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Introduction

Let (Q,.%, Py) denote an abstract probability space. Denote
2, = 2,2, F,Po;R) (p 2 1),

Definition (FSD)

X € £, dominates Y € .Z, in the first order, denoted X >(;) Y, if

PX<n)<P{Y<n}, VneR

We define expected shortfall function
Fy(X:m) = [1 F(X;a)da = Ep [(7 — X).].

Definition (SSD)

X € £, dominates Y € .%, in the second order, denoted X >, ¥, if

FX;n) < Fr(Y;m), VneR

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.
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Introduction

Proposition

® X > Y iff Ep,[u(X)] = Ep,[u(Y)] for all u € %, here % denotes the
set of all nondecreasing functions u: R — R.

@ X > Y iff Ep,[u(X)] = Ep,[u(Y)] for all u € %, here %, denotes the
set of all concave and nondecreasing functions u: R — R.

@ Dentcheva and Ruszczynski (2003) first considered optimization
problem with SSD and derived the optimality conditions.

@ Dentcheva and Ruszczynski (2006) developed duality relations and
solved the dual problem by utilizing the piecewise linear structure of
the dual functional

@ Luedtke (2008) get new linear formulations for SSD with finite
distributed benchmark

@ Drapkin, Gollmer, Gotzes, Schultz, et al. (2011a,2011b) study cases
where the random variables are induced by mixed-integer linear
recourse
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Introduction

Solution methods

@ Sampling approachesa are the most popular solution method (see,
Dentcheva and Ruszczynski, 2003, Liu, Sun and Xu, 2016)

@ Cut plane methods are the most efficient solution algorithm (see,
e.g., Rudolf and Ruszczynski, 2003; Homem-de-Mello and
Mehrotra, 2009; Sun, Xu, et al., 2013).

Strong application background in finance

@ e.g., portfolio selection applications (Dentcheva and Ruszczynski,
2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang, L., 2019)

Our focus:
@ Multivariate extensions: compare random vectors
@ Distributionally robust counterparts: ambiguous distribution
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Multivariate extensions:
compare random vectors in Z" = Z,(Q, F,Py; R™),

@ Define by order relationship between the expected multivariate utility
functions (Muller and Stoyan, 2002; Armbruster and Luedtke, 2015).

* Random vectors X, Y such that Ep [u(X)] > Ep,[u(Y)] for all u € %,
here %, denotes the set of all concave and nondecreasing functions
u: R" — R.

@ Introduce a scalarization function and model as a univariate SD
(Dentcheva and Ruszczynski, 2010; Noyan and Rudolf, 2013, 2018)

*

0(c,X) =) 0(c,Y), Yce C.
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Multivariate SSD

Definition (Multivariate SSD)

Random vector X € £ dominates Y € £/ in the second order with
respect to the scalarization function 6 and a set C, denoted as X zfé)c Y, if

0(c,X) =) 6(c,Y), Yc e C. (1)
where 6 is the min-biaffine scalarization function, ¢ € C c R™ plays the
role of a scalarization vector.

@ Linear scalarization function 6(c, x) = a” (c)x + b(c) (Dentcheva and
Ruszczynski, 2010, together with C = R')

@ Min-biaffine scalarization function 6(c, x) = min;,<r{al (c)x + b,(c)}
(Noyan and Rudolf, 2018)
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Robust SSD

Ambiguity of the distribution

@ Fully distributional information is hardly known in practice

@ Estimated distribution is usually imprecise
= Find solution feasible for all possible distribution (Distributionally
robust technique)

Definition (Robust SSD)

A random variable X € ., dominates robustly a random variable Y € .Z,
in the second-order with respect to a set of probability measures Q if

Ep[u(X)] > Ep[u(Y)], Yue %, VPeQ. @)

Here 7% is the set of concave and nondecreasing utility functions defined

above. Denote by X > V.
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Introduction

Multivariate robust SSD

@ Dentcheva and Ruszczynski (2010) proposed the notion of robust
second-order stochastic dominance, investigated the optimization
problem with this kind of constraints and derived the corresponding
conditions of optimality under different cases.

@ Guo, Xu and Zhang (2017) studied the efficient solution method for
the problems with robust stochastic dominance constraints.

