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Introduction

Markov decision processes (MDP) formally describe an environment
for reinforcement learning

Where the environment is fully observable

i.e. The current state completely characterises the process

Almost all RL problems can be formalised as MDPs, e.g. Optimal
control primarily deals with continuous MDPs; Partially observable
problems can be converted into MDPs; Bandits are MDPs with one
state

A state st is Markov if and only if

P [st+1 | st] = P [st+1 | s1; · · · ; st]
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Introduction: MDP

We consider an infinite horizon Markov decision process (MDP) as a
tuple (S,A, P, r0, q, α), where:

• S is a finite state space with |S| states whose generic element is
denoted by s .

• A is a finite action space with |A| actions and a ∈ A(s) denotes an
action belonging to the set of actions at state s.

• P ∈ R|S|×|A|×|S| is the distribution of transition probability
p(s|s, a), which denotes the probability of moving from state s to s
when the action a ∈ A(s) is taken.

• r0(s, a)s∈S,a∈A(s) : S ×A → R denotes a running reward, which is
the reward at the state s when the action a is taken.
r0 = (r0(s, a))s∈S,a∈A(s) ∈ R|S|×|A| is the running reward vector.

• q = (q(s0))s0∈S is the probability of the initial state s0.

• α is the discount factor which satisfies α ∈ [0, 1).
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Introduction: setting of MDP

We consider a discrete time controlled Markov chain (st, at)
∞
t=0 defined

on the state space S and the action space A, where st and at are the
state and action at time t, respectively.

define policy π = (µ(a|s))s∈S,a∈A(s) ∈ R|S|×|A| where µ(a|s)
denotes the probability that the action a is taken at state s,

ξt = {s0, a0, s1, a1, ..., st−1, at−1, st} is the whole historical
trajectory by time t.

history dependent policy, denoted as
πh = (µt(a|s))s∈S,a∈A(s), t = 1, 2, ...,∞.

stationary policy when policy independent of time: there exists a
vector π such that
πh = (µt(a|s))s∈S,a∈A(s) = π = (µ(a|s))s∈S,a∈A(s) for all t.

Let Πh and Πs be the sets of all possible history dependent policies
and stationary policies, respectively.
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Introduction: setting of MDP

When the reward r0(s, a) is random, for a fixed πh ∈ Πh, we consider the
discounted expected value function

Vα(q, πh) =

∞∑
t=0

αtEq,πh
(r0(st, at)), (1)

where α ∈ [0, 1) is the given discount factor. The object of the agent is
to maximize the discounted expected value function

max
πh∈Πh

∞∑
t=0

αtEq,πh
(r0(st, at)). (2)
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Introduction: occupation measures

We denote by dα(q, πh, s, a) the α-discounted occupation measure such
that

dα(q, πh, s, a) = (1− α)

∞∑
t=0

αtpq,πh
(st = s, at = a),∀s ∈ S, a ∈ A(s).

As the state and action spaces are finite, the occupation measure is a
well-defined probability distribution (Theorem 3.1 of Altman, 1999). The
discounted expected value function (1) can be written as

Vα(q, πh) =
∑

(s,a)∈Λ

∞∑
t=0

αtpq,πh
(st = s, at = a)r0(s, a)

=
1

1− α

∑
(s,a)∈Λ

dα(q, πh, s, a)r0(s, a),

where Λ = {(s, a)|s ∈ S, a ∈ A(s)}.
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Introduction: occupation measures

By [Theorem 3.2 of Altman, 1999], we know that the set of occupation
measures corresponding to history dependent policies is equal to that
corresponding to stationary ones. We have:

Lemma 1 (Altman, 1999)

The set of occupation measures corresponding to history dependent
policies is equal to the set

∆α,q =

{
τ ∈ R|S|×|A|

∣∣∣∣∣
∑

(s,a)∈Λ

τ(s, a) (δ(s′, s)− αp(s′|s, a)) = (1− α)q(s′),

τ(s, a) ≥ 0,∀s′, s ∈ S, a ∈ A(s).

