Multivariate robust second-order stochastic dominance and resulting risk-averse optimization

Jia Liu

Xi'an Jiaotong University, China
TEL:086-82663661, E-mail: jialiu@xjtu.edu.cn
Joint work with Zhiping Chen and Yu Mei (Xi'an Jiaotong University)
(Dec, 17, 2019, Shanghai)

Outline

- Introduction
- Multivariate robust SSD
- Optimization problem with multivariate robust SSD
- Discretization and stability analysis
- Conclusion

Introduction

Let $\left(\Omega, \mathscr{F}, P_{0}\right)$ denote an abstract probability space. Denote $\mathscr{L}_{p}=\mathscr{L}_{p}\left(\Omega, \mathscr{F}, P_{0} ; R\right)(p \geq 1)$,

Definition (FSD)

$X \in \mathscr{L}_{p}$ dominates $Y \in \mathscr{L}_{p}$ in the first order, denoted $X \geq_{(1)} Y$, if

$$
P\{X \leq \eta\} \leq P\{Y \leq \eta\}, \quad \forall \eta \in R
$$

We define expected shortfall function
$F_{2}(X ; \eta)=\int_{-\infty}^{\eta} F(X ; \alpha) d \alpha=\mathbb{E}_{P_{0}}\left[(\eta-X)_{+}\right]$.

Definition (SSD)

$X \in \mathscr{L}_{p}$ dominates $Y \in \mathscr{L}_{p}$ in the second order, denoted $X \geq_{(2)} Y$, if

$$
F_{2}(X ; \eta) \leq F_{2}(Y ; \eta), \forall \eta \in R
$$

Second-order stochastic dominance is particularly popular in industry since it models risk-averse preferences.

Introduction

Proposition

- $X \geq_{(1)} Y$ iff $\mathbb{E}_{P_{0}}[u(X)] \geq \mathbb{E}_{P_{0}}[u(Y)]$ for all $u \in \mathscr{U}_{1}$, here \mathscr{U}_{1} denotes the set of all nondecreasing functions $u: R \rightarrow R$.
- $X \geq_{(2)} Y$ iff $\mathbb{E}_{P_{0}}[u(X)] \geq \mathbb{E}_{P_{0}}[u(Y)]$ for all $u \in \mathscr{U}_{2}$, here \mathscr{U}_{2} denotes the set of all concave and nondecreasing functions $u: R \rightarrow R$.
- Dentcheva and Ruszczyński (2003) first considered optimization problem with SSD and derived the optimality conditions.
- Dentcheva and Ruszczyński (2006) developed duality relations and solved the dual problem by utilizing the piecewise linear structure of the dual functional
- Luedtke (2008) get new linear formulations for SSD with finite distributed benchmark
- Drapkin, Gollmer, Gotzes, Schultz, et al. (2011a,2011b) study cases where the random variables are induced by mixed-integer linear recourse

Introduction

Solution methods

- Sampling approachesa are the most popular solution method (see, Dentcheva and Ruszczyński, 2003, Liu, Sun and Xu, 2016)
- Cut plane methods are the most efficient solution algorithm (see, e.g., Rudolf and Ruszczyński, 2003; Homem-de-Mello and Mehrotra, 2009; Sun, Xu, et al., 2013).
Strong application background in finance
- e.g., portfolio selection applications (Dentcheva and Ruszczyński, 2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang, L., 2019)
Our focus:
- Multivariate extensions: compare random vectors
- Distributionally robust counterparts: ambiguous distribution

Introduction

Multivariate extensions:
compare random vectors in $\mathscr{L}_{p}^{m}=\mathscr{L}_{p}\left(\Omega, \mathscr{F}, P_{0} ; R^{m}\right)$,

- Define by order relationship between the expected multivariate utility functions (Müller and Stoyan, 2002; Armbruster and Luedtke, 2015).
* Random vectors X, Y such that $\mathbb{E}_{P_{0}}[u(X)] \geq \mathbb{E}_{P_{0}}[u(Y)]$ for all $u \in \mathscr{U}_{2}$, here \mathscr{U}_{2} denotes the set of all concave and nondecreasing functions $u: R^{n} \rightarrow R$.
- Introduce a scalarization function and model as a univariate SD (Dentcheva and Ruszczyński, 2010; Noyan and Rudolf, 2013, 2018)

$$
\theta(c, X) \succeq_{(2)} \theta(c, Y), \forall c \in C .
$$

Multivariate SSD

Definition (Multivariate SSD)

