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Mixed-binary QPs, key condition

Consider (for indefinite Q and {c,a;,b} C R™)
2 =min x!' Qx4+ 2c'x

s. t. a!x = b for i€ [1:m]

X € bel_

r; €4{0,1} for j € B,

B ... binary variables

e (P)

[1:n] \ B ... continuous variables
A=l[a{,...,a)]" m xn constraint matrix.

Polyhedron Z = {x € IR%?F c Ax = b} contains feasible set.
Assume Burer's key condition: Z gives linear relaxation,

xcZ = x;€l[0,1] forall je€B. (K)



Burer’s reformulation: enter copositivity

Linearizing by squaring equalities like RLT: put Xz-j = T;X;.

If (K) holds, then (P) is equivalent to the copositive problem
min (Q,X) + 2c'x

S. T.

a!x = b for i€ [1:m)]
(aza; , X) = b? for i€ [1:m]
Xj] = T for y e B

1 x!
[k x)er

where (Q, X) = trace(QX) and

IS the ¢cp cone. Its dual is the copositive cone

[CP™]*

)

> (B)

{C — C' n x n-matrix : x' Cx >0 ifxe Rﬁ_} .



Counting variables/constraints

Original formulation: 2m 4 |B| constraints,

symmetric matrix variable of order n + 1 (one entry fixed).

Aggregation [Arima/Kim/Kojima '14]:
min (Q,X) 4+ 2c¢'x

m

s.t. 3 (af Xa; — 2bjaf x4+ b2) =0,
Z( j7 wj)_ ;
jeB

1 x!
[ x)er |

gives equivalent reformulation with only two constraints.



Doubly NonNegative relaxation

In both formulations, cone constraint can be relaxed

— DNN-relaxation:

1 x! . 1 x|
replace (X X)E with (X X)E N

Motivation: any cp matrix is psd and has no negative entries.
(B) = (DB), (A)— (DA)

Leads to SDP with (g) additional nonnegativity constraints, for
both formulations: (DB) and (DA).



Exploiting linear constraints

Idea: use equality constraints to reduce order of matrix variable:
choose xg € Z (only need Axg = b) and linearly independent

{am_|_1, . .,an} C {a1,...,am} T
and form
o [ 1 0 O .-- 0 ] |
X0 am+1 aAm42 - aAn
Have

Az=¢b < [§]=By for some y € R* 1™



Reduced equivalent formulation

[Burer]: (DB) is equivalent to

min (Q,X) 4+ 2c¢'x )
T
5.t ()1( Xx) — BYBT ,
ij = T, for j € B,  (DR)
1 x! n+1 n+1—-m
<X X) eN ,YES, . |

... has smaller psd Y but additional equalities.

Same holds for original reformulation (R) of (B) where

T T
L~ € replaces weaker 1 x e NPTl y g gnti-m,
x X x X +



Motivation

We shall prove the equivalence of problems (B), (A) and (R) and
similar results for the relaxations, from which, we aim at finding
new reformulations.

e Reformulations of linear constraints

e Reformulations of binary constraints

From the combinations of the reformulations of different cons-
traints, we find new reformulations of (B).



Linear constraints: aggregation and facial reduction

We shall consider the following four linear subspaces in sntl

L1 =1("0 ) e sntlgy e smtlomst gy = (PO X ,
x X x X

65n+1.az‘TXzbz‘fBO for ie[1:m],
'aZ-TX=b7;xT for ie[1:m] |’

0 xT> c sl aZ-Tx = b;xg forie[l:m],
aZ-TXai = b%wo for ic[1:m] |

e 8"y (3 Xa; — 2b;3; x+ bfag) = o} .



Equivalence when intersecting with psd cone

Notice that £ = B§S*t1-mBT,

We will now show that in fact when intersecting with the positive
semidefinite cone these four cones coincide.

T heorem 1. We have

(a) L1 =Ly C L3C Ly,
(b) LinSTT =rLonsiT =L3nsit = c4nsitt

(c) Linsytt =BsyH-meT.



Binary constraints: aggregation

We further look at what can be done with the constraints related
to the binary constraints. We consider the following cones:

( T
B1 (CBO X )ESn_l_lX]]:ZC] fOerB},

7\

x X

\

7\

( T
ro X 1. —
B> (X X) ESn+ ZJEB(X]]_CC])_O} :

\



Equivalence when intersecting with psd cone and linear
constrained set

We shall show the following results:

0 x|

Lemma 2. Let ie[1:4] and X

> e L;NSYT AN Then

X <z for all ke[l:n], j € B.

Theorem 3. For all i,j€[1:4] we have

BinL,nCcP "t =B,nc, neprtt

BinLnSTH Nt =B, ne;nsttt L



Reformulations of (B)

From the equivalences between L;, i,j€[1:4], and B, k= 1,2,
we have

-
(B) < min J(Q,X> + 2cx: ()1( XX> € B1NL3 ﬂCP”‘H}

\

;

T

(A) < min <Q,X>—|—2CTXI ()]; XX) EBQHL4DC7D”+1

\

.
(R) min{(Q,X) +2¢x: ()1( XX> € Blmclmcp’”“}

(B) & (A) & (R)



Reformulations of (DB)

1 x|

(DB) < min {(Q,X) 4+ 2c¢"x: <X «

> € B1N L3NS m\f”“}

means Nno0 merging
-
(DA) < min {(Q,X> 4+ 2¢x : ()1( XX> €ByNLan ST rmf““}

means merging both linear and binary constraints

(DR) < min {(Q,X> +2c'x: ()1( X;

means reduced psd without merging binary constraints

) € By N (BSHTmBT) mN“H}

(DB) & (DA) < (DR)



Merging only linear constraints

Merging only linear constraints leans a new reformulations of

s
(DB): min{(Q,X)+2cTx: (1 X | eBinLans™t ANt} e
x X +

min (Q,X) 4+ 2c¢'x
s.t. >,y (aiTXai — 2b; a;-rx —+ bZQ) =0

AX']‘7 = .CEJ for j & B, (DML)
1 x! nt+1 ~ ontl
(X X) cN NSy .

