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Introduction

Let (Ω,F ,P0) denote an abstract probability space. Denote
Lp = Lp(Ω,F ,P0; R) (p ≥ 1),

Definition (FSD)

X ∈ Lp dominates Y ∈ Lp in the first order, denoted X �(1) Y , if

P{X ≤ η} ≤ P{Y ≤ η}, ∀η ∈ R

We define expected shortfall function
F2(X; η) =

∫ η

−∞
F(X;α)dα = EP0 [(η − X)+].

Definition (SSD)

X ∈ Lp dominates Y ∈ Lp in the second order, denoted X �(2) Y , if

F2(X; η) ≤ F2(Y; η), ∀η ∈ R

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.
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Introduction

Proposition

X �(1) Y iff EP0 [u(X)] ≥ EP0 [u(Y)] for all u ∈ U1, here U1 denotes the
set of all nondecreasing functions u : R→ R.

X �(2) Y iff EP0 [u(X)] ≥ EP0 [u(Y)] for all u ∈ U2, here U2 denotes the
set of all concave and nondecreasing functions u : R→ R.

Dentcheva and Ruszczyński (2003) first considered optimization
problem with SSD and derived the optimality conditions.

Dentcheva and Ruszczyński (2006) developed duality relations and
solved the dual problem by utilizing the piecewise linear structure of
the dual functional

Luedtke (2008) get new linear formulations for SSD with finite
distributed benchmark

Drapkin, Gollmer, Gotzes, Schultz, et al. (2011a,2011b) study cases
where the random variables are induced by mixed-integer linear
recourse
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Introduction

Solution methods

Sampling approachesa are the most popular solution method (see,
Dentcheva and Ruszczyński, 2003, Liu, Sun and Xu, 2016)

Cut plane methods are the most efficient solution algorithm (see,
e.g., Rudolf and Ruszczyński, 2003; Homem-de-Mello and
Mehrotra, 2009; Sun, Xu, et al., 2013).

Strong application background in finance

e.g., portfolio selection applications (Dentcheva and Ruszczyński,
2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang, L., 2019)

Our focus:

Multivariate extensions: compare random vectors

Distributionally robust counterparts: ambiguous distribution
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Introduction

Multivariate extensions:
compare random vectors in L m

p = Lp(Ω,F ,P0; Rm),

Define by order relationship between the expected multivariate utility
functions (Müller and Stoyan, 2002; Armbruster and Luedtke, 2015).

* Random vectors X,Y such that EP0 [u(X)] ≥ EP0 [u(Y)] for all u ∈ U2,
here U2 denotes the set of all concave and nondecreasing functions
u : Rn → R.

Introduce a scalarization function and model as a univariate SD
(Dentcheva and Ruszczyński, 2010; Noyan and Rudolf, 2013, 2018)

*
θ(c,X) �(2) θ(c,Y), ∀c ∈ C.
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Multivariate SSD

Definition (Multivariate SSD)

Random vector X ∈ L m
p dominates Y ∈ L m

p in the second order with
respect to the scalarization function θ and a set C, denoted as X �θ,C(2) Y, if

θ(c,X) �(2) θ(c,Y), ∀c ∈ C. (1)

where θ is the min-biaffine scalarization function, c ∈ C ⊂ Rm plays the
role of a scalarization vector.

Linear scalarization function θ(c, x) = aT (c)x + b(c) (Dentcheva and
Ruszczyński, 2010, together with C = Rm

+ )

Min-biaffine scalarization function θ(c, x) = min1≤t≤T {aT
t (c)x + bt(c)}

(Noyan and Rudolf, 2018)
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Robust SSD

Ambiguity of the distribution

Fully distributional information is hardly known in practice

Estimated distribution is usually imprecise

⇒ Find solution feasible for all possible distribution (Distributionally
robust technique)

Definition (Robust SSD)

A random variable X ∈ Lp dominates robustly a random variable Y ∈ Lp

in the second-order with respect to a set of probability measures Q if

EP[u(X)] ≥ EP[u(Y)], ∀u ∈ U , ∀P ∈ Q. (2)

Here U is the set of concave and nondecreasing utility functions defined
above. Denote by X �Q(2) Y.
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Multivariate robust SSD

Dentcheva and Ruszczyński (2010) proposed the notion of robust
second-order stochastic dominance, investigated the optimization
problem with this kind of constraints and derived the corresponding
conditions of optimality under different cases.

Guo, Xu and Zhang (2017) studied the efficient solution method for
the problems with robust stochastic dominance constraints.

