New formulations and relaxations for mixed-binary quadratic optimization

LIU Jia, LRI, Université Paris Sud

joint work with

I.M. Bomze, J. Cheng, P.J.C. Dickinson and A. Lisser

PGMO days 2016

09 November 2016

Mixed-binary QPs, key condition

Consider (for indefinite Q and $\{c, a_i, b\} \subset \mathbb{R}^n$)

$$z^* = \min x^\top Q x + 2c^\top x$$

s.t. $a_i^\top x = b_i$ for $i \in [1:m]$
 $x \in \mathbb{R}^n_+$
 $x_j \in \{0,1\}$ for $j \in B$, P

B ... binary variables

$$\begin{split} & [1:n] \setminus B \ \dots \ \text{continuous variables} \\ & \mathsf{A} = [\mathsf{a}_1^\top, \dots, \mathsf{a}_m^\top]^\top \ m \times n \ \text{constraint matrix.} \\ & \mathsf{Polyhedron} \ Z = \left\{ \mathsf{x} \in \mathbb{R}^n_+ : \mathsf{A}\mathsf{x} = \mathsf{b} \right\} \ \text{contains feasible set.} \\ & \mathsf{Assume Burer's} \ \textit{key condition: } Z \ \text{gives linear relaxation,} \end{split}$$

$$\mathbf{x} \in Z \quad \Rightarrow \quad x_j \in [0, 1] \text{ for all } j \in B.$$
 (K)

Burer's reformulation: enter copositivity

Linearizing by squaring equalities like RLT: put $X_{ij} = x_i x_j$. If (K) holds, then (P) is equivalent to the *copositive problem*

$$\begin{array}{l} \min \langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top} \mathbf{x} \\ \text{s.t.} \ \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} & \text{for } i \in [1:m] \\ \langle \mathbf{a}_{i} \mathbf{a}_{i}^{\top}, \mathbf{X} \rangle = b_{i}^{2} & \text{for } i \in [1:m] \\ X_{jj} = x_{j} & \text{for } j \in B \\ \begin{pmatrix} 1 & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{CP}^{n+1} , \end{array} \right\} (B)$$

where $\langle Q,X\rangle = \text{trace}(QX)$ and

$$CP^n = \operatorname{conv}\left\{\mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n_+\right\}$$

is the cp cone. Its dual is the copositive cone

$$[\mathcal{C}P^n]^* = \left\{ \mathsf{C} = \mathsf{C}^\top n \times n \text{-matrix} : \mathsf{x}^\top \mathsf{C}\mathsf{x} \ge 0 \text{ if } \mathsf{x} \in \mathbb{R}^n_+ \right\} \,.$$

Counting variables/constraints

Original formulation: 2m + |B| constraints, symmetric matrix variable of order n + 1 (one entry fixed).

Aggregation [Arima/Kim/Kojima '14]:

gives equivalent reformulation with only two constraints.

Doubly NonNegative relaxation

In both formulations, cone constraint can be relaxed

– DNN-relaxation:

replace
$$\begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \in \mathcal{C}P^{n+1}$$
 with $\begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \in \mathcal{S}^{n+1}_+ \cap \mathcal{N}^{n+1}$

Motivation: any cp matrix is psd and has no negative entries.

$$(B) \rightarrow (DB), \quad (A) \rightarrow (DA)$$

Leads to SDP with $\binom{n}{2}$ additional nonnegativity constraints, for both formulations: (*DB*) and (*DA*).

Exploiting linear constraints

Idea: use equality constraints to reduce order of matrix variable: choose $x_0 \in Z$ (only need $Ax_0 = b$) and linearly independent

$$\left\{\mathsf{a}_{m+1},\ldots,\mathsf{a}_{n}
ight\}\subset\left\{\mathsf{a}_{1},\ldots,\mathsf{a}_{m}
ight\}^{\perp}$$

and form

$$\mathsf{B} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \mathsf{x}_0 & \mathsf{a}_{m+1} & \mathsf{a}_{m+2} & \cdots & \mathsf{a}_n \end{bmatrix}.$$

Have

$$Az = \zeta b \quad \Leftrightarrow \quad \begin{bmatrix} \zeta \\ z \end{bmatrix} = By \quad \text{for some } y \in \mathbb{R}^{n+1-m}.$$

Reduced equivalent formulation

[Burer]: (DB) is equivalent to

$$\begin{array}{l} \min \langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top} \mathbf{x} \\ \text{s.t.} \quad \begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} = \mathbf{B} \mathbf{Y} \mathbf{B}^{\top}, \\ X_{jj} = x_j, \text{ for } j \in B, \\ \begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{N}^{n+1}, \mathbf{Y} \in \mathcal{S}^{n+1-m}_{+}. \end{array} \right\} (DR)$$

... has smaller psd Y but additional equalities.

