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Introduction

Definition 1 (Stochastic dominance)

For two random variables X,Y ∈ Lk−1(Ω,F ,P;R), we say that X is
dominated by Y in the kth-order (k ∈ Z+) if

E[u(X)] ≤ E[u(Y)], ∀ u ∈ Uk.

Here,
Uk = {u ∈ Ck | (−1)n+1u(n)(x) ≥ 0, n = 1, . . . , k, },

where u(n)(x) = d(u(n−1)(x))/dx, n = 1, . . . , k, u(0) := u, Ck is the space of all
kth-order continuously differentiable functions. The kth-order SD
relationship is denoted by X �(k) Y for short.

X �(1) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U1, here U1 denotes the set
of all nondecreasing functions u : R→ R.

X �(2) Y iff E[u(X)] ≥ E[u(Y)] for all u ∈ U2, here U2 denotes the set
of all concave and nondecreasing functions u : R→ R.
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Introduction

Basic propositions of stochastic dominance:

Proposition 1 (FSD)

X dominates Y in the first order, if and only if

P{X ≤ η} ≤ P{Y ≤ η}, ∀η ∈ R.

We define expected shortfall function F1(W; η) := P(W ≤ η),
F2(X; η) =

∫ η

−∞
F1(X;α)dα = E[(η − X)+].

Proposition 2 (SSD)

X dominates Y in the second order, if and only if

F2(X; η) ≤ F2(Y; η), ∀η ∈ R.

Second-order stochastic dominance is particularly popular in industry
since it models risk-averse preferences.

- Bawa, Vijay S. Stochastic Dominance: A Research Bibliography. Management Science, 1982,
28(6): 698–712.
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Introduction

Strong application background in finance: portfolio selection optimization
with stochastic dominance constraints

e.g., portfolio selection, index tracking applications (Dentcheva and
Ruszczyński, 2006, Meskarian, Fliege and Xu 2014; Chen, Zhuang,
L., 2019)

max
u

E[r>u]

s.t. r>u �(β,1) y,

e>u = x0,

u ≥ 0.

- Dentcheva D, Ruszczyński A. Portfolio optimization with stochastic dominance constraints.
Journal of Banking & Finance, 2006, 30(2): 433-451.

- Meskarian, Rudabeh, Fliege, Jörg and Xu, Huifu (2014) Stochastic programming with multivariate
second order stochastic dominance constraints with applications in portfolio optimization. Applied
Mathematics & Optimization, 70 (1), 111-140.

- Chen Z, Zhuang X, Liu J. A Sustainability-Oriented Enhanced Indexation Model with Regime
Switching and Cardinality Constraint. Sustainability. 2019 Jan;11(15):4055.
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Introduction

Stochastic optimization with dominance constraints

Dentcheva and Ruszczyński (2003) first considered optimization
problem with SSD and derived the optimality conditions.

Dentcheva and Ruszczyński (2010) developed duality relations and
solved by piecewise linear structure of the dual functional

Luedtke (2008) get linear formulations for SSD with finite distributed
benchmark

Gollmer, Neise, Schultz (2008) study FSD with mixed-integer linear
recourse case

- Dentcheva D, Ruszczyński A. Optimization with stochastic dominance constraints. SIAM Journal
on Optimization, 2003, 14(2):548-566.

- Dentcheva D, Ruszczyński A. Inverse cutting plane methods for optimization problems with
second-order stochastic dominance constraints. Optimization, 2010b, 59(3): 323-338.

- Luedtke J. New formulations for optimization under stochastic dominance constraints. SIAM
Journal on Optimization, 2008, 19(3): 1433-1450.

- Gollmer R, Neise F, Schultz R. Stochastic programs with first-order dominance constraints
induced by mixed-integer linear recourse. SIAM Journal on Optimization, 2008, 19: 552-571.
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Introduction: Extensions

Dynamic extension

T∑
t=1

ρtxt �(2)

T∑
t=1

ρtyt, ∀ρ ∈ D

Dentcheva and Ruszczyński (2010) first consider multistage
stochastic dominance constraints

SD constraints have recently been adopted to systematically
describe the risk preference of the decision-maker in multi-stage
models

- Dentcheva, D., Ruszczyński, A.: Stochastic dynamic optimization with discounted stochastic
dominance constraints. SIAM Journal on Control and Optimization, 2010, 47(5), 2540–2556

- Consigli, G., Moriggia, V., Vitali, S.: Long-term individual financial planning under stochastic
dominance constraints. Annals of Operations Research, 2019 292, 973–1000

- Mei Y., Chen Z., Liu J., Ji B., Multi-stage portfolio selection problem with dynamic stochastic
dominance constraints, Journal of Global Optimization, 2021
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Introduction: Extensions

Robust extension

EP[u(X)] ≥ EP[u(Y)], ∀u ∈ U, ∀P ∈ Q.