Random vector $X \in \mathscr{L}_{p}^{m}$ dominates $Y \in \mathscr{L}_{p}^{m}$ in the second order with respect to the scalarization function θ and a set C, denoted as $X \geq_{(2)}^{\theta, C} Y$, if

$$
\begin{equation*}
\theta(c, X) \geq_{(2)} \theta(c, Y), \forall c \in C . \tag{1}
\end{equation*}
$$

where θ is the min-biaffine scalarization function, $c \in C \subset R^{m}$ plays the role of a scalarization vector.

- Linear scalarization function $\theta(c, x)=a^{T}(c) x+b(c)$ (Dentcheva and Ruszczyński, 2010, together with $C=R_{+}^{m}$)
- Min-biaffine scalarization function $\theta(c, x)=\min _{1 \leq t \leq T}\left\{a_{t}^{T}(c) x+b_{t}(c)\right\}$ (Noyan and Rudolf, 2018)

Robust SSD

Ambiguity of the distribution

- Fully distributional information is hardly known in practice
- Estimated distribution is usually imprecise
\Rightarrow Find solution feasible for all possible distribution (Distributionally robust technique)

Definition (Robust SSD)

A random variable $X \in \mathscr{L}_{p}$ dominates robustly a random variable $Y \in \mathscr{L}_{p}$ in the second-order with respect to a set of probability measures Q if

$$
\begin{equation*}
\mathbb{E}_{P}[u(X)] \geq \mathbb{E}_{P}[u(Y)], \quad \forall u \in \mathscr{U}, \forall P \in Q \tag{2}
\end{equation*}
$$

Here \mathscr{U} is the set of concave and nondecreasing utility functions defined above. Denote by $X \geq_{(2)}^{Q} Y$.

Multivariate robust SSD

- Dentcheva and Ruszczyński (2010) proposed the notion of robust second-order stochastic dominance, investigated the optimization problem with this kind of constraints and derived the corresponding conditions of optimality under different cases.
- Guo, Xu and Zhang (2017) studied the efficient solution method for the problems with robust stochastic dominance constraints.
- Chen and Jiang (2018) studied stability Analysis of Optimization Problems with k-th order distributionally robust dominance constraints induced by full random recourse

Multivariate robust SSD

Uncertainty set is key point in robust optimization

- Box uncertainty (Natarajan et al., 2010)
- Ellipsoidal uncertainty (Ermoliev et al., 1985)
- Known first two order moments (El Ghaoui et al., 2003; Natarajan, Sim 2011; Chen, He, Zhang, 2010)
- Imprecise first two order moments (Delage and Ye, 2010; Cheng and Lisser, 2014)
- Mixture distribution uncertainty (Zhu and Fukushima, 2009)
- Probabilistic distance based uncertainty (Wasserstein distance, Pflug and Wozabal, 2012,2014; Phi-divergence, Ben-Tal et al. 2013, Guan and Jiang, 2017; K-L distance, Hu and Hong, 2014)

Assumption (Assumption 1)

Q is convex, closed, and bounded.

Multivariate robust SSD

Definition (Multivariate robust SSD)

A random vector $X \in \mathscr{L}_{p}^{m}$ dominates robustly a random vector $Y \in \mathscr{L}_{p}^{m}$ in the second-order with respect to a set of probability measures Q if

$$
\begin{equation*}
\mathbb{E}_{P}[u(\theta(c, X))] \geq \mathbb{E}_{P}[u(\theta(c, Y))], \quad \forall c \in C, \forall u \in \mathscr{U}, \forall P \in Q . \tag{3}
\end{equation*}
$$

Denoted shortly by $X \geq_{(2)}^{\theta, C, Q} Y$.