Same holds for original reformulation (R) of (B) where $\begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in \mathcal{C}P^{n+1} \text{ replaces weaker } \begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in \mathcal{N}^{n+1}, Y \in \mathcal{S}^{n+1-m}_+.$

Motivation

We shall prove the equivalence of problems (B), (A) and (R) and similar results for the relaxations, from which, we aim at finding new reformulations.

- Reformulations of linear constraints
- Reformulations of binary constraints

From the combinations of the reformulations of different constraints, we find new reformulations of (B).

Linear constraints: aggregation and facial reduction

We shall consider the following four linear subspaces in S^{n+1} :

$$\begin{aligned} \mathcal{L}_{1} &= \left\{ \begin{pmatrix} x_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{S}^{n+1} : \exists \mathbf{Y} \in \mathcal{S}^{n+1-m} \text{ s.t. } \mathbf{B} \mathbf{Y} \mathbf{B}^{\top} = \begin{pmatrix} x_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \right\}, \\ \mathcal{L}_{2} &= \left\{ \begin{pmatrix} x_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{S}^{n+1} : \begin{array}{l} \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} x_{0} & \text{for } i \in [1:m], \\ \mathbf{a}_{i}^{\top} \mathbf{X} = b_{i} \mathbf{x}^{\top} & \text{for } i \in [1:m] \end{array} \right\}, \\ \mathcal{L}_{3} &= \left\{ \begin{pmatrix} x_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{S}^{n+1} : \begin{array}{l} \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} x_{0} & \text{for } i \in [1:m], \\ \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} = b_{i}^{2} x_{0} & \text{for } i \in [1:m] \end{array} \right\}, \\ \mathcal{L}_{4} &= \left\{ \begin{pmatrix} x_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{S}^{n+1} : \sum_{i=1}^{m} \left(\mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} + b_{i}^{2} x_{0} \right) = 0 \right\}. \end{aligned}$$

Equivalence when intersecting with psd cone

Notice that $\mathcal{L}_1 = \mathsf{B}\mathcal{S}^{n+1-m}\mathsf{B}^\top$.

We will now show that in fact when intersecting with the positive semidefinite cone these four cones coincide.

Theorem 1. We have

(a)
$$\mathcal{L}_1 = \mathcal{L}_2 \subseteq \mathcal{L}_3 \subseteq \mathcal{L}_4$$
,
(b) $\mathcal{L}_1 \cap \mathcal{S}_+^{n+1} = \mathcal{L}_2 \cap \mathcal{S}_+^{n+1} = \mathcal{L}_3 \cap \mathcal{S}_+^{n+1} = \mathcal{L}_4 \cap \mathcal{S}_+^{n+1}$
(c) $\mathcal{L}_1 \cap \mathcal{S}_+^{n+1} = \mathsf{B}\mathcal{S}_+^{n+1-m}\mathsf{B}^\top$.

Binary constraints: aggregation

We further look at what can be done with the constraints related to the binary constraints. We consider the following cones:

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} x_0 & \mathsf{x}^\top \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{S}^{n+1} : X_{jj} = x_j \quad \text{for } j \in B \right\}, \\ \mathcal{B}_2 = \left\{ \begin{pmatrix} x_0 & \mathsf{x}^\top \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{S}^{n+1} : \sum_{j \in B} (X_{jj} - x_j) = 0 \right\}.$$

Equivalence when intersecting with psd cone and linear constrained set

We shall show the following results:

Lemma 2. Let
$$i \in [1:4]$$
 and $\begin{pmatrix} x_0 & \mathsf{x}^\top \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{L}_i \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1}$. Then $X_{jk} \leq x_k$ for all $k \in [1:n]$, $j \in B$.