Dentcheva and Ruszczyński (2010) first introduced the
distributionally robust SD and established the optimality conditions

Guo, Xu, and Zhang (2017) proposed a discrete approximation
scheme for DR-SSD with moment-based ambiguity sets

Mei, L. and Chen (2022) study DR-SSD with Wasserstain ball
- Dentcheva D, Ruszczyński A. Robust stochastic dominance and its application to risk-averse

optimization. Mathematical Programming, 2010a, 123(1): 85-100.

- Guo S., Xu H., Zhang L., Probability approximation schemes for stochastic programs with
distributionally robust second-order dominance constraints, Optim. Methods Softw., 2017, 32:
770–789.

- Mei Y., Liu J., Chen Z., Distributionally robust second-order stochastic dominance constrained
optimization with Wasserstein ball, SIAM Journal on Optimization, 2022, 32(2):715-738
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Introduction

Motivating examples:

100

0

p=50%

p=50%

x

p=100%

A B

Figure: Two lotteries

For high risk-aversion players, they all prefer B with even small x (for
instance 25)

For some risk-loving players, they all prefer A with even large x (for
instance 70)
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Introduction

Integer-order SD→ continuous-order SD
Fishburn (1980) adopted fractional integration to define a continuum

Fα(x) ≤ Gα(x), ∀x ∈ [0, b].

Fα(x) =
1

Γ(α)

∫ x

y=0
(x − y)α−1dF(y), ∀x ≥ 0

ε-Almost Stochastic Dominance
(
F �almost (ε)

1 G
)

∫
S1

[F(t) − G(t)]dt ≤ ε‖F − G‖.

equivalent to EF[u(X)] ≥ EG[u(Y)],∀u ∈ U?
1 (ε)

U?
1 (ε) =

{
u ∈ U1 : u′(x) ≤ inf

{
u′(x)

} [1
ε
− 1

]
,∀x ∈ [0, 1]

}
- Fishburn PC. Continua of stochastic dominance relations for unbounded probability distributions.

Journal of Mathematical Economics, 1980, 7(3): 271-285
- Leshno M, Levy H. Preferred by ”all” and preferred by ”most” decision makers: Almost stochastic

dominance. Management Science, 2002, 48(8): 1074-1085.

Jia Liu Non-integer order stochastic dominance



Introduction α-concave SD Interval SD Case Study Conclusions

Introduction

Baucells and Heukamp (2006) studied stochastic dominance
induced by cumulative prospect theory and found supporting
evidence for loss aversion.

h(x) ≤ h(0) for a ≤ x ≤ 0, and h(x) ≥ h(0) for 0 ≤ x ≤ b

h(x) ≡
∫ x

a
[G(y) − F(y)]dy

- Baucells M, Heukamp F. Stochastic dominance and cumulative prospect theory, Management
Science, 2006, 52(9): 1409-1423
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Introduction

Muller et al. [15] defined a continuum of SD between FSD and SSD,
by considering all investors who are mostly risk-averse but cannot
assert that they would dislike any risk.

0 ≤ γ
(

u (x4) − u (x3)
x4 − x3

)
≤

u (x2) − u (x1)
x2 − x1

for all x1 < x2 < x3 < x4.∫ t

−∞

(G(x) − F(x))+dx ≤ γ
∫ t

−∞

(F(x) − G(x))+dx, ∀t ∈ R

Light and Perlroth [11] proposed an SD concept consisting of all
utility function

(u(b) − u(x))
1
α is convex

→ fail to derive tractable reformulation
- Muller A, Scarsini M, Tsetlin I, Winkler RL. Between first- and second-order stochastic dominance.

Management Science, 2016, 63(9): 2933-2947

- Light B, Perlroth A. The family of alpha, [a,b] stochastic orders: Risk vs. expected value. Journal
of Mathematical Economics, 2021, 96: 102520
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α-concavity

Definition 2 (α-concavity)

A nonnegative function u(x) defined on a convex set Ξ ⊆ Rn is said to be
α-concave, where α ∈ [−∞,+∞] , if for all x, y ∈ Ξ and all λ ∈ [0, 1] the
following inequality holds:

u(λx + (1 − λ)y) ≥ mα(u(x), u(y), λ),

where mα : R+ × R+ × [0, 1]→ R is defined as

mα(a, b, λ) = 0 if ab = 0,

and if a > 0, b > 0, 0 ≤ λ ≤ 1, then

mα(a, b, λ) =


aλb1−λ if α = 0,
max{a, b} if α = ∞,
min{a, b} if α = −∞,

(λaα + (1 − λ)bα)1/α otherwise.