Chen and Jiang (2018) studied stability Analysis of Optimization
Problems with k-th order distributionally robust dominance
constraints induced by full random recourse
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Multivariate robust SSD

Uncertainty set is key point in robust optimization

Box uncertainty (Natarajan et al., 2010)

Ellipsoidal uncertainty (Ermoliev et al., 1985)

Known first two order moments (El Ghaoui et al., 2003; Natarajan,
Sim 2011; Chen, He, Zhang, 2010)

Imprecise first two order moments (Delage and Ye, 2010; Cheng and
Lisser, 2014)

Mixture distribution uncertainty (Zhu and Fukushima, 2009)

Probabilistic distance based uncertainty (Wasserstein distance,
Pflug and Wozabal, 2012,2014; Phi-divergence, Ben-Tal et al. 2013,
Guan and Jiang, 2017; K-L distance, Hu and Hong, 2014)

Assumption (Assumption 1)

Q is convex, closed, and bounded.
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Multivariate robust SSD

Definition (Multivariate robust SSD)

A random vector X ∈ L m
p dominates robustly a random vector Y ∈ L m

p in
the second-order with respect to a set of probability measures Q if

EP[u(θ(c,X))] ≥ EP[u(θ(c,Y))], ∀c ∈ C,∀u ∈ U , ∀P ∈ Q. (3)

Denoted shortly by X �θ,C,Q(2) Y.

If Q is a singleton set, θ(c, x) = cTx and C = Rm
+ =⇒ linearly

multivariate SSD

If m = 1 and θ(c, x) = x =⇒ robust SSD

If m = 1, Q is a singleton set and θ(c, x) = x =⇒ classical SSD
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Multivariate robust SSD

Our motivation: multivariate version of robust SSD

Multivariate extensions: compare random vectors

Distributionally robust counterparts: ambiguous distribution

Our contributions

Study mathematical properties for min-biaffine scalarization

Analyze their optimality conditions

Examine the approximation scheme with stability results
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Mathematical properties

We adopt min-biaffine scalarization function (Noyan and Rudolf,
2018OR) θ(c, x) = min1≤t≤T {aT

t (c)x + bt(c)}

Assumption (Assumption 2)

For any fixed c ∈ C, θ(c, ·) is nondecreasing in the sense that x �sep y
entails θ(c, x) ≥ θ(c, y).

Holds automatically for portfolio selection optimizations

Lemma (pth integrability)

For fixed c ∈ C, X ∈ L m
p implies θ(c,X) ∈ Lp.

Lemma (Lipschitz continuity)

For any fixed c ∈ C, there exists a constant C0(c) := max1≤t≤T ||at(c)||1
such that for any X,Y ∈ L m

p , we have

||θ(c,X) − θ(c,Y)||p ≤ C0(c)||X − Y ||p.
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Relations to utility functions

Theorem

For X,Y ∈ L m
p , the following conditions are equivalent:

1 X �θ,C,Q(2) Y;

2 θ(c,X) �Q(2) θ(c,Y),∀c ∈ C;

3 EP[ϕ(X)] ≥ EP[ϕ(Y)],∀ϕ ∈ Φ,∀P ∈ Q, where

Φ =
{ ∫

C
[Q(c)](θ(c, x))µ(dc) : µ ∈ M+(C),Q : C → U , such that

(c, x)→ [Q(c)](θ(c, x)) is Lebesgue measurable on C × Rm
}
;

4 EP[(η − θ(c,X))+] ≤ EP[(η − θ(c,Y))+],∀η ∈ R,∀c ∈ C,∀P ∈ Q;
5 CVaRα,P(θ(c,X)) ≥ CVaRα,P(θ(c,Y)),∀c ∈ C,∀P ∈ Q,∀α ∈ (0, 1],

where CVaRα,P(X) = supη{η −
1
α
EP[(η − X)+]}.
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Reformulation

We know from above theorem that X �θ,C̃,Q(2) Y is equivalent to

sup
P∈Q
EP[(η − θ(c,X))+ − (η − θ(c,Y))+] ≤ 0, ∀(c, η) ∈ C̃ × R.

We introduce a functional σ : Lp → R̄ defined as

σ(V) = sup
P∈Q
EP[V],

We define ρc,η : L m
p → R̄ as

ρc,η(X) = σ[(η − θ(c,X))+ − (η − θ(c,Y))+]

X �θ,C̃,Q(2) Y is equivalent to

ρc,η(X) ≤ 0, ∀(c, η) ∈ C̃ × R.
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Lipschitz continuity of σ(·)

Lemma

If the set Q is convex, closed and bounded, then σ(·) is convex and
subdifferentiable everywhere. Moreover for any V ∈ Lp, we have
∂σ(V) = {P ∈ Q : EP[V] = σ(V)}, and σ(·) is Lipschitz continuous on Lp

with modulus B := supP1∈Q
supP2∈Q

∥∥∥∥ dP1
dP2

∥∥∥∥
q

.
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Convexity and Lipschitz continuous of ρc,η(·)

Proposition

Given Assumptions 1 and 2, ρc,η(·) has the following properties:

