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Introduction

Definition 1 (Stochastic dominance)

For two random variables X,Y ∈ Lk−1(Ω,F ,P;R), we say that X is
dominated by Y in the kth-order (k ∈ Z+) if

E[u(X)] ≤ E[u(Y)], ∀ u ∈ Uk.

Here,
Uk = {u ∈ Ck | (−1)n+1u(n)(x) ≥ 0, n = 1, . . . , k, },

where u(n)(x) = d(u(n−1)(x))/dx, n = 1, . . . , k, u(0) := u, Ck is the space of all
kth-order continuously differentiable functions. The kth-order SD
relationship is denoted by X �(k) Y for short.

X �(1) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U1, here U1 denotes the set
of all nondecreasing functions u : R→ R.

X �(2) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U2, here U2 denotes the set
of all concave and nondecreasing functions u : R→ R.
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Introduction

Basic propositions of stochastic dominance:

Proposition 1 (FSD)

X dominates Y in the first order, if and only if

P{X ≤ η} ≤ P{Y ≤ η}, ∀η ∈ R.

We define expected shortfall function F1(W; η) := P(W ≤ η),
F2(X; η) =

∫ η

−∞
F1(X;α)dα = E[(η − X)+].

Proposition 2 (SSD)

X dominates Y in the second order, if and only if

F2(X; η) ≤ F2(Y; η), ∀η ∈ R.

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.

- Bawa, Vijay S. Stochastic Dominance: A Research Bibliography. Management Science, 1982,
28(6): 698–712.
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Strong application background in finance: portfolio selection optimization
with stochastic dominance constraints

e.g., portfolio selection, index tracking applications (Dentcheva and
Ruszczyński, 2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang,
L., 2019)

max
u

E[r>u]

s.t. r>u �(β,1) y,

e>u = x0,

u ≥ 0.

- Dentcheva D, Ruszczyński A. Portfolio optimization with stochastic dominance constraints.
Journal of Banking & Finance, 2006, 30(2): 433-451.

- Meskarian, Rudabeh, Fliege, Jörg and Xu, Huifu (2014) Stochastic programming with multivariate
second order stochastic dominance constraints with applications in portfolio optimization. Applied
Mathematics & Optimization, 70 (1), 111-140.

- Chen Z, Zhuang X, Liu J. A Sustainability-Oriented Enhanced Indexation Model with Regime
Switching and Cardinality Constraint. Sustainability. 2019 Jan;11(15):4055.
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Stochastic optimization with dominance constraints

Dentcheva and Ruszczyński (2003) first considered optimization
problem with SSD and derived the optimality conditions.

Dentcheva and Ruszczyński (2010) developed duality relations and
solved by piecewise linear structure of the dual functional

Luedtke (2008) get linear formulations for SSD with finite distributed
benchmark

Gollmer, Neise, Schultz (2008) study FSD with mixed-integer linear
recourse case

- Dentcheva D, Ruszczyński A. Optimization with stochastic dominance constraints. SIAM Journal
on Optimization, 2003, 14(2):548-566.

- Dentcheva D, Ruszczyński A. Inverse cutting plane methods for optimization problems with
second-order stochastic dominance constraints. Optimization, 2010b, 59(3): 323-338.

- Luedtke J. New formulations for optimization under stochastic dominance constraints. SIAM
Journal on Optimization, 2008, 19(3): 1433-1450.