}
,

(3)
where δ(s′, s) is the Kronecker delta, such that the expected discounted
value function defined by (2) remains invariant to time.
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Introduction: MDP and Constrained MDP

MDP problem with history dependent policies:

max
τ

1

1− α

∑
(s,a)∈Λ

τ(s, a)r0(s, a) (4a)

s.t. τ ∈ ∆α,q. (4b)

Constrained MDP can be written as:

max
τ

1

1− α

∑
(s,a)∈Λ

τ(s, a)r0(s, a) (5a)

s.t.
∑

(s,a)∈Λ

τ(s, a)rk(s, a) ≥ ξk, k = 1, 2, ...,K, (5b)

τ ∈ ∆α,q. (5c)

Here rk(s, a)(s,a)∈Λ : S ×A → R, k = 1, 2, ...,K be the running

constraint rewards and rk = (rk(s, a))(s,a)∈Λ ∈ R|Λ| be the running
constraint rewards vector.
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Introduction: chance constrained MDP

Joint chance constrained MDP (J-CCMDP) can be defined as:

(J− CCMDP) max
τ

1

1− α
EF0

[τ⊤ · r0] (6a)

s.t. PF (τ
⊤ · rk ≥ ξk, k = 1, 2, ...,K) ≥ ϵ̂, (6b)

τ ∈ ∆α,q (6c)

Individual CCMDP,

(I− CCMDP) max
τ

1

1− α
EF0

[τ⊤ · r0] (7a)

s.t. PFk
(τ⊤ · rk ≥ ξk) ≥ ϵk, k = 1, 2, ...,K, (7b)

τ ∈ ∆α,q, (7c)

where Fk is the probability distribution of rk and ϵk ∈ [0, 1] is the
confidence level of the k−th constraint.
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Introduction: DRO chance constrained MDP

The joint DRCCMDP (J-DRCCMDP):

max
τ

inf
F0∈F0

1

1− α
EF0 [τ

⊤ · r0] (8a)

s.t. inf
F∈F

PF (τ
⊤ · rk ≥ ξk, k = 1, 2, ...,K) ≥ ϵ̂, (8b)

τ ∈ ∆α,q. (8c)

Individual DRCCMDP (I-DRCCMDP) :

max
τ

inf
F0∈F0

1

1− α
EF0

[τ⊤ · r0] (9a)

s.t. inf
Fk∈Fk

PFk
(τ⊤ · rk ≥ ξk) ≥ ϵk, k = 1, 2, ...,K, (9b)

τ ∈ ∆α,q, (9c)

where Fk is the ambiguity set for the distribution Fk and F is the
ambiguity set for the unknown joint distribution F of r1, r2, ..., rk.
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Introduction: chance constrained MDP

Related research:

Delage and Mannor (2010) studied reformulations of chance
constrained MDP (CCMDP) with random rewards or transition
probabilities.

Varagapriya et al. (2022) applied joint chance constraints in
constrained MDP and find its reformulations when the rewards
follow an elliptical distribution.

Nguyen et al. (2022) studied individual DRCCMDP with
moments-based, ϕ-divergence based and Wasserstein distance based
ambiguity sets.

Open questions:

joint chance constraint in DRCCMDP

high-kurtosis, fat-tailedness or multimodality of the reference
distribution (a-prior information)

new AI-based solution methods
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Outline

Reformulation of K-L divergence based DRCCMDP

Reformulation of moment-based DRCCMDP

Dynamical neural network approach for DRCCMDP
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KL divergence

Definition 2

Let DKL denotes the Kullback-Leibler divergence distance

DKL(Fk||F̃k) =

∫
Ωk

ϕ

(
fFk

(rk)

fF̃k
(rk)

)
fF̃k

(rk)drk,

where F̃k is the reference distribution of rk, fFk
(rk) and fF̃k

(rk) are the
density functions of the true distribution and the reference distribution of
rk on support Ωk respectively. ϕ(t) is defined as follows

ϕ(t) =

{
tlogt− t+ 1, t ≥ 0,
∞, t < 0.
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KL divergence based ambiguity sets

Assumption 1

The marginal ambiguity sets are

Fk =
{
Fk|DKL(Fk||F̃k) ≤ δk

}
, k = 0, 1, ...,K,

where F̃k is the reference distribution of reward vector rk, the radius δk
controls the size of the ambiguity sets.