1 ρc,η(·) is convex;
2 ρc,η(·) is nonincreasing in the sense that

X1(ω) �sep X2(ω), ∀ω ∈ Ω⇒ ρc,η(X1) ≤ ρc,η(X2);

3 ρc,η(·) is Lipschitz continuous with modulus B · C0(c).
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Subdifferentiability of ρc,η(·)

Proposition (subdifferential)

Given Assumptions 1 and 2, for any (c, η) ∈ C̃ × R, the functional ρc,η(·) is
continuous and subdiffenretiable on L m

p , and its subdifferential at a point
X ∈ L m

p is

∂ρc,η(X) =
{
Q ∈ L m

q : ∃Pc,η ∈ Ac,η(X),∃λ(ω) ∈ Dc,η(X, ω) such that

Q =

∫
Ω

λ(ω)dPc,η(ω)
}

= Dc,η(X, ·) ◦ Ac,η(X).

(4)
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Subdifferentiability of ρc,η(·)

where

Dc,η(X, ω) =



conv{−ai1 (c), · · · ,−ail (c)},
if θc(X(ω)) < η and {i1, · · · , il} = argmint{a

T
t (c)X(ω) + bt(c)},

l = 1, · · · ,T ,
conv{0,−ai1 (c), · · · ,−ail (c)},

if θc(X(ω)) = η and {i1, · · · , il} = argmint{a
T
t (c)X(ω) + bt(c)},

l = 1, · · · ,T ,
{0}, if θc(X(ω)) > η.

Ac,η(X) = ∂σ[(η − θc(X))+ − (η − θc(Y))+] : L m
p → 2Lq , X ∈ L m

p .

θc(·) := θ(c, ·). 2A represents the power set of a set A.
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Optimization problems with multivariate robust SSD

Consider an optimization problem with a multivariate robust SSD
constraint:

min
z∈Z0

φ(H(z, ξ)) (5)

s.t. G(z, ξ) �θ,C,Q(2) Y(ξ), (6)

Assumption (Assumption 3)

1 The uncertainty is exogenous, i.e., ξ ∈ L l
p does not depend on

decision z.
2 Z0 is a nonempty, convex and compact subset of a Banach space Z

3 For almost all ω ∈ Ω, z 7→ [H(z, ξ(ω))] and z 7→ [G(z, ξ(ω))] are
continuous and concave mappings, here G is concave in the sense
that: G(λz1 + (1 − λ)z2, ξ(ω)) �sep λG(z1, ξ(ω)) + (1 − λ)G(z2, ξ(ω)) for
any λ ∈ [0, 1];

4 φ(·) is a continuous, nonincreasing and convex functional. Y(·) is
continuous.
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Relaxation to a compact set

LetM : C̃ ⇒ R be a multifunction with a nonempty compact graph. In
what follows, we only consider (c, η) in the set graph(M), i.e., we consider
the following relaxation problem of problem (5)-(6):

min
z∈Z0

φ(H(z, ξ)) (7)

s.t. ρc,η(G(z, ξ)) ≤ 0, ∀(c, η) ∈ graph(M) ⊂ C̃ × R. (8)

The reason for this relaxation is to satisfy the Slater constraint
qualification.

Assumption (Assumption 4: uniformity)

There exists a point z̃ ∈ Z0 such that

max
P∈Q

max
(c,η)∈graph(M)

EP[(η − θ(c,G(z̃, ξ)))+ − (η − θ(c,Y(ξ)))+] < 0.

Jia Liu Multivariate robust second-order stochastic dominance
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Optimality condition

Theorem (Optimality condition)

Given Assumptions 1-4. If ẑ is an optimal solution to problem (7)-(8), then
there exist measures Ŝ ∈ ∂φ[H(ẑ, ξ)], Pc,η ∈ Ac,η(G(ẑ, ξ)), a measurable
selection λc,η ∈ Dc,η(G(ẑ, ξ), ω), (c, η) ∈ graph(M), ω ∈ Ω, and a measure
ν̂ ∈ M+(graph(M)), such that ẑ is an optimal solution to the problem

min
z∈Z0

{∫
Ω

H(z, ξ)Ŝ(dω) +

∫
graph(M)

∫
Ω

λc,η(ω) · G(z, ξ)dPc,η(ω)dν̂
}

(9)

and the following complementary condition is satisfied∫
graph(M)

EPc,η [(η − θ(c,G(ẑ, ξ)))+]dν̂ =

∫
graph(M)

EPc,η [(η − θ(c,Y(ξ)))+]dν̂.