Jia Liu Non-integer order stochastic dominance
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α-concavity (Con’d)

Lemma 3 (SDR09)

u(x) is α-concave (α > 0) if and only if u(x)α is concave; u(x) is concave if
and only if u(x)α is 1

α
-concave (α > 0).

In the case of α = 0, the function u is called logarithmically concave
or log-concave because log(u) is a concave function.

In the case of α = 1, the function u becomes the usual concave
function.

In the case of α = −∞, the function u is quasi-concave.

A. Shapiro, D. Dentcheva and A. Ruszczyński. Lecture on Stochastic Programming. MPS-SIAM, 2009.

Jia Liu Non-integer order stochastic dominance



Introduction α-concave SD Interval SD Case Study Conclusions

α-concavity (Con’d)

mα(a, b, λ) is non-decreasing with respect to α. Thus, we have

Lemma 4 (SDR09)

α-concavity entails β-concavity for all β ≤ α.

Lemma 5 (Theorem 4.19 of SDR09)

If u(x) is α-concave and g(x) is β-concave, here α, β ≥ 1, then
h(x) = u(x) + g(x) is γ-concave with γ = min{α, β}.

Lemma 6 (Theorem 4.23 of SDR09)

If ui(x), i = 1, . . . ,m, are αi-concave and αi are such that
∑m

i=1 α
−1
i > 0,

then g(x) =
∏m

i=1 ui (xi) is γ-concave with γ =
(∑m

i=1 α
−1
i

)−1
.

Jia Liu Non-integer order stochastic dominance
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α-concave stochastic dominance

Definition 7 (α-concave stochastic dominance, α-concave SD)

For two bounded random variables X,Y ∈ Lk−1(Ω,F ,P; [a, b]), we say
that X is α-concave dominated by Y, (α ∈ [−∞,+∞]), if

E[u(X)] ≤ E[u(Y)], ∀ u ∈ Ũα. (1)

Here,

Ũα = {u ∈ C([a, b]→ R+) | u is monotonically increasing and α-concave}.

1-concave SD is equivalent to SSD.

−∞-concave SD is equivalent to FSD.

0-concave SD is log-SD which is generated by the set of all
log-concave utility functions

Jia Liu Non-integer order stochastic dominance
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Introduction

Motivating examples:

100

0

p=50%

p=50%

x

p=100%

A B

Figure: Two lotteries

E[u(A)] = 1
2 100α ≤ E[u(B)] = xα implies x ≥ ( 1

2 )α100
For some high risk-aversion players, they all prefer B with x ≥ 25
For all risk-aversion players, they all prefer B with x ≥ 50
For risk-aversion players together with some risk-loving players, they
all prefer B with x ≥ 70
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1
k -concave SD

We choose α = 1
k (k = 1, 2, . . .)

1
k -concave SD defines a stochastic ordering between SSD and
log-SD (log-SD is between FSD and SSD)

Denote

Fk(W;~η, h) := E

 h∏
t=1

(ηt − a − [ηt −W]+)

 ,
where ~η = [η1, . . . , ηh], h ≤ k, h ∈ Z+. Then we have

Theorem 8

For two random variables X,Y ∈ L1(Ω,F ,P; [a, b]), X is 1
k -concave

dominated by Y (k ∈ Z+) if and only if

Fk(X;~η, h) ≤ Fk(Y;~η, h), ∀ ~η ∈ [a, b]h, ∀h ≤ k, h ∈ Z+. (2)

Jia Liu Non-integer order stochastic dominance
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Bounded risk-preference

Proposition 3

For any 1
k -concave (k ∈ Z+) function u(x) on [0, 1] with u(0) = 0 and

u(1) = 1, we have u(x) ≥ xk for all x ∈ [0, 1].

power function xk is the minimal 1
k -concave utility function over [0, 1].

The 1
k -concave SD involves all concave utility functions as well as

some non-concave functions which are lower bounded by the power
function xk.