- If Q is a singleton set, $\theta(c, x)=c^{T} x$ and $C=R_{+}^{m} \Longrightarrow$ linearly multivariate SSD
- If $m=1$ and $\theta(c, x)=x \Longrightarrow$ robust SSD
- If $m=1, Q$ is a singleton set and $\theta(c, x)=x \Longrightarrow$ classical SSD

Multivariate robust SSD

Our motivation: multivariate version of robust SSD

- Multivariate extensions: compare random vectors
- Distributionally robust counterparts: ambiguous distribution

Our contributions

- Study mathematical properties for min-biaffine scalarization
- Analyze their optimality conditions
- Examine the approximation scheme with stability results

Mathematical properties

We adopt min-biaffine scalarization function (Noyan and Rudolf, 2018OR) $\theta(c, x)=\min _{1 \leq t \leq T}\left\{a_{t}^{T}(c) x+b_{t}(c)\right\}$

Assumption (Assumption 2)

For any fixed $c \in C, \theta(c, \cdot)$ is nondecreasing in the sense that $x \geq^{\text {sep }} y$ entails $\theta(c, x) \geq \theta(c, y)$.

Holds automatically for portfolio selection optimizations

Lemma (pth integrability)

For fixed $c \in C, X \in \mathscr{L}_{p}^{m}$ implies $\theta(c, X) \in \mathscr{L}_{p}$.

Lemma (Lipschitz continuity)

For any fixed $c \in C$, there exists a constant $C_{0}(c):=\max _{1 \leq t \leq T}\left\|a_{t}(c)\right\|_{1}$ such that for any $X, Y \in \mathscr{L}_{p}^{m}$, we have

$$
\|\theta(c, X)-\theta(c, Y)\|_{p} \leq C_{0}(c)\|X-Y\|_{p}
$$

Relations to utility functions

Theorem

For $X, Y \in \mathscr{L}_{p}^{m}$, the following conditions are equivalent:
(1) $X \geq_{(2)}^{\theta, C, Q} Y$;
(2) $\theta(c, X) \geq_{(2)}^{Q} \theta(c, Y), \forall c \in C$;
(3) $\mathbb{E}_{P}[\varphi(X)] \geq \mathbb{E}_{P}[\varphi(Y)], \forall \varphi \in \Phi, \forall P \in Q$, where

$$
\begin{aligned}
\Phi=\{ & \left\{\int_{C}[Q(c)](\theta(c, x)) \mu(d c): \mu \in \mathcal{M}_{+}(C), Q: C \rightarrow \mathscr{U},\right. \text { such that } \\
& \left.(c, x) \rightarrow[Q(c)](\theta(c, x)) \text { is Lebesgue measurable on } C \times R^{m}\right\} ;
\end{aligned}
$$

(9) $\mathbb{E}_{P}\left[(\eta-\theta(c, X))_{+}\right] \leq \mathbb{E}_{P}\left[(\eta-\theta(c, Y))_{+}\right], \forall \eta \in R, \forall c \in C, \forall P \in Q$;
(6) $\mathrm{CVaR}_{\alpha, P}(\theta(c, X)) \geq \mathrm{CVaR}_{\alpha, P}(\theta(c, Y)), \forall c \in C, \forall P \in Q, \forall \alpha \in(0,1]$, where $\mathrm{CVaR}_{\alpha, P}(X)=\sup _{\eta}\left\{\eta-\frac{1}{\alpha} \mathbb{E}_{P}\left[(\eta-X)_{+}\right]\right\}$.

Reformulation

We know from above theorem that $X \geq_{(2)}^{\theta, \tilde{C}, Q} Y$ is equivalent to

$$
\sup _{P \in Q} \mathbb{E}_{P}\left[(\eta-\theta(c, X))_{+}-(\eta-\theta(c, Y))_{+}\right] \leq 0, \forall(c, \eta) \in \tilde{C} \times R
$$

