New formulations and relaxations
for mixed-binary quadratic optimization

LIU Jia, LRI, Université Paris Sud
joint work with
I.M. Bomze, J. Cheng, P.J.C. Dickinson and
A. Lisser

PGMO days 2016
09 November 2016

Mixed-binary QPs, key condition

Consider (for indefinite Q and $\left\{\mathrm{c}, \mathrm{a}_{i}, \mathrm{~b}\right\} \subset \mathbb{R}^{n}$)

$$
\begin{array}{cl}
z^{*}=\min & \mathrm{x}^{\top} \mathrm{Qx}+2 \mathrm{c}^{\top} \mathrm{x} \\
\text { s.t. } & \mathrm{a}_{i}^{\top} \mathrm{x}=b_{i} \quad \text { for } i \in[1: m] \tag{P}\\
& \mathrm{x} \in \mathbb{R}_{+}^{n} \\
& x_{j} \in\{0,1\} \quad \text { for } j \in B
\end{array}
$$

B... binary variables
$[1: n] \backslash B \ldots$ continuous variables
$\mathrm{A}=\left[\mathrm{a}_{1}^{\top}, \ldots, \mathrm{a}_{m}^{\top}\right]^{\top} m \times n$ constraint matrix.
Polyhedron $Z=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n}: \mathrm{Ax}=\mathrm{b}\right\}$ contains feasible set.
Assume Burer's key condition: Z gives linear relaxation,

$$
\begin{equation*}
\mathrm{x} \in Z \quad \Rightarrow \quad x_{j} \in[0,1] \text { for all } j \in B \tag{K}
\end{equation*}
$$

Burer's reformulation: enter copositivity

Linearizing by squaring equalities like RLT: put $X_{i j}=x_{i} x_{j}$.
If (K) holds, then (P) is equivalent to the copositive problem

$$
\begin{array}{lll}
\min & \langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x} & \\
\text { s.t. } & \mathrm{a}_{i}^{\top} \mathrm{x}=b_{i} & \text { for } i \in[1: m] \\
& \left\langle\mathrm{a}_{i} \mathrm{a}_{i}^{\top}, \mathrm{X}\right\rangle=b_{i}^{2} & \text { for } i \in[1: m] \\
& X_{j j}=x_{j} & \text { for } j \in B \\
& \left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{C} P^{n+1}, &
\end{array}
$$

where $\langle Q, X\rangle=\operatorname{trace}(Q X)$ and

$$
\mathcal{C} P^{n}=\operatorname{conv}\left\{x^{\top}: x \in \mathbb{R}_{+}^{n}\right\}
$$

is the cp cone. Its dual is the copositive cone

$$
\left[\mathcal{C} P^{n}\right]^{*}=\left\{\mathrm{C}=\mathrm{C}^{\top} n \times n \text {-matrix }: \mathrm{x}^{\top} \mathrm{C} \mathrm{x} \geq 0 \text { if } \mathrm{x} \in \mathbb{R}_{+}^{n}\right\}
$$

Counting variables/constraints

Original formulation: $2 m+|B|$ constraints, symmetric matrix variable of order $n+1$ (one entry fixed).

Aggregation [Arima/Kim/Kojima '14]:

$$
\begin{array}{ll}
\min & \langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x} \\
\text { s.t. } & \sum_{i=1}^{m}\left(\mathrm{a}_{i}^{\top} \mathrm{X}_{\mathrm{a}}-2 b_{i} \mathrm{a}_{i}^{\top} \mathrm{x}+b_{i}^{2}\right)=0, \\
& \sum_{j \in B}\left(X_{j j}-x_{j}\right)=0, \\
& \left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in C P^{n+1},
\end{array}
$$

gives equivalent reformulation with only two constraints.

Doubly NonNegative relaxation

In both formulations, cone constraint can be relaxed

- DNN-relaxation:
replace $\left(\begin{array}{cc}1 & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{C} P^{n+1}$ with $\quad\left(\begin{array}{cc}1 & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}$.
Motivation: any cp matrix is psd and has no negative entries.

$$
(B) \rightarrow(D B), \quad(A) \rightarrow(D A)
$$

Leads to SDP with $\binom{n}{2}$ additional nonnegativity constraints, for both formulations: $(D B)$ and ($D A$).