Meanwhile, it is a reformulation of (B) when

cP"t1 replaces N T1n Si"’l .



Merging only binary constraints

Merging only binary constraints also leans a new reformulations
o T (1 x' n+1 n+1
of (DB): min{{Q,X) 4+ 2c'x: N €BoNL3NS T NNTY

X

min (Q,X) 4 2c'x

s.t. a/x=1; for i€ [1:m)]
(aia;—,X> = bz-2 for i€ [1:m]
>jeB(Xj; —z;) =0

2
<)1( XX> c S?ﬁl ANPTL

Meanwhile, it is a reformulation of (B) when

cP"t1 replaces N1 Si"‘l .

(DMB)



Merging strategy for reduced problem

Merging binary constraints of (R), we have a reformulation of

-
(R): min{(Q,X>-|-2CTX; ()1( XX) EBQHE1QCP”+1}

min (Q,X) 4+ 2c¢'x
S. t. Z]EB(XJJ — 33]) =0

1 x!
BYB' = (X x> (MR)

()]; X>—<r> c CPn—l_l Y e sntl-m.



Reformulation of (DR)

T T
Replacing ()1( XX> ccprtl vy esrtl-m in (DR) by ()1( XX> =

NPl Y e Si“'l_m gives a reformulation of (DR).

1 x!

min {(Q,X> +2¢'x: (X X) € BN (BS"_rf_"'l_mBT) ﬁ/\f”"’l} (DMR)

(DB) < (DA) < (DR)

< (DML) < (DMB) < (DMR)



An example

Consider a multidimensional quadratic knapsack problems

max x' Qx
s.t. a/x<b; foric[l:m)] (1)
x € {0, 1}™.

Adding slack variables to remove the inequality constraints

max x' Qx

S. t. 5ZTX + v, =b; for ie[l:m] (2)
x € {0, 1}"
v e R,

_|_
Add m slack variables!



Reformulation to satisfy condition (K)

Adding slack variables to guarantee the variables are restricted
in [0, 1].

max x ' Qx

S. t. 5;rX +v;, = 0b; for 1€ []. :m]
r;i+z; =1 forje[l:n] (3)
x € {0, 1}"

veRTT zeR:Y, XERQL_.



Numerical results

A MQKP with 2 knapsacks and 5 goods.

Statistics of solution status
(DB) (DML) (DMB) (DA) (DR) (DMR)

SDPT3 25.0888 26.5766* 25.0888 28.744* 25.0888 25.0888
SeDuMi 25.0888 26.5767* 25.0888 28.744* 25.0888 25.0888

Mosek  25.0888 NaN* 25.0888 NaN** 25.0888 25.0888
Sdpnal4+ NaN** NaN** NaN** NaN**  25.0888 25.0888

*: Inaccurate solved, the algorithm converge only to a near op-
timal or dual feasible solution.

- Failed, the sdp problem is unsolvable by solvers

When the problem is precisely solved, all sdp relaxation problems

have the same optimal value.



Statistics of solution status

We choose 4 different sizes and run 100 groups of sdp problems
with different parameters under the same size.

(DB) (DML) (DMB) (DA) (DR) (DMR)
'Solved’ 12 0 10 0 100 100
6*10 'Inacc./Solved’ 83 100 90 100 o) 0
'Failed’ 0] 0] 0 0 0 0
'Solved’ 0 0 0 0 99 98
10*10 'Inacc./Solved’ 100 100 98 100 1 2
'Failed’ 0 0 2 0 0 0
'Solved’ 0 0 0 0 100 100
15*10 'Inacc./Solved’ 6 100 13 100 o) 0
'Failed’ 94 0 87 0 0 0
'Solved’ 0 0 0 0 41 99
30*5 'Inacc./Solved’ 85 100 90 100 59 1
'Failed’ 15 0] 10 0 0 0]




Average solution times

(DB) (DML) (DMB) (DA) (DR) (DMR)

'Solved'’ 1.01 - 1.06 - 0.28 0.28
6*10 'Inacc./Solved’ 1.07 1.20 1.09 1.16 - -
'Failed’ - - - - - -
'Solved’ - - - - 0.40 0.40
10*10 'Inacc./Solved’ 2.51 3.01 2.62 3.04 0.45 0.43
'Failed’ - - 1.08 - - -
'Solved’ - - - - 0.73 0.73
15*%10 'Inacc./Solved’ 4.84 9.48 6.64 9.27 - -
'Failed’ 2.59 - 2.65 - - -
'Solved’ - - - - 5.72 5.07
30*5 ’'Inacc./Solved’ 217.35 380.23 234.98 324.25 5.75 5.31
"Failed’ 65.21 - 71.12 - - -

Results are derived with Sedumi.



Conclusions

The sdp problems have no feasible points in the interior of the
semi-definite cone. Still hard to solve! further improvement!

Most of the reduced sdp problems can be solve precisely,
while the non-reduced sdp problems can not.

The CPU time of reduced sdp problems are much less.

Compared the reduced sdp problem with no merging, the
reduced sdp problem with merging is more tractable.
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