Theorem 3. For all $i, j \in [1:4]$ we have

$$\mathcal{B}_1 \cap \mathcal{L}_i \cap \mathcal{CP}^{n+1} = \mathcal{B}_2 \cap \mathcal{L}_j \cap \mathcal{CP}^{n+1},$$
$$\mathcal{B}_1 \cap \mathcal{L}_i \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1} = \mathcal{B}_2 \cap \mathcal{L}_j \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1}.$$

Reformulations of (B)

From the equivalences between $\mathcal{L}_i,\ i,j\!\in\![1\!:\!4]$, and $\mathcal{B}_k,\ k=1,2$, we have

$$(B) \Leftrightarrow \min \left\{ \langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top}\mathbf{x} : \begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{B}_{1} \cap \mathcal{L}_{3} \cap \mathcal{CP}^{n+1} \right\}$$
$$(A) \Leftrightarrow \min \left\{ \langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top}\mathbf{x} : \begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{B}_{2} \cap \mathcal{L}_{4} \cap \mathcal{CP}^{n+1} \right\}$$
$$(R) \Leftrightarrow \min \left\{ \langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top}\mathbf{x} : \begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{B}_{1} \cap \mathcal{L}_{1} \cap \mathcal{CP}^{n+1} \right\}$$
$$(B) \Leftrightarrow (A) \Leftrightarrow (R)$$

Reformulations of (*DB*)

$$(DB) \Leftrightarrow \min\left\{ \langle \mathsf{Q}, \mathsf{X} \rangle + 2\mathsf{c}^\top \mathsf{x} : \begin{pmatrix} 1 & \mathsf{x}^\top \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{B}_1 \cap \mathcal{L}_3 \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1} \right\}$$

means no merging

$$(DA) \Leftrightarrow \min\left\{ \langle \mathsf{Q}, \mathsf{X} \rangle + 2\mathsf{c}^\top \mathsf{x} : \begin{pmatrix} 1 & \mathsf{x}^\top \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{B}_2 \cap \mathcal{L}_4 \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1} \right\}$$

means merging both linear and binary constraints

$$(DR) \Leftrightarrow \min\left\{ \langle \mathsf{Q}, \mathsf{X} \rangle + 2\mathsf{c}^\top \mathsf{x} : \begin{pmatrix} \mathsf{1} & \mathsf{x}^\top \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{B}_1 \cap (\mathsf{B}\mathcal{S}_+^{n+1-m}\mathsf{B}^\top) \cap \mathcal{N}^{n+1} \right\}$$

means reduced psd without merging binary constraints

$$(DB) \Leftrightarrow (DA) \Leftrightarrow (DR)$$

Merging only linear constraints

Merging only linear constraints leans a new reformulations of (DB): $\min\{\langle Q, X \rangle + 2c^{\top}x : \begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in \mathcal{B}_1 \cap \mathcal{L}_4 \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1}\}, \text{ i.e.}$

min
$$\langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top}\mathbf{x}$$

s.t. $\sum_{i=1}^{m} \left(\mathbf{a}_{i}^{\top}\mathbf{X}\mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top}\mathbf{x} + b_{i}^{2} \right) = 0$
 $X_{jj} = x_{j} \quad \text{for } j \in B,$ (DML)
 $\begin{pmatrix} \mathbf{1} \quad \mathbf{x}^{\top} \\ \mathbf{x} \quad \mathbf{X} \end{pmatrix} \in \mathcal{N}^{n+1} \cap \mathcal{S}_{+}^{n+1}.$

Meanwhile, it is a reformulation of (B) when CP^{n+1} replaces $\mathcal{N}^{n+1} \cap \mathcal{S}^{n+1}_+$.