@ Chen and Jiang (2018) studied stability Analysis of Optimization
Problems with k-th order distributionally robust dominance
constraints induced by full random recourse
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Multivariate robust SSD

Uncertainty set is key point in robust optimization
@ Box uncertainty (Natarajan et al., 2010)
@ Ellipsoidal uncertainty (Ermoliev et al., 1985)

@ Known first two order moments (El Ghaoui et al., 2003; Natarajan,
Sim 2011; Chen, He, Zhang, 2010)

@ Imprecise first two order moments (Delage and Ye, 2010; Cheng and
Lisser, 2014)

@ Mixture distribution uncertainty (Zhu and Fukushima, 2009)

@ Probabilistic distance based uncertainty (Wasserstein distance,
Pflug and Wozabal, 2012,2014; Phi-divergence, Ben-Tal et al. 2013,
Guan and Jiang, 2017; K-L distance, Hu and Hong, 2014)

Assumption (Assumption 1)

Q is convex, closed, and bounded.
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Multivariate robust SSD

Definition (Multivariate robust SSD)

A random vector X € " dominates robustly a random vector Y € £ in
the second-order with respect to a set of probability measures Q if

Ep[u(8(c,X))] = Ep[u(8(c,Y))], VYce C,Yue %, VP e Q. (3)

6.C.Q Y

Denoted shortly by X Z5)

@ If Qis a singleton set, 6(c,x) = c’x and C = R" = linearly
multivariate SSD

@ If m =1 and 6(c, x) = x = robust SSD
o Ifm =1, Qis a singleton set and 6(c, x) = x = classical SSD
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Definition

Multivariate robust SSD

Our motivation: multivariate version of robust SSD
@ Multivariate extensions: compare random vectors
@ Distributionally robust counterparts: ambiguous distribution
Our contributions
@ Study mathematical properties for min-biaffine scalarization
@ Analyze their optimality conditions
@ Examine the approximation scheme with stability results
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Mathematical properties

We adopt min-biaffine scalarization function (Noyan and Rudolf,
20180R) (¢, x) = minj<.<r{al (c)x + b,(c)}

Assumption (Assumption 2)

For any fixed c € C, 6(c, -) is nondecreasing in the sense that x >*¥ y
entails 6(c, x) > 6(c,y).

Holds automatically for portfolio selection optimizations

Lemma (pth integrability)

For fixed c € C, X € £ implies 6(c, X) € .

v

Lemma (Lipschitz continuity)

For any fixed ¢ € C, there exists a constant Cy(c) := maxj<.<r |la:(c)l;
such that for any X, Y € 2", we have

l16(e, X) = 6(c, V), < Co(@)IX = Yl




Properties

Relations to utility functions

For X,Y € £, the following conditions are equivalent:

0.CQ .
Q@ X>)"Y;

Q 0(c,X) =8 6(c,Y),Vc € C;

Q Eplo(X)] > Ep[e(Y)],V¢ € ®,VP € Q, where

@ = f [Q(O)](B(c, ))u(de) : p € M.(C),Q: C — %, such that
C

(c,x) = [O(c)](6(c, x)) is Lebesgue measurable on C X R’"};

Q Ep[(nn—6(c,X)),] <Epl(nn—6(c,Y)).],Yn € R,¥c € C,YP € Q;

@ CVaR, p(6(c,X)) = CVaR, p(6(c,Y)),Yc € C,VP € Q Va € (0,1],
where CVaR, p(X) = sup, {n — 1Ep[(n — X).]}.