We introduce a functional $\sigma: \mathscr{L}_{p} \rightarrow \bar{R}$ defined as

$$
\sigma(V)=\sup _{P \in Q} \mathbb{E}_{P}[V]
$$

We define $\rho_{c, \eta}: \mathscr{L}_{p}^{m} \rightarrow \bar{R}$ as

$$
\rho_{c, \eta}(X)=\sigma\left[(\eta-\theta(c, X))_{+}-(\eta-\theta(c, Y))_{+}\right]
$$

$X \geq_{(2)}^{\theta, \tilde{C}, Q} Y$ is equivalent to

$$
\rho_{c, \eta}(X) \leq 0, \forall(c, \eta) \in \tilde{C} \times R
$$

Lipschitz continuity of $\sigma(\cdot)$

Lemma

If the set Q is convex, closed and bounded, then $\sigma(\cdot)$ is convex and subdifferentiable everywhere. Moreover for any $V \in \mathscr{L}_{p}$, we have $\partial \sigma(V)=\left\{P \in Q: \mathbb{E}_{p}[V]=\sigma(V)\right\}$, and $\sigma(\cdot)$ is Lipschitz continuous on \mathscr{L}_{p} with modulus $B:=\sup _{P_{1} \in Q} \sup _{P_{2} \in Q}\left\|\frac{d P_{1}}{d P_{2}}\right\|_{q}$.

Convexity and Lipschitz continuous of $\rho_{c, n}(\cdot)$

Proposition

Given Assumptions 1 and 2, $\rho_{c, \eta}(\cdot)$ has the following properties:
(1) $\rho_{c, \eta}(\cdot)$ is convex;
(2) $\rho_{c, \eta}(\cdot)$ is nonincreasing in the sense that

$$
X_{1}(\omega) \geq^{s e p} X_{2}(\omega), \forall \omega \in \Omega \Rightarrow \rho_{c, \eta}\left(X_{1}\right) \leq \rho_{c, \eta}\left(X_{2}\right)
$$

(3) $\rho_{c, \eta}(\cdot)$ is Lipschitz continuous with modulus $B \cdot C_{0}(c)$.

Subdifferentiability of $\rho_{c, \eta}(\cdot)$

Proposition (subdifferential)

Given Assumptions 1 and 2, for any $(c, \eta) \in \tilde{C} \times R$, the functional $\rho_{c, \eta}(\cdot)$ is continuous and subdiffenretiable on \mathscr{L}_{p}^{m}, and its subdifferential at a point $X \in \mathscr{L}_{p}^{m}$ is

$$
\begin{align*}
\partial \rho_{c, \eta}(X)= & \left\{Q \in \mathscr{L}_{q}^{m}: \exists P_{c, \eta} \in \mathcal{A}_{c, \eta}(X), \exists \lambda(\omega) \in D_{c, \eta}(X, \omega)\right. \text { such that } \\
& \left.Q=\int_{\Omega} \lambda(\omega) d P_{c, \eta}(\omega)\right\} \tag{4}\\
= & D_{c, \eta}(X, \cdot) \circ \mathcal{A}_{c, \eta}(X) .
\end{align*}
$$

Subdifferentiability of $\rho_{c, \eta}(\cdot)$

where

$$
D_{c, \eta}(X, \omega)=\left\{\begin{array}{l}
\operatorname{conv}\left\{-a_{i_{1}}(c), \cdots,-a_{i_{l}}(c)\right\} \\
\quad \text { if } \theta_{c}(X(\omega))<\eta \text { and }\left\{i_{1}, \cdots, i_{l}\right\}=\operatorname{argmin}_{t}\left\{a_{t}^{T}(c) X(\omega)+b_{t}(c)\right\}, \\
\quad l=1, \cdots, T, \\
\operatorname{conv}\left\{\mathbf{0},-a_{i_{1}}(c), \cdots,-a_{i_{l}}(c)\right\} \\
\quad \text { if } \theta_{c}(X(\omega))=\eta \text { and }\left\{i_{1}, \cdots, i_{l}\right\}=\operatorname{argmin}_{t}\left\{a_{t}^{T}(c) X(\omega)+b_{t}(c)\right\}, \\
l=1, \cdots, T, \\
\{\mathbf{0}\}, \text { if } \theta_{c}(X(\omega))>\eta .
\end{array}\right.
$$

$\mathcal{A}_{c, \eta}(X)=\partial \sigma\left[\left(\eta-\theta_{c}(X)\right)_{+}-\left(\eta-\theta_{c}(Y)\right)_{+}\right]: \mathscr{L}_{p}^{m} \rightarrow 2^{\mathscr{L}_{q}}, X \in \mathscr{L}_{p}^{m}$.
$\theta_{c}(\cdot):=\theta(c, \cdot) .2^{A}$ represents the power set of a set A.