Merging only binary constraints

Merging only binary constraints also leans a new reformulations of (DB): min $\{\langle Q, X \rangle + 2c^{\top}x : \begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in \mathcal{B}_2 \cap \mathcal{L}_3 \cap \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1}\},\$

$$\begin{array}{ll} \min & \langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top} \mathbf{x} \\ \text{s.t.} & \mathbf{a}_i^{\top} \mathbf{x} = b_i & \text{for } i \in [1:m] \\ & \langle \mathbf{a}_i \mathbf{a}_i^{\top}, \mathbf{X} \rangle = b_i^2 & \text{for } i \in [1:m] \\ & \sum_{j \in B} (X_{jj} - x_j) = 0 \\ & \begin{pmatrix} 1 & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{S}_+^{n+1} \cap \mathcal{N}^{n+1}. \end{array}$$
 (DMB)

Meanwhile, it is a reformulation of (B) when

$$\mathcal{C}P^{n+1}$$
 replaces $\mathcal{N}^{n+1} \cap \mathcal{S}^{n+1}_+$

Merging strategy for reduced problem

Merging binary constraints of (R), we have a reformulation of (R): min
$$\left\{ \langle Q, X \rangle + 2c^{\top}x : \begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in \mathcal{B}_2 \cap \mathcal{L}_1 \cap \mathcal{C}P^{n+1} \right\}$$

min
$$\langle \mathbf{Q}, \mathbf{X} \rangle + 2\mathbf{c}^{\top} \mathbf{x}$$

s.t. $\sum_{j \in B} (X_{jj} - x_j) = 0$
 $\mathsf{B} \mathsf{Y} \mathsf{B}^{\top} = \begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix}$ (MR)
 $\begin{pmatrix} \mathbf{1} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{pmatrix} \in \mathcal{CP}^{n+1}, \, \mathsf{Y} \in \mathcal{S}^{n+1-m}.$

Reformulation of (*DR*)

Replacing
$$\begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in C\mathcal{P}^{n+1}$$
, $Y \in S^{n+1-m}$ in (DR) by $\begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \in \mathcal{N}^{n+1}$, $Y \in S^{n+1-m}_+$ gives a reformulation of (DR) .

$$\min\left\{ \langle \mathsf{Q},\mathsf{X} \rangle + 2\mathsf{c}^{\top}\mathsf{x} : \begin{pmatrix} \mathsf{1} & \mathsf{x}^{\top} \\ \mathsf{x} & \mathsf{X} \end{pmatrix} \in \mathcal{B}_2 \cap (\mathsf{B}\mathcal{S}_+^{n+1-m}\mathsf{B}^{\top}) \cap \mathcal{N}^{n+1} \right\} \ (DMR)$$

 $(DB) \Leftrightarrow (DA) \Leftrightarrow (DR)$ $\Leftrightarrow (DML) \Leftrightarrow (DMB) \Leftrightarrow (DMR)$

An example

Consider a multidimensional quadratic knapsack problems

$$\begin{array}{ll} \max \ \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \\ \text{s.t.} \ \widetilde{\mathbf{a}}_{i}^{\top} \mathbf{x} \leq b_{i} \quad \text{for } i \in [1:m] \\ \mathbf{x} \in \{0,1\}^{n}. \end{array} \tag{1}$$

Adding slack variables to remove the inequality constraints

$$\begin{array}{ll} \max \ \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \\ \text{s.t.} & \widetilde{\mathbf{a}}_{i}^{\top} \mathbf{x} + v_{i} = b_{i} \quad \text{for } i \in [1:m] \\ & \mathbf{x} \in \{0,1\}^{n} \\ & \mathbf{v} \in \mathbb{R}^{m}_{+}. \end{array}$$

$$(2)$$

Add *m* slack variables!

Reformulation to satisfy condition (K)

Adding slack variables to guarantee the variables are restricted in [0, 1].

$$\begin{array}{ll} \max \ \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \\ \text{s.t.} & \widetilde{\mathbf{a}}_{i}^{\top} \mathbf{x} + v_{i} = b_{i} \quad \text{for } i \in [1:m] \\ & x_{j} + z_{j} = 1 \quad \text{for } j \in [1:n] \\ & \mathbf{x} \in \{0, 1\}^{n} \\ & \mathbf{v} \in \mathbb{R}^{m}_{+}, \ \mathbf{z} \in \mathbb{R}^{n}_{+}, \ \mathbf{x} \in \mathbb{R}^{n}_{+}. \end{array}$$

$$(3)$$

Numerical results

A MQKP with 2 knapsacks and 5 goods.