- Gollmer R, Neise F, Schultz R. Stochastic programs with first-order dominance constraints
induced by mixed-integer linear recourse. SIAM Journal on Optimization, 2008, 19: 552-571.
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Introduction: Extensions

Dynamic extension

T∑
t=1

ρtxt �(2)

T∑
t=1

ρtyt, ∀ρ ∈ D

Dentcheva and Ruszczyński (2010) first consider multistage
stochastic dominance constraints

SD constraints have recently been adopted to systematically
describe the risk preference of the decision-maker in multi-stage
models

- Dentcheva, D., Ruszczyński, A.: Stochastic dynamic optimization with discounted stochastic
dominance constraints. SIAM Journal on Control and Optimization, 2010, 47(5), 2540–2556

- Consigli, G., Moriggia, V., Vitali, S.: Long-term individual financial planning under stochastic
dominance constraints. Annals of Operations Research, 2019 292, 973–1000

- Mei Y., Chen Z., Liu J., Ji B., Multi-stage portfolio selection problem with dynamic stochastic
dominance constraints, Journal of Global Optimization, 2021
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Introduction: Extensions

Robust extension

EP[u(X)] ≥ EP[u(Y)], ∀u ∈ U, ∀P ∈ Q.

Dentcheva and Ruszczyński (2010) first introduced the
distributionally robust SD and established the optimality conditions

Guo, Xu, and Zhang (2017) proposed a discrete approximation
scheme for DR-SSD with moment-based ambiguity sets

Mei, L. and Chen (2022) study DR-SSD with Wasserstain ball
- Dentcheva D, Ruszczyński A. Robust stochastic dominance and its application to risk-averse

optimization. Mathematical Programming, 2010a, 123(1): 85-100.

- Guo S., Xu H., Zhang L., Probability approximation schemes for stochastic programs with
distributionally robust second-order dominance constraints, Optim. Methods Softw., 2017, 32:
770–789.

- Mei Y., Liu J., Chen Z., Distributionally robust second-order stochastic dominance constrained
optimization with Wasserstein ball, SIAM Journal on Optimization, 2022, 32(2):715-738
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Motivating examples:

100

0

p=50%

p=50%

x

p=100%

A B

Figure: Two lotteries

For high risk-aversion players, they all prefer B with even small x (for
instance 25)

For some risk-loving players, they all prefer A with even large x (for
instance 70)
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Integer-order SD→ continuous-order SD
Fishburn (1980) adopted fractional integration to define a continuum

Fα(x) ≤ Gα(x), ∀x ∈ [0, b].

Fα(x) =
1

Γ(α)

∫ x

y=0
(x − y)α−1dF(y), ∀x ≥ 0

ε-Almost Stochastic Dominance
(
F �almost (ε)

1 G
)

∫
S1

[F(t) − G(t)]dt ≤ ε‖F − G‖.

equivalent to EF[u(X)] ≥ EG[u(Y)],∀u ∈ U?
1 (ε)

U?
1 (ε) =

{
u ∈ U1 : u′(x) ≤ inf

{
u′(x)

} [1
ε
− 1

]
,∀x ∈ [0, 1]

}
- Fishburn PC. Continua of stochastic dominance relations for unbounded probability distributions.

Journal of Mathematical Economics, 1980, 7(3): 271-285
- Leshno M, Levy H. Preferred by ”all” and preferred by ”most” decision makers: Almost stochastic

dominance. Management Science, 2002, 48(8): 1074-1085.
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Baucells and Heukamp (2006) studied stochastic dominance
induced by cumulative prospect theory and found supporting
evidence for loss aversion.

h(x) ≤ h(0) for a ≤ x ≤ 0, and h(x) ≥ h(0) for 0 ≤ x ≤ b

h(x) ≡
∫ x

a
[G(y) − F(y)]dy

L., Chen, Consigli (2021) proposed interval stochastic dominance{
Fk(W; η) ≤ Fk(Y; η), ∀ η ≤ β,

Fk+1(W; η) ≤ Fk+1(Y; η), ∀ η ≥ β.

- Baucells M, Heukamp F. Stochastic dominance and cumulative prospect theory, Management
Science, 2006, 52(9): 1409-1423

- Liu J., Chen Z., Consigli G., Interval-based stochastic dominance: theoretical framework and
application to portfolio choices, Annals of Operations Research, 2021, 307: 329–361
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Muller et al. [15] defined a continuum of SD between FSD and SSD,
by considering all investors who are mostly risk-averse but cannot
assert that they would dislike any risk.