Optimization problems with multivariate robust SSD

Consider an optimization problem with a multivariate robust SSD constraint:

$$
\begin{array}{ll}
\min _{z \in Z_{0}} & \phi(H(z, \xi)) \\
\text { s.t. } & G(z, \xi) \geq_{(2)}^{\theta, C, Q} Y(\xi), \tag{6}
\end{array}
$$

Assumption (Assumption 3)

(1) The uncertainty is exogenous, i.e., $\xi \in \mathscr{L}_{p}^{l}$ does not depend on decision z.
(2) Z_{0} is a nonempty, convex and compact subset of a Banach space \mathscr{Z}
(0) For almost all $\omega \in \Omega, z \mapsto[H(z, \xi(\omega))]$ and $z \mapsto[G(z, \xi(\omega))]$ are continuous and concave mappings, here G is concave in the sense that: $G\left(\lambda z_{1}+(1-\lambda) z_{2}, \xi(\omega)\right) \geq^{\text {sep }} \lambda G\left(z_{1}, \xi(\omega)\right)+(1-\lambda) G\left(z_{2}, \xi(\omega)\right)$ for any $\lambda \in[0,1]$;
(0) $\phi(\cdot)$ is a continuous, nonincreasing and convex functional. $Y(\cdot)$ is continuous.

Relaxation to a compact set

Let $\mathfrak{M}: \tilde{C} \rightrightarrows R$ be a multifunction with a nonempty compact graph. In what follows, we only consider (c, η) in the set graph (\mathfrak{M}), i.e., we consider the following relaxation problem of problem (5)-(6):

$$
\begin{array}{ll}
\min _{z \in Z_{0}} & \phi(H(z, \xi)) \\
\text { s.t. } & \rho_{c, \eta}(G(z, \xi)) \leq 0, \forall(c, \eta) \in \operatorname{graph}(\mathfrak{M}) \subset \tilde{C} \times R . \tag{8}
\end{array}
$$

The reason for this relaxation is to satisfy the Slater constraint qualification.

Assumption (Assumption 4: uniformity)

There exists a point $\tilde{z} \in Z_{0}$ such that

$$
\max _{P \in Q} \max _{(c, \eta) \in g r a p h(M)} \mathbb{E}_{P}\left[(\eta-\theta(c, G(\tilde{z}, \xi)))_{+}-(\eta-\theta(c, Y(\xi)))_{+}\right]<0 .
$$

Optimality condition

Theorem (Optimality condition)

Given Assumptions 1-4. If \hat{z} is an optimal solution to problem (7)-(8), then there exist measures $\hat{S} \in \partial \phi[H(\hat{z}, \xi)], P_{c, \eta} \in \mathcal{A}_{c, \eta}(G(\hat{z}, \xi))$, a measurable selection $\lambda_{c, \eta} \in D_{c, \eta}(G(\hat{z}, \xi), \omega),(c, \eta) \in \operatorname{graph}(\mathfrak{M}), \omega \in \Omega$, and a measure $\hat{v} \in \mathcal{M}_{+}(\operatorname{graph}(\mathfrak{M}))$, such that \hat{z} is an optimal solution to the problem

$$
\begin{equation*}
\min _{z \in Z_{0}}\left\{\int_{\Omega} H(z, \xi) \hat{S}(d \omega)+\int_{\operatorname{graph}(\mathfrak{M})} \int_{\Omega} \lambda_{c, \eta}(\omega) \cdot G(z, \xi) d P_{c, \eta}(\omega) d \hat{v}\right\} \tag{9}
\end{equation*}
$$

and the following complementary condition is satisfied

$$
\begin{equation*}
\int_{\operatorname{graph}(\mathfrak{M})} \mathbb{E}_{P_{c, \eta}}\left[(\eta-\theta(c, G(\hat{z}, \xi)))_{+}\right] d \hat{v}=\int_{\operatorname{graph}(\mathfrak{M})} \mathbb{E}_{P_{c, \eta}}\left[(\eta-\theta(c, Y(\xi)))_{+}\right] d \hat{v} \tag{10}
\end{equation*}
$$