Exploiting linear constraints

Idea: use equality constraints to reduce order of matrix variable: choose $\mathrm{x}_{0} \in Z$ (only need $A \mathrm{x}_{0}=\mathrm{b}$) and linearly independent

$$
\left\{\mathrm{a}_{m+1}, \ldots, \mathrm{a}_{n}\right\} \subset\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{m}\right\}^{\perp}
$$

and form

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
x_{0} & a_{m+1} & a_{m+2} & \cdots & a_{n}
\end{array}\right]
$$

Have

$$
\mathrm{Az}=\zeta \mathrm{b} \quad \Leftrightarrow \quad\left[\begin{array}{l}
\zeta \\
\mathrm{z}
\end{array}\right]=\mathrm{By} \quad \text { for some } \mathrm{y} \in \mathbb{R}^{n+1-m} .
$$

Reduced equivalent formulation

[Burer]: $(D B)$ is equivalent to

$$
\begin{array}{ll}
\min & \langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x} \\
\text { s.t. } & \left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right)=\mathrm{BYB}^{\top}, \tag{DR}\\
& X_{j j}=x_{j}, \text { for } j \in B, \\
& \left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{N}^{n+1}, \mathrm{Y} \in \mathcal{S}_{+}^{n+1-m} .
\end{array}
$$

... has smaller psd Y but additional equalities.
Same holds for original reformulation (R) of (B) where $\left(\begin{array}{cc}1 & x^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{C} P^{n+1}$ replaces weaker $\left(\begin{array}{cc}1 & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{N}^{n+1}, \mathrm{Y} \in \mathcal{S}_{+}^{n+1-m}$.

Motivation

We shall prove the equivalence of problems $(B),(A)$ and (R) and similar results for the relaxations, from which, we aim at finding new reformulations.

- Reformulations of linear constraints
- Reformulations of binary constraints

From the combinations of the reformulations of different constraints, we find new reformulations of (B).

Linear constraints: aggregation and facial reduction

We shall consider the following four linear subspaces in \mathcal{S}^{n+1} :

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{S}^{n+1}: \exists \mathrm{Y} \in \mathcal{S}^{n+1-m} \text { s.t. } \mathrm{BYB}^{\top}=\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right)\right\}, \\
& \mathcal{L}_{2}=\left\{\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{S}^{n+1}: \begin{array}{l}
\mathrm{a}_{i}^{\top} \mathrm{x}=b_{i} x_{0} \\
\mathrm{a}_{i}^{\top} \mathrm{X}=b_{i} \mathrm{x}^{\top} \\
\text { for } i \in[1: m], \\
\text { for } i \in[1: m]
\end{array}\right\}, \\
& \mathcal{L}_{3}=\left\{\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{S}^{n+1}: \begin{array}{l}
\mathrm{a}_{i}^{\top} \mathrm{x}=b_{i} x_{0} \\
\mathrm{a}_{i}^{\top} \mathrm{X}_{i}=b_{i}^{2} x_{0} \\
\text { for } i \in[1: m], \\
\text { for } i \in[1: m]
\end{array}\right\}, \\
& \mathcal{L}_{4}=\left\{\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{S}^{n+1}: \sum_{i=1}^{m}\left(\mathrm{a}_{i}^{\top} \mathrm{Xa}_{i}-2 b_{i} \mathrm{a}_{i}^{\top} \mathrm{x}+b_{i}^{2} x_{0}\right)=0\right\}
\end{aligned}
$$

Equivalence when intersecting with psd cone

Notice that $\mathcal{L}_{1}=B \mathcal{S}^{n+1-m} \mathrm{~B}^{\top}$.

We will now show that in fact when intersecting with the positive semidefinite cone these four cones coincide.

Theorem 1. We have
(a)
$\mathcal{L}_{1}=\mathcal{L}_{2} \subseteq \mathcal{L}_{3} \subseteq \mathcal{L}_{4}$,
(b)
$\mathcal{L}_{1} \cap \mathcal{S}_{+}^{n+1}=\mathcal{L}_{2} \cap \mathcal{S}_{+}^{n+1}=\mathcal{L}_{3} \cap \mathcal{S}_{+}^{n+1}=\mathcal{L}_{4} \cap \mathcal{S}_{+}^{n+1}$
(c)

$$
\mathcal{L}_{1} \cap \mathcal{S}_{+}^{n+1}=\mathrm{BS}_{+}^{n+1-m} \mathrm{~B}^{\top} .
$$