The extreme case when k → ∞ is the log-concavity which can be
viewed as a kind of bounded risk-aversion/loving

Jia Liu Non-integer order stochastic dominance
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Bounded risk-preference

reward

utility

O b = 1a = 0

x
x2

x1/2

Figure: All power generators of 1
2 -concave SD, i.e., all power utility functions with

order not larger than 2
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Bounded risk-preference

reward

utility

O b = 1a = 0

x
x2

x1/2

x4

Figure: All power generators of 1
4 -concave SD

the non-concavity of a 1
k -concave utility function is bounded.
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Bounded risk-preference

Proposition 4

For a 1
k -concave function u(x), u(x) is concave when u′′(x)

u′(x)2 u(x) ≤ k−1
k , and

convex when u′′(x)
u′(x)2 u(x) ≥ k−1

k .

Piecewise power functions are important S-shape utility functions
which can characterize the loss/gain dependent risk attitude in
prospect theory TvK92.

We consider an example of piecewise quadratic S-shape utility
functions on [0, 1], with a reference point at 0.5, taken from HDB18.

u(x) =

 2x2 for x ∈ [0 , 0.5]

1 − 2(x − 1)2 for x ∈ [0.5 , 1].
(3)

Jia Liu Non-integer order stochastic dominance
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S-shape utility function

reward

utility

O 10.5

1

0.5

u(x)

2x2

1 − 2(x − 1)2

x2

Figure: An 1
2 -concave S-shape utility function and the minimal 1

2 -concave utility
function

- Hens T, De Giorgi EG, Bachmann KK. Behavioral Finance for Private Banking: From the Art of Advice

to the Science of Advice. Wiley, 2018 Jia Liu Non-integer order stochastic dominance
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Bounded risk-preference

u(x) is concave above the reference point but convex below the
reference point, i.e., the decision-maker may be irrational
(risk-seeking) below the reference point, which is consistent with the
prospect theory.

We would argue that even in the downside part, the irrationality, i.e.,
the level of risk-seeking, is still limited.

Mathematically, we require that the level of convexity (non-concavity)
is bounded by the 1

2 -concavity.

By extending the order of power functions in this example from 2 to
k, we can deduce that the piecewise k-th order power S-shape utility
functions are consistent with the 1

k -concave SD.

That is the bounded risk-preference which the 1
k -concave SD

implies.

Jia Liu Non-integer order stochastic dominance
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Interval Stochastic Dominance (FSD,SSD,TSD,ISD-k)

Assume a random variable W ∈ Lm(Ω,F ,P;R) with distribution function
F1(W; η) := P(W ≤ η), ∀ η ∈ R. We define recursively a series of
non-decreasing functions,

Fk(W; η) =

∫ η

−∞

Fk−1(W; ξ) dξ, ∀ η ∈ R, k = 2, 3, · · · ,m + 1.

Definition 9

Given two random variables W,Y ∈ Lk(Ω,F ,P;R), here k ∈ N, we say
that W intervally stochastically dominates Y to the kth-order if, for given
β ∈ R, we have: {

Fk(W; η) ≤ Fk(Y; η), ∀ η ≤ β,

Fk+1(W; η) ≤ Fk+1(Y; η), ∀ η ≥ β.
(4)

We denote this new dominance order by W �(β,k) Y. Moreover, we define
the feasible set of W intervally dominating Y as

A(β,k)(Y) :=
{
W ∈ Lk(Ω,F ,P;R) : W �(β,k) Y

}
.

Jia Liu Non-integer order stochastic dominance
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Motivating example

To clarify the implications of this order, consider the following example.
Assume a security market with a market index Y and two portfolios, W
and X, with the following return distributions:

Y follows a uniform distribution on [−1, 1];
X follows a piecewise uniform distribution on [−1, 1] with density

p(x) =


1/8, X ∈ [−1,−0.2],
2, X ∈ [−0.2, 0.1],
1/3, X ∈ [0.1, 1];

W follows a piecewise uniform distribution on [−1, 1] with density

p(w) =


1/22, W ∈ [−1, 0.1],
1.75, W ∈ [0.1, 0.6],
3/16, W ∈ [0.6, 1].

Jia Liu Non-integer order stochastic dominance
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Motivation

Figure: Cumulative distributions of X, Y and W and SD limitation

Here the distributions of X and W clearly differ and X �(1) Y, W �(1) Y;
and X �(2) Y, W �(2) Y; but X �(0.5,1) Y, W �(0.5,1) Y. Interval SD with
β = 0.5 can distinguish the performances of X and W over Y, while
neither FSD nor SSD can.

Jia Liu Non-integer order stochastic dominance
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A surely feasible ISD-1 problem

Definition 10

Given two random variables X,Y ∈ Lk(Ω,F ,P;R) satisfying X �(β,k) Y, we
define the maximum dominance level βk(X,Y) as the largest possible β
such that X �(β,k) Y holds. That is,

βk(X,Y) = sup
{
β ∈ R |X �(β,k) Y

}
.