Conversely, if for some
$\hat{S} \in \partial \phi[H(\hat{z}, \xi)], P_{c, \eta} \in \mathcal{A}_{c, \eta}(G(\hat{z}, \xi)), \lambda_{c, \eta}(\omega) \in D_{c, \eta}(G(\hat{z}, \xi), \omega)$ and $\hat{v} \in \mathcal{M}_{+}(\operatorname{graph}(\mathfrak{M}))$, the optimal solution to problem (9) satisfies (10) and (8), then \hat{z} is an optimal solution to problem (7)-(8).

Discretization and stability analysis: A case study for moment-based uncertainty set

Recall the optimization problem with a multivariate robust SSD constraint:

$$
\begin{array}{ll}
\min _{z \in \mathbb{Z}_{0}} & \phi(H(z, \xi)) \\
\text { s.t. } & \mathbb{E}_{P}\left[(\eta-\theta(c, G(z, \xi)))_{+}-(\eta-\theta(c, Y(\xi)))_{+}\right] \leq 0, \forall(c, \eta) \in \operatorname{graph}(\mathfrak{M}), \forall P \in Q . \tag{11}
\end{array}
$$

with moment-based uncertainty set

$$
\begin{equation*}
Q=\left\{P \in \mathscr{P}: \mathbb{E}_{P}[f(\xi)] \leq 0\right\}, \tag{12}
\end{equation*}
$$

\mathscr{P} to denote the set of all probability measures on (Ξ, \mathscr{B}), where Ξ is the support set of Ω, assumed to be compact, \mathscr{B} is the Borel sigma algebra on $\Xi . f: \Xi \rightarrow R^{a}$ is a continuous vector-valued functional and a is a positive integer.

Discrete approximation

Consider a discrete approximation to the set of probability distributions as

$$
Q_{N}:=\left\{P \in \mathscr{P}: f_{P}(\cdot)=\sum_{i=1}^{N} p_{i} \delta_{\xi^{i}}(\cdot), \sum_{i=1}^{N} p_{i} f\left(\xi^{i}\right) \leq 0, \sum_{i=1}^{N} p_{i}=1, p_{i} \geq 0, i=1, \ldots, N\right\},
$$

where $f_{P}(\cdot)$ is the probability mass functions of measure P.

- Obviously $Q_{N} \subset Q$.

We can now construct an approximation to problem (11) as follows:

$$
\begin{array}{ll}
\min _{z \in Z_{0}} & \phi(H(z, \xi)) \\
\text { s.t. } & \sup _{(c, \eta) \in \operatorname{graph}\left(M_{)}\right)} \sup _{P \in Q_{N}} \mathbb{E}_{P}[h(z, c, \eta, \xi)] \leq 0, \tag{13}
\end{array}
$$

where $h(z, c, \eta, \xi)=(\eta-\theta(c, G(z, \xi)))_{+}-(\eta-\theta(c, Y(\xi)))$.

Stability?

Define

$$
\begin{aligned}
v_{N}(z) & :=\sup _{(c, \eta) \in \operatorname{graph}(\mathfrak{M})} \sup _{P \in Q_{N}} \mathbb{E}_{P}[h(z, c, \eta, \xi)], \\
v(z) & :=\sup _{(c, \eta) \in \operatorname{graph}(\mathfrak{M})} \sup _{P \in Q} \mathbb{E}_{P}[h(z, c, \eta, \xi)] .
\end{aligned}
$$

- Obviously, $v_{N}(z) \leq v(z)$ as $Q_{N} \subset Q$.

Convergence of v_{N} when $N \rightarrow \infty$? Properties of $v(z)$?