Binary constraints: aggregation

We further look at what can be done with the constraints related to the binary constraints. We consider the following cones:

$$
\begin{aligned}
& \mathcal{B}_{1}=\left\{\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{x}
\end{array}\right) \in \mathcal{S}^{n+1}: X_{j j}=x_{j} \quad \text { for } j \in B\right\} \\
& \mathcal{B}_{2}=\left\{\left(\begin{array}{cc}
x_{0} & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{x}
\end{array}\right) \in \mathcal{S}^{n+1}: \sum_{j \in B}\left(X_{j j}-x_{j}\right)=0\right\}
\end{aligned}
$$

Equivalence when intersecting with psd cone and linear constrained set

We shall show the following results:
Lemma 2. Let $i \in[1: 4]$ and $\left(\begin{array}{cc}x_{0} & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{L}_{i} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}$. Then $X_{j k} \leq x_{k}$ for all $k \in[1: n], j \in B$.

Theorem 3. For all $i, j \in[1: 4]$ we have

$$
\begin{aligned}
\mathcal{B}_{1} \cap \mathcal{L}_{i} \cap \mathcal{C P}{ }^{n+1} & =\mathcal{B}_{2} \cap \mathcal{L}_{j} \cap \mathcal{C} \mathcal{P}^{n+1} \\
\mathcal{B}_{1} \cap \mathcal{L}_{i} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1} & =\mathcal{B}_{2} \cap \mathcal{L}_{j} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}
\end{aligned}
$$

Reformulations of (B)

From the equivalences between $\mathcal{L}_{i}, i, j \in[1: 4]$, and $\mathcal{B}_{k}, k=1,2$, we have

$$
\begin{gathered}
(B) \Leftrightarrow \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{ll}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{B}_{1} \cap \mathcal{L}_{3} \cap \mathcal{C} \mathcal{P}^{n+1}\right\} \\
(A) \Leftrightarrow \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{ll}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{x}
\end{array}\right) \in \mathcal{B}_{2} \cap \mathcal{L}_{4} \cap \mathcal{C} \mathcal{P}^{n+1}\right\} \\
(R) \Leftrightarrow \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{B}_{1} \cap \mathcal{L}_{1} \cap \mathcal{C} \mathcal{P}^{n+1}\right\} \\
(B) \Leftrightarrow(A) \Leftrightarrow(R)
\end{gathered}
$$

Reformulations of ($D B$)

$$
(D B) \Leftrightarrow \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{B}_{1} \cap \mathcal{L}_{3} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}\right\}
$$

means no merging

$$
(D A) \Leftrightarrow \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{B}_{2} \cap \mathcal{L}_{4} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}\right\}
$$

means merging both linear and binary constraints

$$
(D R) \Leftrightarrow \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{B}_{1} \cap\left(\mathrm{BS}_{+}^{n+1-m} \mathrm{~B}^{\top}\right) \cap \mathcal{N}^{n+1}\right\}
$$

means reduced psd without merging binary constraints

$$
(D B) \Leftrightarrow(D A) \Leftrightarrow(D R)
$$

Merging only linear constraints

Merging only linear constraints leans a new reformulations of $(D B): \min \left\{\langle Q, X\rangle+2 c^{\top} \mathrm{x}:\left(\begin{array}{cc}1 & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{B}_{1} \cap \mathcal{L}_{4} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}\right\}$, i.e.

$$
\begin{array}{ll}
\min & \langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x} \\
\mathrm{s.t.} & \sum_{i=1}^{m}\left(\mathrm{a}_{i}^{\top} \mathrm{X}_{i}-2 b_{i} \mathrm{a}_{i}^{\top} \mathrm{x}+b_{i}^{2}\right)=0 \\
& X_{j j}=x_{j} \quad \text { for } j \in B \tag{DML}\\
& \left(\begin{array}{cc}
1 & \mathrm{x} \\
& \mathrm{x}
\end{array}\right) \in \mathcal{N}^{n+1} \cap \mathcal{S}_{+}^{n+1}
\end{array}
$$

Meanwhile, it is a reformulation of (B) when

$$
\mathcal{C} P^{n+1} \text { replaces } \mathcal{N}^{n+1} \cap \mathcal{S}_{+}^{n+1}
$$