In the example, we found that the maximum dominance level between X
and Y was βk(X,Y) = 0, while the maximum dominance level between W
and Y was βk(W,Y) = 0.5. By choosing a reference point between 0 and
0.5, the ISD constraint could distinguish between X and W over Y.

Jia Liu Non-integer order stochastic dominance
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ISD and SD

Since kth-order SD implies (k + 1)th-order SD and ISD-k lies between the
two, we can easily establish the following relationship:

Proposition 5

For any β ∈ R we have

W �(k) Y ⇒ W �(β,k) Y ⇒ W �(k+1) Y ,

and
Ak(Y) ⊆ A(β,k)(Y) ⊆ Ak+1(Y)

Thus β can span from the kth- to (k + 1)th-order SD.

Jia Liu Non-integer order stochastic dominance
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SD within ISD ordering

Proposition 6

When β ≤ infy∈supp(Y) y, ISD-k is equivalent to (k + 1)th-order SD. When
β→ +∞, ISD-k is asymptotically equivalent to kth-order SD. For k = 1,
when β ≥ supy∈supp(Y) y, ISD-1 is equivalent to FSD.

Proof.

Proof: First, when β ≤ infy∈supp(Y) y, we have Fk(Y; η) = Fk+1(Y; η) = 0,
∀η ≤ β. It means that, in this case, W ≤ η, for all η ≤ β. This implies that
the first constraint in (4) is equivalent to
Fk+1(W; η) ≤ Fk+1(Y; η), ∀ η ≤ β. Together with the second constraint in
(4), we can obtain the equivalence between ISD-k and kth-order SD.
Second, the equivalence in the limit when β→ +∞ can be trivially
recovered from (4).
Finally: when β ≥ supy∈supp(Y) y, F1(Y; η) = P(Y ≤ η) = 1 for any η ≥ β. In
this case the first inequality in (4) will imply the FSD constraint. �

Jia Liu Non-integer order stochastic dominance
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ISD-1 and utility theory

From the definition of ISD-1 we have{
F1(W; η) ≤ F1(Y; η), ∀ η ≤ β,

F2(W; η) ≤ F2(Y; η), ∀ η ∈ R.
(5)

The second constraint in (5) is SSD, which is equivalent to

E[u(W)] ≥ E[u(Y)], ∀u ∈ US,

where

US = {u : u is monotone increasing and concave on R}.

Jia Liu Non-integer order stochastic dominance
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ISD-1 and utility theory

The first constraint in (5) is equivalent to∫
x≤β

r(x)dPW (x) ≤
∫

y≤β
r(y)dPY (y), ∀r ∈ RF, (6)

where RF = {r : r is monotone decreasing on (−∞, β]}. Furthermore (6)
is equivalent to

E[u(W)] ≥ E[u(Y)], ∀u ∈ UF′ , (7)

where
UF′ = {u : u is monotone increasing on (−∞, β], and u(x) = 0, ∀x > β}.
We call utility functions inUF′ downside utility functions. By introducing
UFP = US ∪UF′ , we also have

Proposition 7

ISD-1 is equivalent to

E[u(W)] ≥ E[u(Y)], ∀u ∈ UFP.

Jia Liu Non-integer order stochastic dominance
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ISD-2 and risk measures

We can extend the previous reasoning to ISD-2 and discuss its
relationship with risk measures. Again as SSD implies TSD, ISD-2 is
equivalent to {

F2(W; η) ≤ F2(Y; η), ∀ η ≤ β,

F3(W; η) ≤ F3(Y; η), ∀ η ∈ R.
(8)

The second constraint in (8) is just TSD.

Proposition 8

The constraint
F2(W; η) ≤ F2(Y; η), ∀ η ≤ β,

is equivalent to
ρα,β(W) ≥ ρα,β(Y), ∀ α ∈ [0, 1),

where
ρα,β(W) = sup

η≤β
{η −

1
1 − α

E[η −W]+}, α ∈ [0, 1).

Jia Liu Non-integer order stochastic dominance
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Interval Conditional Value-at-Risk

We find that ISD-2 is related to a new risk measure ρα,β(W): we call it
Invertal Conditional Value-at-Risk (ICVaR). The only difference between
ICVaR and CVaR is that the supreme is taken over (−∞, β] rather than
over R. We have:

Proposition 9

For β ≥ VaRα(W),
ρα,β(W) = CVaRα(W);

while for β ≤ VaRα(W),

ρα,β(W) = β −
1

1 − α
E[β −W]+.
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Interval Conditional Value-at-Risk
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Figure: Interval CVaR and CVaR

Proposition 10

ρα,β(W) is monotone increasing and concave. Moreover,

ρα,β(kW) = kρα,β/k(W), (k > 0),

ρα,β(W + k) = ρα,β−k(W) + k, (k ∈ R).