Statistics of solution status

	(DB)	(DML)	(DMB)	(DA)	(DR)	(DMR)		
SDPT3	25.0888	26.5766*	25.0888	28.744*	25.0888	25.0888		
SeDuMi	25.0888	26.5767*	25.0888	28.744*	25.0888	25.0888		
Mosek	25.0888	NaN**	25.0888	NaN**	25.0888	25.0888		
Sdpnal+	NaN**	NaN**	NaN**	NaN**	25.0888	25.0888		

*: Inaccurate solved, the algorithm converge only to a near optimal or dual feasible solution.

**: Failed, the sdp problem is unsolvable by solvers

When the problem is precisely solved, all sdp relaxation problems

have the same optimal value.

Statistics of solution status

We choose 4 different sizes and run 100 groups of sdp problems with different parameters under the same size.

		(DB)	(DML)	(DMB)	(DA)	(DR)	(DMR)
6*10	'Solved'	12	0	10	0	100	100
	'Inacc./Solved'	88	100	90	100	0	0
	'Failed'	0	0	0	0	0	0
10*10	'Solved'	0	0	0	0	99	98
	'Inacc./Solved'	100	100	98	100	1	2
	'Failed'	0	0	2	0	0	0
15*10	'Solved'	0	0	0	0	100	100
	'Inacc./Solved'	6	100	13	100	0	0
	'Failed'	94	0	87	0	0	0
30*5	'Solved'	0	0	0	0	41	99
	'Inacc./Solved'	85	100	90	100	59	1
	'Failed'	15	0	10	0	0	0

Average solution times

		(DB)	(DML)	(DMB)	(DA)	(DR)	(DMR)
6*10	'Solved'	1.01	-	1.06	-	0.28	0.28
	'Inacc./Solved'	1.07	1.20	1.09	1.16	-	-
	'Failed'	-	-	-	-	-	-
10*10	'Solved'	-	-	-	-	0.40	0.40
	'Inacc./Solved'	2.51	3.01	2.62	3.04	0.45	0.43
	'Failed'	-	-	1.08	-	-	-
15*10	'Solved'	-	-	-	-	0.73	0.73
	'Inacc./Solved'	4.84	9.48	6.64	9.27	-	-
	'Failed'	2.59	-	2.65	-	-	-
30*5	'Solved'	-	-	-	-	5.72	5.07
	'Inacc./Solved'	217.35	380.23	234.98	324.25	5.75	5.31
	'Failed'	65.21	-	71.12	-	-	-

Results are derived with Sedumi.

Conclusions

- The sdp problems have no feasible points in the interior of the semi-definite cone. Still hard to solve! further improvement!
- Most of the reduced sdp problems can be solve precisely, while the non-reduced sdp problems can not.
- The CPU time of reduced sdp problems are much less.
- Compared the reduced sdp problem with no merging, the reduced sdp problem with merging is more tractable.

Selected references in chronological order

[Shor '87] Quadratic optimization problems, *Izv. Akad. Nauk SSSR Tekhn. Kibernet.* **22**, 128–139.

- [Hotho et al.'06] Information retrieval in folksonomies: Search and ranking, in *The Semantic Web: Research and Applications*, 411-426. Springer, Heidelberg.
- [Burer '09] On the copositive representation of binary and continuous nonconvex quadratic programs, *Math. Programming* **120**, 479–495.
- [Saha *et al.*'10] Dense Subgraphs with Restrictions and Applications to Gene Annotation Graphs, in *Research in Computational Molecular Biology*, 456–472, Springer, Berlin.

[Bhaskara et al.'12] On quadratic programming with a ratio objective, in *Proc.ICALP'12*, 109-120. Springer, Berlin.

Selected references, continued

[Dickinson/Gijben '14] On the computational complexity of membership problems for the completely positive cone and its dual, *Comput. Optim. Appl.* **57**, 403–415.

- [B. '15] Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs, *SIAM J. Optimization* **25**, 1249-1275.
- [Amaral/B.'15] Copositivity-based approximations for mixed-integer fractional quadratic optimization, *Pacific J. Optimization* **11**, 225–238.
- [Peña/Vera/Zuluaga '15] Completely positive reformulations for polynomial optimization, *Math. Programming* **B 151**, 405–431.
- [B. '16] Copositivity for second-order optimality conditions in general smooth optimization problems, *Optimization*, to appear.

Thank you!