(10)
Conversely, if for some
Ŝ ∈ ∂φ[H(ẑ, ξ)],Pc,η ∈ Ac,η(G(ẑ, ξ)), λc,η(ω) ∈ Dc,η(G(ẑ, ξ), ω) and
ν̂ ∈ M+(graph(M)), the optimal solution to problem (9) satisfies (10) and
(8), then ẑ is an optimal solution to problem (7)-(8).
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Discretization and stability analysis: A case study for
moment-based uncertainty set

Recall the optimization problem with a multivariate robust SSD constraint:

min
z∈Z0

φ(H(z, ξ))

s.t. EP

[(
η − θ(c,G(z, ξ))

)
+
−

(
η − θ(c,Y(ξ))

)
+

]
≤ 0, ∀(c, η) ∈ graph(M), ∀P ∈ Q.

(11)

with moment-based uncertainty set

Q = {P ∈P : EP[f (ξ)] ≤ 0}, (12)

P to denote the set of all probability measures on (Ξ,B), where Ξ is the
support set of Ω, assumed to be compact, B is the Borel sigma algebra
on Ξ. f : Ξ→ Ra is a continuous vector-valued functional and a is a
positive integer.
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Discrete approximation

Consider a discrete approximation to the set of probability distributions as

QN :=

P ∈P : fP(·) =

N∑
i=1

piδξi (·),
N∑

i=1

pif (ξi) ≤ 0,
N∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . ,N

 ,
where fP(·) is the probability mass functions of measure P.

Obviously QN ⊂ Q.

We can now construct an approximation to problem (11) as follows:

min
z∈Z0

φ(H(z, ξ))

s.t. sup
(c,η)∈graph(M)

sup
P∈QN

EP[h(z, c, η, ξ)] ≤ 0,
(13)

where h(z, c, η, ξ) = (η − θ(c,G(z, ξ)))+ − (η − θ(c,Y(ξ))).
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Stability?

Define
vN(z) := sup

(c,η)∈graph(M)
sup
P∈QN

EP[h(z, c, η, ξ)],

v(z) := sup
(c,η)∈graph(M)

sup
P∈Q
EP[h(z, c, η, ξ)].

Obviously, vN(z) ≤ v(z) as QN ⊂ Q.

Convergence of vN when N → ∞ ? Properties of v(z)?

Feasible regions:
F := {z ∈ Z0 : v(z) ≤ 0} and FN := {z ∈ Z0 : vN(z) ≤ 0}.
Optimal solution set:
ϑ := min{φ(H(z, ξ)) : z ∈ F } and S := {z ∈ F : ϑ = φ(H(z, ξ))}.
ϑN := min{φ(H(z, ξ)) : z ∈ FN} and SN := {z ∈ FN : ϑN = φ(H(z, ξ))}.

Convergence of FN and ϑN when N → ∞ ?
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Assumption

Assumption (Assumption 5)

1 There exists a probability measure P∗ ∈P such that EP∗ [f (ξ)] < 0;
2 The sequence {ξi}i∈N ⊂ Ξ satisfies that for any ε > 0 and ξ ∈ Ξ, there

exists an index N′ ∈ {1, · · · ,N} such that ||ξ − ξN′ || ≤ ε;
3 For each ξ ∈ Ξ, every component of G(z, ξ), i.e.,Gi(z, ξ), i = 1, · · · ,m,

is Lipschitz continuous with the Lipschitz modulus being κ(ξ), i.e.,
|Gi(z1, ξ) − Gi(z2, ξ)| ≤ κi(ξ)||z1 − z2||2, and κ := supξ∈Ξ

∑m
i=1 κi(ξ) is

finite;
4 C0 := supc∈C̃ C0(c) is finite, where C0(c) = max1≤t≤T ||at(c)||1;
5 A0 := supx∈G A0(x) is finite, where G := G(Z0 × Ξ) ∪ Y(Ξ) and

A0(x) = max1≤t≤T ||dt(x)||2.

Jia Liu Multivariate robust second-order stochastic dominance



Introduction Definition Properties Optimization problems Discretization Conclusions

Qualitative stability results

Lemma

For fixed x, |θ(c1, x) − θ(c2, x)| ≤ A0(x) · ||c1 − c2||2.

Theorem

Given Assumptions 1-5 and F is nonempty,
1 limN→∞ H(FN ,F ) = 0;
2 limN→∞ ϑN = ϑ (converges uniformly);
3 limN→∞ D(SN , S) = 0.

H(A,B) := max{D(A,B),D(A,B)} is the Hausdorff distance between A and
B, where D(A,B) := supx∈A infy∈B(x, y) is the deviation of A from B

Proposition

v(·) is Lipschitz continuous on Z0 with the Lipschitz modulus being C0κ.
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Conclusions

We study multivariate robust SSD

Use min-biaffine scalarization

Analyze optimality conditions

Examine stability of discrete approximation

Further work

Multivariate robust SSD is still very hard problem. Many conditions.
Efficiently solution method?

How about date-driven uncertainty set?
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Thank you!
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