We can find that, the property of ρα,β(W) is strongly related to β, just like
ISD. When β = −∞, ρα,β(W) is coherent and degenerates to CVaRα(W).
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ISD-1 and ISD-2 models

Consider an expected terminal wealth. Then, with β as reference point
and ruling out short selling, we can formulate the problem as follows:

max
u

E[r>u] (9)

s.t. r>u �(β,k) y, k = 1, 2 (10)

e>u = x0, (11)

u ≥ 0. (12)

We denote problem (9) under (10)-(12) by ISD-k. We assume that the
distribution of r is discrete with samples r1, . . . , rN and probabilities
qj = 1

N , j = 1, . . . ,N.
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Interval CVaR model

We consider the following mean-ICVaR model:

max
u

E[r>u] + λρα,β(r>u) (13)

s.t. (11) − (12). (14)

where
ρα,β(W) = sup

η≤β
{η −

1
1 − α

E[η −W]+}, α ∈ [0, 1).
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Interval CVaR model -2

When the distribution of r is discrete with samples r1, . . . , rN , with
probability qj, j = 1, . . . ,N, we have the following reformulation of
(13)-(14),

max
u,η,θ

λη +

N∑
j=1

qj(u>rj −
λ

1 − α
θj) (15)

s.t. η ≤ β, (16)

θj ≥ η − u>rj, j = 1, . . . ,N, (17)

θj ≥ 0, j = 1, . . . ,N, (18)

(11) − (12), (19)

which is a linear programming problem.
Compared to the traditional mean-CVaR problem, an additional
constraint on η, (16), is added in a mean-ICVaR problem.
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Asset universe

Table: Statistics of return rates of S&P 500 and sub-indexes in 2007/1/8 - 2018/7/2, weekly data

SP500 XLU XLE XLF XLK XLV XLP XLY XLI XLB
mean(%) 0.140 0.160 0.149 0.165 0.252 0.212 0.181 0.245 0.205 0.176
max(%) 8.13 7.32 17.76 32.52 10.56 8.26 5.79 18.33 13.99 15.17
min(%) -14.59 -19.8 -25.18 -23.96 -14.65 -18.58 -13.33 -14.71 -15.38 -14.94
var(×104) 5.218 5.347 12.378 19.385 6.726 4.950 3.108 8.576 8.490 10.239
skewness -1.044 -1.388 -0.616 1.184 -0.431 -1.241 -0.934 0.160 -0.169 -0.287
kurtosis 8.17 12.53 9.36 18.23 6.25 12.68 8.91 9.48 6.77 6.35
sharpe ratio 0.061 0.069 0.042 0.037 0.097 0.095 0.103 0.084 0.070 0.055
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Portfolio models comparison

We test the following models.

- Portfolio selection under first (FSD), second (SSD) and third (TSD)
order SD constraints;

- ISD-1 and ISD-2 for l = 1, 13, 26, 39, 51 to span, over 52 weeks in a
year, different reference points; and ISD-1 for l determined according
to the bisection method;

- Mean-variance (MV), mean-CVaR (CVaR) and mean-interval CVaR
(ICVaR) models.
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Problem formulation and solution approach

Table: Settings of the tested models

Model Formulation Equiv. Model settings Solver
TSD Bawa et al. (1985)∗ convex QP - SDPT3∗∗

ISD-2 authors approach convex QP l = 1/13/26/39/51∗∗∗∗ SDPT3∗∗

SSD Luedtke (2008)∗ LP - SDPT3∗∗

ISD-1 authors approach MILP
l = 1/13/26/39/51

CPLEX∗∗∗
max-l thrrough bisection m.