Assumption 2

The joint K-L ambiguity set with jointly independent rows is

F := F1 × · · · × FK = {F = F1 × · · · × FK |Fk ∈ Fk, k = 1, ...,K} ,

where F is the joint distribution of r1, r2, ..., rK with jointly independent
marginals F1, ..., FK , and Fk is a K-L ambiguity set with reference
marginal distribution F̃k and radius δk, k = 1, ...,K.
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KL: elliptical reference distribution

Definition 3 (Fang 2018)

A d-dimensional vector X follows an elliptical distribution Ed(µ,Σ, ψ) if

its characteristic function has the form E(eib⊤X) = eib
⊤µψ(b⊤Σb), where

µ ∈ Rd is the location parameter, Σ ∈ Rd×d is the dispersion matrix, ψ is
the characteristic generator.

Table: The characteristic generator of three different elliptical distributions

Distribution Gaussian Laplace Generalized stable laws

Characteristic generator ψ(t) e−t 1
1+t e−ω1t

ω2
2 , ω1, ω2 > 0
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KL-individual: reformulation under elliptical

Theorem 4

Consider ambiguity set in Assumption 1. Assume the reference
distribution F̃k ∼ E|Λ|(µk,Σk, ψk), k = 0, 1, ...,K, Σ0 is a positive

definite matrix, ψ0 is continuous, inf
t≤0

ψ0(t) ≥ e−δ0 . Then (I-DRCCMDP)

(9) is equivalent to

min
τ,α

−τ⊤µ0 + α log [ψ0(−
τ⊤Σ0τ

2α2
)] + αδ0, (10a)

s.t. τ⊤µk +Φ−1
k (1− ϵ̃k)

√
τ⊤Σkτ ≥ ξk, k = 1, 2, . . . ,K, (10b)

α ≥ 0, (10c)

τ ∈ ∆β,q, (10d)

where Φk is the CDF of the variable Zk ∼ E1(0, 1, ψk),

ϵ̃k = inf
x∈(0,1)

{ e−δkxϵk−1
x−1 }.

Ref: [Hu and Hong, 2013, Jiang and Guan, 2016]
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KL-joint: reformulation under elliptical

Theorem 5

Consider F0 in Assumption 1 and F := F1 × · · · × FK in Assumption 2.
Assume F̃k ∼ E|Λ|(µk,Σk, ψk), k = 0, 1, . . . ,K, Σ0 is p.d., ψ0 is

continuous, inf
t≤0

ψ0(t) ≥ e−δ0 . (J-DRCCMDP) (8) is equivalent to

min
τ,α,y

−τ⊤µ0 + α log [ψ0(−
τ⊤Σ0τ

2α2
)] + αδ0, (11a)

s.t. τ⊤µk +Φ−1
k (1− ỹk)

√
τ⊤Σkτ ≥ ξk, k = 1, 2, . . . ,K, (11b)

0 ≤ yk ≤ 1, k = 1, 2, . . . ,K, (11c)
K∏

k=1

yk ≥ ϵ̂, (11d)

α ≥ 0, (11e)

τ ∈ ∆β,q, (11f)

where ỹk = inf
x∈(0,1)

{ e−δkxyk−1
x−1 }.
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KL-joint: reformulation under Gaussian

Proposition 1

Consider F0 defined in Assumption 1 and F := F1 × · · · × FK defined in
Assumption 2. If F̃k is a Gaussian distribution N(µk,Σk),
k = 0, 1, . . . ,K, and Σ0 is positive definite, then (8) is equivalent to

min
τ,y

−τ⊤µ0 +
√

2δ0τ⊤Σ0τ , (12a)

s.t. τ⊤µk +Φ−1
k (1− ỹk)

√
τ⊤Σkτ ≥ ξk, k = 1, 2, . . . ,K, (12b)

0 ≤ yk ≤ 1, k = 1, 2, . . . ,K, (12c)
K∏

k=1

yk ≥ ϵ̂, (12d)

τ ∈ ∆β,q. (12e)

where ỹk = inf
x∈(0,1)