@
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Reformulation

We know from above theorem that X >0.CQ

z5 Y is equivalent to

sup Ep[(17 — 0(c, X)), — (n — 6(c, Y)):] £ 0, Y(c.,n) € CxR.
PeQ

We introduce a functional o-: .4, — R defined as

o(V) = supEp[V],
PeQ

We define p..,: ;" — R as

Pen(X) = ol(n = 0(c, X))+ — (= 6(c, ¥))+]

X > 6,C.Q

Z Y is equivalent to

Pen(X) <0, Y(c,n) € CXR.
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Lipschitz continuity of o (-)

If the set Q is convex, closed and bounded, then o(-) is convex and
subdifferentiable everywhere. Moreover for any V € £,, we have
0o (V) ={P € Q: Ep[V] = o(V)}, and o(") is Lipschitz continuous on .Z,

dPy
dP,

with modulus B := supp, cq SUpPp,cq :
q
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Properties

Convexity and Lipschitz continuous of p. ,(-)

Given Assumptions 1 and 2, p.,(-) has the following properties:

Q p.,() is convex;
@ p.,() is nonincreasing in the sense that

Xi(w) = X)(w), Yw € Q = pc,n(Xl) < pc,n(XZ);

Q p.,(-) is Lipschitz continuous with modulus B - Cy(c).
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Properties

Subdifferentiability of p..,(-)

Proposition (subdifferential)

Given Assumptions 1 and 2, for any (c,n) € C X R, the functional Pen(-) is
continuous and subdiffenretiable on £, and its subdifferential at a point
X e .2;,’” is

IpeqX) = {0 € L AP, € Ay(X), AAw) € D (X, w) such that

0= [ Awir.w) o)
Q
= Dc,n(Xv ) o ﬂc,r](X)-
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Properties

Subdifferentiability of p..,(-)

where

conv{-a;, (c), -+ , —a;(c)},
if 6.(X(w)) <nand {ij, - ,i;} = argmin{al (0)X(w) + b,(c)},
l = 1’ cee T’

D.,(X,w) =< conv{0, —a; (c), -+ ,—a;(c)},
if 6.(X(w)) =nand {iy, - ,i;} = argmin,{al () X(w) + b,(c)},
i=1,---,T,

{0}, if 6.(X(w)) > n.

Aey(X) = 007 = 6.0)+ = (7 = 0.(1)):]: £ = 2%, X € L.

0.(-) := 6(c, -). 24 represents the power set of a set A.
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Optimization problems with multivariate robust SSD

Consider an optimization problem with a multivariate robust SSD

constraint:
I}éiz? #(H(z,£)) (5)
st Gz ¢ Z(é)c’a Y(©), (6)

Assumption (Assumption 3)

@ The uncertainty is exogenous, i.e., & € .,2”1,’ does not depend on
decision z.

@ Z, is a nonempty, convex and compact subset of a Banach space %

@ Foralmostallw € Q, z — [H(z, £&(w))] and z — [G(z, é(w))] are
continuous and concave mappings, here G is concave in the sense
that: G(Az1 + (1 — Dz2, §(w)) =7 AG(z1, {(w)) + (1 = DG(z2, §(w)) for
any A € [0, 1];

© ¢(") is a continuous, nonincreasing and convex functional. Y(-) is
continuous.
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Relaxation to a compact set

Let M: C =3 R be a multifunction with a nonempty compact graph. In
what follows, we only consider (¢, n) in the set graph(9), i.e., we consider
the following relaxation problem of problem (5)-(6):

rzrenz? d(H(z,£)) (7)
st pey(G(z,6) <0, Y(c,n) € graph(M) c C x R. (8)

The reason for this relaxation is to satisfy the Slater constraint
qualification.

Assumption (Assumption 4: uniformity)

There exists a point 7 € Zy such that

O s oy Ep[(n = 6(c, G(Z,6)))+ — (n = 6(c, Y(£)))+] < 0.
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Optimality condition

Theorem (Optimality condition)

Given Assumptions 1-4. If Z is an optimal solution to problem (7)-(8), then
there exist measures 8 € ¢[H(z, )], P, € A (G2, €)), a measurable
selection A., € D ,(G(Z, ¢), w), (c,n) € graph(M), w € 2, and a measure

v € M. (graph(9t)), such that Z is an optimal solution to the problem

min{ f H(z, &)S(dw) + f f Aen(w) - G(z, ef)ch,n(wW} (©)
€2 Q graph(M) JQ

and the following complementary condition is satisfied

f Ep,,[(n - 8(c, G, £)))+1dV = f Ep,,[(n = 6(c, Y(£)))+1dV.
graph(t)

graph(It)
(10)

