 0
’Solved’ 0 0 0 0 100 100

15*10 ’Inacc./Solved’ 6 100 13 100 0 0
’Failed’ 94 0 87 0 0 0
’Solved’ 0 0 0 0 41 99

30*5 ’Inacc./Solved’ 85 100 90 100 59 1
’Failed’ 15 0 10 0 0 0



Average solution times

(DB) (DML) (DMB) (DA) (DR) (DMR)
’Solved’ 1.01 - 1.06 - 0.28 0.28

6*10 ’Inacc./Solved’ 1.07 1.20 1.09 1.16 - -
’Failed’ - - - - - -
’Solved’ - - - - 0.40 0.40

10*10 ’Inacc./Solved’ 2.51 3.01 2.62 3.04 0.45 0.43
’Failed’ - - 1.08 - - -
’Solved’ - - - - 0.73 0.73

15*10 ’Inacc./Solved’ 4.84 9.48 6.64 9.27 - -
’Failed’ 2.59 - 2.65 - - -
’Solved’ - - - - 5.72 5.07

30*5 ’Inacc./Solved’ 217.35 380.23 234.98 324.25 5.75 5.31
’Failed’ 65.21 - 71.12 - - -

Results are derived with Sedumi.



Conclusions

• The sdp problems have no feasible points in the interior of the

semi-definite cone. Still hard to solve! further improvement!

• Most of the reduced sdp problems can be solve precisely,

while the non-reduced sdp problems can not.

• The CPU time of reduced sdp problems are much less.

• Compared the reduced sdp problem with no merging, the

reduced sdp problem with merging is more tractable.
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Thank you!