FSD Luedtke (2008)∗ MILP CPLEX∗∗∗

MV∗∗∗∗∗ Markowitz (1952)∗ convex QP λ = 0.2 SDPT3∗∗

CVaR∗∗∗∗∗ Rockafellar & Uryasev (2002)∗ LP α = 90%, λ = 0.2 SDPT3∗∗

ICVaR∗∗∗∗∗ (15) s.t.(16-19) LP α = 90%, λ = 0.2 , l = 5 SDPT3∗∗

*: The model is with transaction constraints (11-12).
**: SDPT3 solver is called by CVX v2.1 in MATLAB R2016a in a PC with 3.4GHz CPU and 16.0GB memory.
***: CPLEX v12.8 is run in MATLAB R2016a in a PC with 3.4GHz CPU and 16.0GB memory.
****: Corresponding β is the lth-smallest historical sample of S&P 500.
*****: All the three mean-risk models take the mean-λ·risk form.
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Model validation

We intend to validate the introduced ISD paradigm against the market
benchmark, the S&P500 index, by:

Analysing the diversification properties of optimal portfolios
generated by alternative ISD models relative to a set of current
portfolio approaches. Similarly for the specification of the ICVaR
model against CVaR and MV problems.

Comparing a range of ISD-1 and ISD-2 optimal portfolios for different
values of β (lth-quantile): aim of this comparison is to discriminate
between ISD-1 or ISD-2 optimal allocations and analyse their
consistency againt canonical optimal FSD or SSD portfolios.
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Portfolio diversification
Table: Average values of Herfindahl-Hirschman Index (HHI), Shannon entropy (entropy) and
proportions invested in risk-free asset, of out-of-sample weekly portfolios over 2008/1/7-2018/7/2

TSD ISD-2 SSD MV
l = 1 l = 13 l = 26 l = 39 l = 51

HHI∗ 0.723 0.721 0.701 0.685 0.685 0.700 0.704 0.980
Entropy∗ 0.441 0.444 0.482 0.511 0.512 0.483 0.476 0.030
Inf .Weeks∗∗∗ 5 5 5 5 5 19 20 0
Inf .Rate 0.92% 0.92% 0.92% 0.92% 0.92% 3.48% 3.66% 0%
Feas.HHI∗∗ 0.720 0.719 0.698 0.682 0.682 0.689 0.692 0.980
Feas.Entropy∗∗ 0.445 0.449 0.486 0.516 0.516 0.500 0.494 0.030
RF 14.21% 14.21% 14.85% 15.18% 15.29% 17.06% 17.27% 8.88%
Feas.RF∗∗ 13.42% 13.42% 14.06% 14.40% 14.50% 14.07% 14.12% 8.88%

ISD-1 FSD CVaR90% ICVaR90%,5
l = 1 l = 13 l = 26 l = 39 l = 51 max-l λ = 0.2 λ = 0.2, l = 5

HHI∗ 0.712 0.624 0.695 0.792 0.956 0.559 0.973 0.866 0.697
Entropy∗ 0.459 0.646 0.558 0.383 0.083 0.856 0.052 0.215 0.476
Inf .Weeks 20 41 174 330 499 20 525 0 0
Inf .Rate 3.66% 7.51% 31.87% 60.44% 91.39% 3.66% 96.15% 0% 0%
Feas.HHI∗∗ 0.701 0.594 0.552 0.474 0.486 0.542 0.306 0.866 0.697
Feas.Entropy∗∗ 0.477 0.698 0.819 0.967 0.966 0.888 1.363 0.215 0.476
RF 17.18% 22.81% 46.63% 66.71% 92.25% 35.63% 96.82% 61.90% 16.28%
Feas.RF∗∗ 14.03% 16.55% 21.67% 15.86% 9.94% 33.18% 17.41% 61.90% 16.28%
*: HHI and Entropy give the average HHI and Entropy values of all optimal weekly portfolios over 2008/1/7-2018/7/2.

When a model is infeasible, the portfolio is all in risk-free asset and the HHI is 1 at that week.

**: Feas.HHI, Feas.Entropy and Feas.RF account the average HHI, Entropy and RF values when the model is feasible.

***: Inf . accounts when the solver CPLEX returns ’-2: No feasible point was found’ or SDPT3 returns ’Failed’ or ’Infeasible’.
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Model comparison

Figure: Correlations between different models (number of weeks in which the
optimal portfolios of two models are the same)
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In-sample evidences

We summarise the following relevant evidences from Table 3, Fig. 4 and Table ??:

The FSD-constrained problem is hardly feasible thus not a viable model. Similar evidence for the
ISD-1 model when l = 51, 39, 26 with infeasibility rates that make these models impractical.

The model with max-l selection proves to overcome the problem and among all optimal portfolios
has also the associated higher diversification on average.

ISD-1 for l = 1, SSD and ISD-2 for l = 51 show very similar statistics and relatively good
diversification properties.

For increasing l: ISD-2 and ISD-1 optimal portfolios do actually span respectively from TSD to
SSD and from SSD to FSD optimal portfolios.