Conversely, if for some

S € OPlH(Z,&)], Pey € Acy(G(Z, 6)), Aey(w) € Dey(G(Z, £), w) and

9 € M, (graph()), the optimal solution to problem (9) satisfies (10) and
(8), then z is an optimal solution to problem (7)-(8).
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Discretization

Discretization and stability analysis: A case study for

moment-based uncertainty set

Recall the optimization problem with a multivariate robust SSD constraint:
min  $(H(z, £))
€2y

st Ep|(n- 6. GG g)))+ - (n- o, Y(§)))+] <0, Y(c,n) € graph(M), YP € Q.
(11)

with moment-based uncertainty set
Q={PeZ :Eplf(H] <0}, (12)

Z to denote the set of all probability measures on (2, %), where = is the
support set of Q, assumed to be compact, & is the Borel sigma algebra
on E. f: E — R*is a continuous vector-valued functional and a is a
positive integer.
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Discrete approximation

Consider a discrete approximation to the set of probability distributions as

N N N
Qy = {Pe P fo() = D piba(), ) pfE) <0, > pi=1,pi20,i= 1,...,N},
i=1 i=1 i=1

where fp(+) is the probability mass functions of measure P.
@ Obviously Qy c Q.
We can now construct an approximation to problem (11) as follows:

szelg)l #(H(z,6))

s.t. sup sup Ep[h(z,c,n,6)] <0,
(c,mEegraph(IM) PeQy

where h(z, ¢, 1,£) = (17 = 6(c, G(z,£)))+ = (17 = 6(c, Y(£))).
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Stability?

Define
wn(z):=  sup  sup Eplh(z,¢,n, 8],
(c,m)egraph(IM) PeQy
w(z) := sup sup Ep[h(z, c, 1, &)].

(c,n)egraph(M) PeQ

@ Obviously, vy(z) < v(z) as Qy C Q.
Convergence of vy when N — co ? Properties of v(z)?

@ Feasible regions:
F:={z€Zy:v(z) <0}and Fy :={z € Zy : vy(z) < 0}.

@ Optimal solution set:
P :=min{¢p(H(z,£)) :ze Fland S:={z € F : ¥ = ¢(H(z, £))}.
Iy := min{p(H(z,€)) : z € Fyyand Sy := {z € Fy : Iy = ¢(H(z,E))}.

Convergence of ¥y and 9y when N — oo ?
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Assumption

Assumption (Assumption 5)

@ There exists a probability measure P* € &2 such that Ep[f(£)] < 0;

@ The sequence {¢')iey C E satisfies that for any e > 0 and & € E, there
exists an index N’ € {1,--- ,N} such that ||¢ = &V'|| < €;

@ Foreach & € E, every component of G(z, &), i.e.,Gi(z,&),i=1,--- ,m,

is Lipschitz continuous with the Lipschitz modulus being «(¢), i.e.,

1Gi(z1,€) — Gi(z2, Ol < ki(©llz1 — 2all, @nd k := supgez X2 ki(§) is

finite;

Co := sup .z Co(c) is finite, where Cy(c) = max <<t lla;(c)ll1;

Ap := sup,.g Ao(x) is finite, where G := G(Zy x E) U Y(E) and

Ap(x) = max; <7 |ld(X)]l2-

00
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Qualitative stability results
For fixed x, |6(c1, x) — 6(c2, x)| < Ao(x) - |lc1 — c2]lo-

Given Assumptions 1-5 and ¥ is nonempty,
Q@ limy_.. H(Fy,F) =0;
@ limy_.., ¥y = ¥ (converges uniformly);
@ limy_e D(Sy, S) = 0.

H(A, B) := max{D(A, B), D(A, B)} is the Hausdorff distance between A and
B, where D(A, B) := sup,., infep(x,y) is the deviation of A from B

Proposition

v(-) is Lipschitz continuous on Z, with the Lipschitz modulus being Cyx.
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Conclusions
@ We study multivariate robust SSD

@ Use min-biaffine scalarization
@ Analyze optimality conditions
@ Examine stability of discrete approximation

Further work

@ Multivariate robust SSD is still very hard problem. Many conditions.
Efficiently solution method?

@ How about date-driven uncertainty set?
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Thank you!
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