Merging only binary constraints

Merging only binary constraints also leans a new reformulations of $(D B): \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{ll}1 & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{B}_{2} \cap \mathcal{L}_{3} \cap \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1}\right\}$,

$$
\begin{array}{llr}
\min & \langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x} & \\
\mathrm{s.t.} & \mathrm{a}_{i}^{\top} \mathrm{x}=b_{i} & \text { for } i \in[1: m] \\
& \left\langle\mathrm{a}_{i} \mathrm{a}_{i}^{\top}, \mathrm{X}\right\rangle=b_{i}^{2} & \text { for } i \in[1: m] \\
& \sum_{j \in B}\left(X_{j j}-x_{j}\right)=0 & \\
& \left(\begin{array}{cc}
1 & \mathrm{x} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{S}_{+}^{n+1} \cap \mathcal{N}^{n+1} . &
\end{array}
$$

Meanwhile, it is a reformulation of (B) when

$$
\mathcal{C} P^{n+1} \text { replaces } \mathcal{N}^{n+1} \cap \mathcal{S}_{+}^{n+1} .
$$

Merging strategy for reduced problem

Merging binary constraints of (R), we have a reformulation of $(R): \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{cc}1 & \mathrm{x}^{\top} \\ \mathrm{x} & \mathrm{X}\end{array}\right) \in \mathcal{B}_{2} \cap \mathcal{L}_{1} \cap \mathcal{C} P^{n+1}\right\}$

$$
\begin{array}{ll}
\min & \langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x} \\
\mathrm{s.t.} & \sum_{j \in B}\left(X_{j j}-x_{j}\right)=0 \\
& \mathrm{BYB}^{\top}=\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \tag{MR}\\
& \left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{C} \mathcal{P}^{n+1}, \mathrm{Y} \in \mathcal{S}^{n+1-m} .
\end{array}
$$

Reformulation of ($D R$)

$$
\begin{aligned}
& \text { Replacing }\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{C P}^{n+1}, \mathrm{Y} \in \mathcal{S}^{n+1-m} \text { in }(D R) \text { by }\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \\
& \mathcal{N}^{n+1}, \mathrm{Y} \in \mathcal{S}_{+}^{n+1-m} \text { gives a reformulation of }(D R) \text {. } \\
& \min \left\{\langle\mathrm{Q}, \mathrm{X}\rangle+2 \mathrm{c}^{\top} \mathrm{x}:\left(\begin{array}{cc}
1 & \mathrm{x}^{\top} \\
\mathrm{x} & \mathrm{X}
\end{array}\right) \in \mathcal{B}_{2} \cap\left(\mathrm{BS}_{+}^{n+1-m} \mathrm{~B}^{\top}\right) \cap \mathcal{N}^{n+1}\right\}(D M R) \\
& (D B) \Leftrightarrow(D A) \Leftrightarrow(D R) \\
& \Leftrightarrow(D M L) \Leftrightarrow(D M B) \Leftrightarrow(D M R)
\end{aligned}
$$

An example

Consider a multidimensional quadratic knapsack problems

$$
\begin{array}{ll}
\max & \mathrm{x}^{\top} \mathrm{Qx} \\
\text { s.t. } & \widetilde{\mathrm{a}}_{i}^{\top} \mathrm{x} \leq b_{i} \quad \text { for } i \in[1: m] \tag{1}\\
& \mathrm{x} \in\{0,1\}^{n} .
\end{array}
$$

Adding slack variables to remove the inequality constraints

$$
\begin{array}{ll}
\max & \mathrm{x}^{\top} \mathrm{Qx} \\
\text { s.t. } & \tilde{\mathrm{a}}_{i}^{\top} \mathrm{x}+v_{i}=b_{i} \quad \text { for } i \in[1: m] \tag{2}\\
& \mathrm{x} \in\{0,1\}^{n} \\
& \mathrm{v} \in \mathbb{R}_{+}^{m} .
\end{array}
$$

Add m slack variables!

Reformulation to satisfy condition (K)

Adding slack variables to guarantee the variables are restricted in $[0,1]$.

$$
\begin{array}{ll}
\max & \mathrm{x}^{\top} \mathrm{Qx} \\
\text { s.t. } & \tilde{\mathrm{a}}_{i}^{\top} \mathrm{x}+v_{i}=b_{i} \quad \text { for } i \in[1: m] \\
& x_{j}+z_{j}=1 \quad \text { for } j \in[1: n] \tag{3}\\
& \mathrm{x} \in\{0,1\}^{n} \\
& \mathrm{v} \in \mathbb{R}_{+}^{m}, \mathrm{z} \in \mathbb{R}_{+}^{n}, \quad \mathrm{x} \in \mathbb{R}_{+}^{n} .
\end{array}
$$

Numerical results

A MQKP with 2 knapsacks and 5 goods.