0 ≤ γ
(

u (x4) − u (x3)
x4 − x3

)
≤

u (x2) − u (x1)
x2 − x1

for all x1 < x2 < x3 < x4.∫ t

−∞

(G(x) − F(x))+dx ≤ γ
∫ t

−∞

(F(x) − G(x))+dx, ∀t ∈ R

Light and Perlroth [11] proposed an SD concept consisting of all
utility function

(u(b) − u(x))
1
α is convex

→ fail to derive tractable reformulation
- Muller A, Scarsini M, Tsetlin I, Winkler RL. Between first- and second-order stochastic dominance.

Management Science, 2016, 63(9): 2933-2947

- Light B, Perlroth A. The family of alpha, [a,b] stochastic orders: Risk vs. expected value. Journal
of Mathematical Economics, 2021, 96: 102520
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α-concavity

Definition 2 (α-concavity)

A nonnegative function u(x) defined on a convex set Ξ ⊆ Rn is said to be
α-concave, where α ∈ [−∞,+∞] , if for all x, y ∈ Ξ and all λ ∈ [0, 1] the
following inequality holds:

u(λx + (1 − λ)y) ≥ mα(u(x), u(y), λ),

where mα : R+ × R+ × [0, 1]→ R is defined as

mα(a, b, λ) = 0 if ab = 0,

and if a > 0, b > 0, 0 ≤ λ ≤ 1, then

mα(a, b, λ) =


aλb1−λ if α = 0,
max{a, b} if α = ∞,
min{a, b} if α = −∞,

(λaα + (1 − λ)bα)1/α otherwise.
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α-concavity (Con’d)

Lemma 3 (SDR09)

u(x) is α-concave (α > 0) if and only if u(x)α is concave; u(x) is concave if
and only if u(x)α is 1

α
-concave (α > 0).

In the case of α = 0, the function u is called logarithmically concave
or log-concave because log(u) is a concave function.

In the case of α = 1, the function u becomes the usual concave
function.

In the case of α = −∞, the function u is quasi-concave.

A. Shapiro, D. Dentcheva and A. Ruszczyński. Lecture on Stochastic Programming. MPS-SIAM, 2009.
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α-concavity (Con’d)

mα(a, b, λ) is non-decreasing with respect to α. Thus, we have

Lemma 4 (SDR09)

α-concavity entails β-concavity for all β ≤ α.

Lemma 5 (Theorem 4.19 of SDR09)

If u(x) is α-concave and g(x) is β-concave, here α, β ≥ 1, then
h(x) = u(x) + g(x) is γ-concave with γ = min{α, β}.

Lemma 6 (Theorem 4.23 of SDR09)

If ui(x), i = 1, . . . ,m, are αi-concave and αi are such that
∑m

i=1 α
−1
i > 0,

then g(x) =
∏m

i=1 ui (xi) is γ-concave with γ =
(∑m

i=1 α
−1
i

)−1
.
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α-concave stochastic dominance

Definition 7 (α-concave stochastic dominance, α-concave SD)

For two bounded random variables X,Y ∈ Lk−1(Ω,F ,P; [a, b]), we say
that X is α-concave dominated by Y, (α ∈ [−∞,+∞]), if

E[u(X)] ≤ E[u(Y)], ∀ u ∈ Ũα. (1)

Here,

Ũα = {u ∈ C([a, b]→ R+) | u is monotonically increasing and α-concave}.

1-concave SD is equivalent to SSD.

−∞-concave SD is equivalent to FSD.

0-concave SD is log-SD which is generated by the set of all
log-concave utility functions
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Introduction

Motivating examples:

100

0

p=50%

p=50%

x

p=100%

A B

Figure: Two lotteries

E[u(A)] = 1
2 100α ≤ E[u(B)] = xα implies x ≥ ( 1

2 )α100
For some high risk-aversion players, they all prefer B with x ≥ 25
For all risk-aversion players, they all prefer B with x ≥ 50
For risk-aversion players together with some risk-loving players, they
all prefer B with x ≥ 70
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1
k -concave SD

We choose α = 1
k (k = 1, 2, . . .)