Among MV, CVaR and ICVaR optimal portfolios, all solved to optimality, the last one with the
higher diversification while MV optimal portfolios often lead to concentrated corner solutions.

Optimal TSD portfolios can be regarded as equivalent to ISD-2 optimal portfolios for l = 1. Same
with respect to SSD-constrained portfolios considering ISD-2 for l = 51 or ISD-1 for l = 1.

ISD-2 optimal portfolios for l ∈ {13, 26, 39} show very similar composition with negligible
differences.

ISD-1 optimal portfolios provide for increasing l on average different optimal portfolios when solved
to optimality. The ISD-1 average optimal portfolios with max-l have their own specific structure.

Mean-risk models on average produce different optimal portfolios.
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Out-of-sample results

Table: Out-of-sample weekly returns statistics over 2008/1/7-2018/7/2

Model Mean (%) Std. (%) Sharpe (%) CVaR95% (%) CVaR90% (%) E(ER)+ (%) E(ER)− (%)
S&P500 0.166 2.300 0.072 -5.833 -4.455 0 0

TSD 0.138 1.952 0.071 -4.876 -3.719 0.850 -0.877
ISD-2 (l = 13) 0.137 1.917 0.072 -4.799 -3.662 0.842 -0.870

SSD 0.136 1.860 0.073 -4.590 -3.511 0.844 -0.873
ISD-1 (l = 13) 0.103 1.742 0.059 -4.378 -3.344 0.788 -0.851
ISD-1 (max-l) 0.172 1.693 0.101 -4.038 -3.085 0.793 -0.787

CVaR90% (λ = 0.2) 0.021 1.107 0.019 -3.197 -2.270 0.748 -0.892
ICVaR90% (λ = 0.2,l = 5) 0.148 1.772 0.083 -4.450 -3.381 0.844 -0.862
mixed ISD-1-2-ICVaR 0.169 1.566 0.108 -3.724 -2.926 0.828 -0.825
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2008-2018 out-of-sample return distributions

Figure: ISD-1 (l = 13 and max-l)
and SSD models

Figure: SSD, ISD-2 (l = 13) and
TSD models
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Summary evidences

Compared to the S&P500 benchmarks all the proposed portfolio
models exhibit a good downside control as can be observed from
the ex-post returns’ standard deviations, CVaR (90%, 95%) and
mean excess returns below the benchmarks.

The ISD-1 (max-l) model generates consistently the highest and the
CVaR model the least risk-adjusted returns – return per unit volatility
(Sharpe ratio).

Relative to the minimum CVaR (90%) portfolio the minimum ICVaR
(90%, 0.2) portfolios produces consistently a positive average excess
return and thus a higher risk-adjusted return.

ISD-2, TSD and SSD optimal portfolios produce comparable market
performances in terms of tail risk control and risk-adjusted returns.

The introduction of a volatility-based early-warning-signal to
discriminate between markets’ volatility regimes and associated
ISD-based portfolio models can further enhance market
performance and downside control.
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Conclusion

The main contribution of this work is related to the extension of the
canonical order over probability measures induced by stochastic
dominance (SD).
For k = 1 we have shown that ISD-1 allows the order relationship to
hold for all monotone increasing utilities which on the left part of the
support may be concave or convex and surely concave beyond the
ISD reference point.
For k = 2, ISD-2 was shown to lead to a new risk measure, the
Interval Conditional Value-at-Risk, whose relationship with the VaR
and the CVaR has been analysed.
For the case of discrete random variables, a computationally efficient
reformulation of the ISD-k constraints leading to convex programs
that can be solved efficiently for the cases of 1st and 2nd ISD
spanning for varying reference points from first to third SD degrees.
As application domain, we have considered a portfolio selection
problem with ISD-k constraints, for k = 1, 2 and a risk-reward
trade-off model based on expected return and ICVaR as risk
measure. The associated portfolio models do contribute to already
established portfolio optimization models.

I would like to dedicate this work and the research project to the late
most-esteemed Professor Erio Castagnoli, whose support and advices at
some points of my academic career were sincerely appreciated.
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Conclusions

Summary:

We proposes two new SD concepts which span a continuous
spectrum of the SD relationship between integer-order SDs

We study the reformulation and examples for the case between SSD
and log-SD.

Further works:

(Portfolio) optimization with 1
k -concave SD constraints

reformulations of α-concave SD when α > 1 and α < 0
dynamic extension of Interval SD

multivariate version of α-concave SD which can cover some
important utility functions like the Cobb-Douglas utility function
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Thank you!
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