- Feasible regions:

$$
\mathcal{F}:=\left\{z \in Z_{0}: v(z) \leq 0\right\} \text { and } \mathcal{F}_{N}:=\left\{z \in Z_{0}: v_{N}(z) \leq 0\right\} .
$$

- Optimal solution set:

$$
\begin{aligned}
& \vartheta:=\min \{\phi(H(z, \xi)): z \in \mathcal{F}\} \text { and } S:=\{z \in \mathcal{F}: \vartheta=\phi(H(z, \xi))\} \\
& \vartheta_{N}:=\min \left\{\phi(H(z, \xi)): z \in \mathcal{F}_{N}\right\} \text { and } S_{N}:=\left\{z \in \mathcal{F}_{N}: \vartheta_{N}=\phi(H(z, \xi))\right\} .
\end{aligned}
$$

Convergence of \mathcal{F}_{N} and ϑ_{N} when $N \rightarrow \infty$?

Assumption

Assumption (Assumption 5)

(1) There exists a probability measure $P^{*} \in \mathscr{P}$ such that $\mathbb{E}_{P^{*}}[f(\xi)]<0$;
(2) The sequence $\left\{\xi^{i}\right\}_{i \in N} \subset \Xi$ satisfies that for any $\epsilon>0$ and $\xi \in \Xi$, there exists an index $N^{\prime} \in\{1, \cdots, N\}$ such that $\left\|\xi-\xi^{N^{\prime}}\right\| \leq \epsilon$;
(0) For each $\xi \in \Xi$, every component of $G(z, \xi)$, i.e., $G_{i}(z, \xi), i=1, \cdots, m$, is Lipschitz continuous with the Lipschitz modulus being $\kappa(\xi)$, i.e., $\left|G_{i}\left(z_{1}, \xi\right)-G_{i}\left(z_{2}, \xi\right)\right| \leq \kappa_{i}(\xi)\left\|z_{1}-z_{2}\right\|_{2}$, and $\kappa:=\sup _{\xi \in \Xi} \sum_{i=1}^{m} \kappa_{i}(\xi)$ is finite;
(9. $C_{0}:=\sup _{c \in \tilde{C}} C_{0}(c)$ is finite, where $C_{0}(c)=\max _{1 \leq t \leq T}\left\|a_{t}(c)\right\|_{1}$;
(6) $A_{0}:=\sup _{x \in \mathbb{G}} A_{0}(x)$ is finite, where $\mathbb{G}:=G\left(Z_{0} \times \Xi\right) \cup Y(\Xi)$ and $A_{0}(x)=\max _{1 \leq t \leq T}\left\|d_{t}(x)\right\|_{2}$.

Qualitative stability results

Lemma

For fixed $x,\left|\theta\left(c_{1}, x\right)-\theta\left(c_{2}, x\right)\right| \leq A_{0}(x) \cdot\left\|c_{1}-c_{2}\right\|_{2}$.

Theorem

Given Assumptions 1-5 and \mathcal{F} is nonempty,
(1) $\lim _{N \rightarrow \infty} \mathbb{H}\left(\mathcal{F}_{N}, \mathcal{F}\right)=0$;
(2) $\lim _{N \rightarrow \infty} \vartheta_{N}=\vartheta$ (converges uniformly);
(3) $\lim _{N \rightarrow \infty} \mathbb{D}\left(S_{N}, S\right)=0$.
$\mathbb{H}(A, B):=\max \{\mathbb{D}(A, B), \mathbb{D}(A, B)\}$ is the Hausdorff distance between A and B, where $\mathbb{D}(A, B):=\sup _{x \in A} \inf _{y \in B}(x, y)$ is the deviation of A from B

Proposition

$v(\cdot)$ is Lipschitz continuous on Z_{0} with the Lipschitz modulus being $C_{0} \kappa$.

Conclusions

- We study multivariate robust SSD
- Use min-biaffine scalarization
- Analyze optimality conditions
- Examine stability of discrete approximation

Further work

- Multivariate robust SSD is still very hard problem. Many conditions. Efficiently solution method?
- How about date-driven uncertainty set?

Thank you!