1
k -concave SD defines a stochastic ordering between SSD and
log-SD (log-SD is between FSD and SSD)

Denote

Fk(W;~η, h) := E

 h∏
t=1

(ηt − a − [ηt −W]+)

 ,
where ~η = [η1, . . . , ηh], h ≤ k, h ∈ Z+. Then we have

Theorem 8

For two random variables X,Y ∈ L1(Ω,F ,P; [a, b]), X is 1
k -concave

dominated by Y (k ∈ Z+) if and only if

Fk(X;~η, h) ≤ Fk(Y;~η, h), ∀ ~η ∈ [a, b]h, ∀h ≤ k, h ∈ Z+. (2)
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Bounded risk-preference

Proposition 3

For any 1
k -concave (k ∈ Z+) function u(x) on [0, 1] with u(0) = 0 and

u(1) = 1, we have u(x) ≥ xk for all x ∈ [0, 1].

power function xk is the minimal 1
k -concave utility function over [0, 1].

The 1
k -concave SD involves all concave utility functions as well as

some non-concave functions which are lower bounded by the power
function xk.

The extreme case when k → ∞ is the log-concavity which can be
viewed as a kind of bounded risk-aversion/loving
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Bounded risk-preference

reward

utility

O b = 1a = 0

x
x2

x1/2

Figure: All power generators of 1
2 -concave SD, i.e., all power utility functions with

order not larger than 2
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Bounded risk-preference

reward

utility

O b = 1a = 0

x
x2

x1/2

x4

Figure: All power generators of 1
4 -concave SD

the non-concavity of a 1
k -concave utility function is bounded.
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Bounded risk-preference

Proposition 4

For a 1
k -concave function u(x), u(x) is concave when u′′(x)

u′(x)2 u(x) ≤ k−1
k , and

convex when u′′(x)
u′(x)2 u(x) ≥ k−1

k .

Piecewise power functions are important S-shape utility functions
which can characterize the loss/gain dependent risk attitude in
prospect theory TvK92.

We consider an example of piecewise quadratic S-shape utility
functions on [0, 1], with a reference point at 0.5, taken from HDB18.

u(x) =

 2x2 for x ∈ [0 , 0.5]

1 − 2(x − 1)2 for x ∈ [0.5 , 1].
(3)
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S-shape utility function

reward

utility

O 10.5

1

0.5

u(x)

2x2

1 − 2(x − 1)2

x2

Figure: An 1
2 -concave S-shape utility function and the minimal 1

2 -concave utility
function

- Hens T, De Giorgi EG, Bachmann KK. Behavioral Finance for Private Banking: From the Art of Advice

to the Science of Advice. Wiley, 2018 Jia Liu α-concave stochastic dominance
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Bounded risk-preference

u(x) is concave above the reference point but convex below the
reference point, i.e., the decision-maker may be irrational
(risk-seeking) below the reference point, which is consistent with the
prospect theory.

We would argue that even in the downside part, the irrationality, i.e.,
the level of risk-seeking, is still limited.

Mathematically, we require that the level of convexity (non-concavity)
is bounded by the 1

2 -concavity.

By extending the order of power functions in this example from 2 to
k, we can deduce that the piecewise k-th order power S-shape utility
functions are consistent with the 1

k -concave SD.

That is the bounded risk-preference which the 1
k -concave SD

implies.
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Conclusions

Summary:

We proposes a new SD concept which spans a continuous
spectrum of the SD relationship between integer-order SDs

We study the reformulation and examples for the case between SSD
and log-SD.

Further works:

(Portfolio) optimization with 1
k -concave SD constraints

reformulations of α-concave SD when α > 1 and α < 0
multivariate version of α-concave SD which can cover some
important utility functions like the Cobb-Douglas utility function
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Thank you!
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