Statistics of solution status						
	$(D B)$	$(D M L)$	$(D M B)$	$(D A)$	$(D R)$	$(D M R)$
SDPT3	25.0888	26.5766^{*}	25.0888	28.744^{*}	25.0888	25.0888
SeDuMi	25.0888	26.5767^{*}	25.0888	28.744^{*}	25.0888	25.0888
Mosek	25.0888	NaN** $^{* *}$	25.0888	NaN** $^{* *}$	25.0888	25.0888
Sdpnal+	NaN $^{* *}$	NaN $^{* *}$	NaN** $^{* *}$	NaN $^{* *}$	25.0888	25.0888

*: Inaccurate solved, the algorithm converge only to a near optimal or dual feasible solution.
**: Failed, the sdp problem is unsolvable by solvers
When the problem is precisely solved, all sdp relaxation problems have the same optimal value.

Statistics of solution status

We choose 4 different sizes and run 100 groups of sdp problems with different parameters under the same size.

		$(D B)$	$(D M L)$	$(D M B)$	$(D A)$	$(D R)$	$(D M R)$
$6 * 10$	'Solved'	12	0	10	0	100	100
	'Inacc./Solved'	88	100	90	100	0	0
	'Failed'	0	0	0	0	0	0
$10 * 10$	'Solved'	0	0	0	0	99	98
	'Inacc./Solved'	100	100	98	100	1	2
	'Failed'	0	0	2	0	0	0
$15 * 10$	'Solved'	'Incc./Solved'	0	0	100	13	100
	'Failed'	94	0	87	0	0	0
	'Solved'	0	0	0	0		
$30 * 5$	'Inacc./Solved'	85	100	0	0	0	41
	'Failed'	15	0	10	0	59	
			0	0	1		
				0	0	0	

Average solution times

		$(D B)$	$(D M L)$	$(D M B)$	$(D A)$	$(D R)$	$(D M R)$
$6 * 10$	'Solved'	1.01	-	1.06	-	0.28	0.28
	'Inacc./Solved'	1.07	1.20	1.09	1.16	-	-
	'Failed'	-	-	-	-	-	-
$10 * 10$	'Solved'	'Inacc./Solved'	2.51	3.01	2.62	3.04	0.45
	'Failed'	-	-	1.08	-	-.40	
$15 * 10$	'Solved'	'Inacc./Solved'	-	-.84	9.48	-	-.64
	'Failed'	2.59	-	-	0.73	-	
$30 * 5$	'Solved'	-	-	-65	-	-	-
	'Inacc./Solved'	217.35	380.23	234.98	324.25	5.75	5.31
	'Failed'	65.21	-	71.12	-	-	-

Results are derived with Sedumi.

Conclusions

- The sdp problems have no feasible points in the interior of the semi-definite cone. Still hard to solve! further improvement!
- Most of the reduced sdp problems can be solve precisely, while the non-reduced sdp problems can not.
- The CPU time of reduced sdp problems are much less.
- Compared the reduced $s d p$ problem with no merging, the reduced sdp problem with merging is more tractable.

Selected references in chronological order

[Shor '87] Quadratic optimization problems, Izv. Akad. Nauk SSSR Tekhn. Kibernet. 22, 128-139.
[Hotho et al.'06] Information retrieval in folksonomies: Search and ranking, in The Semantic Web: Research and Applications, 411-426. Springer, Heidelberg.
[Burer '09] On the copositive representation of binary and continuous nonconvex quadratic programs, Math. Programming 120, 479-495.
[Saha et al.'10] Dense Subgraphs with Restrictions and Applications to Gene Annotation Graphs, in Research in Computational Molecular Biology, 456-472, Springer, Berlin.
[Bhaskara et al.'12] On quadratic programming with a ratio objective, in Proc.ICALP'12, 109-120. Springer, Berlin.

Selected references, continued

[Dickinson/Gijben '14] On the computational complexity of membership problems for the completely positive cone and its dual, Comput. Optim. Appl. 57, 403-415.
[B. '15] Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs, SIAM J. Optimization 25, 1249-1275.
[Amaral/B.'15] Copositivity-based approximations for mixed-integer fractional quadratic optimization, Pacific J. Optimization 11, 225-238.
[Peña/Vera/Zuluaga '15] Completely positive reformulations for polynomial optimization, Math. Programming B 151, 405-431.
[B. '16] Copositivity for second-order optimality conditions in general smooth optimization problems, Optimization, to appear.

Thank you!