{ e−δkxyk−1
x−1 } and Φk is the CDF of the standard

Gaussian distribution N(0, 1).
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KL-joint: sequence approximation
Firstly, we compute ỹnk = inf

x∈(0,1)
{ e−δkxyn

k −1
x−1 }, and update τ by solving

min
τ

−τ⊤µ0 +
√
2δ0τ⊤Σ0τ , (13a)

s.t. τ⊤µk +Φ−1
k (1− ỹnk )

√
τ⊤Σkτ ≥ ξk, k = 1, 2, . . . ,K, (13b)

τ ∈ ∆β,q. (13c)

Then we fix τ = τn and update y by solving

min
y

K∑
k=1

Γkyk (14a)

s.t.
1

2
≤ ỹk ≤ 1− Φ(

ξk − τn⊤µk√
τnΣkτn⊤

), k = 1, 2, ...,K, (14b)

0 ≤ yk ≤ 1, k = 1, 2, ...,K, (14c)
K∑

k=1

log yk ≥ log ϵ̂, (14d)

ỹk = inf
x∈(0,1)

{ e−δkxyk−1
x−1 }.
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KL-joint: sequence approximation

We denote ỹk = χk(yk) := inf
x∈(0,1)

{ e−δkxyk−1
x−1 }. By Jiang and Guan

2016, the infimum of χk(yk) is attained in the interval (0, 1). For any
0 ≤ yk ≤ 1, χk(yk) > 0. By the Envelope Theorem (Tercca 2021),
χk(yk) is strictly monotonically decreasing w.r.t. yk. Thus we can
reformulate (14b) as:

χ−1
k

(
1− Φ(

ξk − τn⊤µk√
τnΣkτn⊤

)

)
≤ yk ≤ χ−1

k (
1

2
), (15)

where χ−1(·) denotes the inverse function of χ(·).
We apply the following approximation

Φ−1(x) ≈ t− 2.515517 + 0.802853× t+ 0.010328× t2

1 + 1.432788× t+ 0.189269× t2 + 0.001308× t3
,

t =
√
−2 log x
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KL-joint: algorithm
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Moment-based ambiguity set

Moment-based ambiguity set

Fk =

{
Fk

∣∣∣∣∣ (EFk
[rk]− µk)

⊤(Σk)
−1(EFk

[rk]− µk) ≤ ρ1,k,
CovFk

[rk] ⪯S ρ2,kΣk.

}
, (16)

We then assume that different rows in the joint chance constraint are
independent of each other and consider the following ambiguity set for
the joint distribution

F := F1 × · · · × FK = {F = F1 × · · · × FK |Fk ∈ Fk, k = 1, ...,K} ,
(17)

where F is the joint distribution for independent random vectors
r1, ..., rK with marginals F1, ..., FK .

Jia Liu Distributionally robust chance constrained MDP



Introduction DRCC-MDP KL divergence Moment-based DNN approach

Moment-based: reformulation

Proposition 2

Given the ambiguity set F defined in (17), the J-DRCCMDP problem (8)
can be reformulated as:

min
τ∈R|Λ|

+ ,h∈RK
+

1

1− α

[
−τ⊤µ0 +

√
ρ1,0∥(Σ0)

1
2 τ∥
]

(18a)

s.t. τ⊤µk −

(√
hk

1− hk

√
ρ2,k +

√
ρ1,k

)
∥(Σk)

1
2 τ∥ ≥ ξk,

k = 1, 2, ...,K, (18b)

0 ≤ hk ≤ 1, k = 1, 2, ...,K, (18c)
K∏

k=1

hk ≥ ϵ̂, (18d)

τ ∈ ∆α,q. (18e)
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Moment-based: reformulation

By logarithmic transformation:

min
τ̃ ,h

−µ⊤
0 e

τ̃−log (1−α)·1|Λ| + ∥(Σ0)
1
2 eτ̃+(

1
2 log (ρ1,0)−log (1−α))1|Λ|∥

s.t. µ⊤
k e

τ̃ − ∥(Σk)
1
2 e

τ̃+log (

√
eh̃k

1−eh̃k

√
ρ2,k+

√
ρ1,k)·1|Λ|

∥ ≥ ξk, k = 1, 2, ...,K

h̃k ≤ 0, k = 1, 2, ...,K,
K∑

k=1

h̃k ≥ log(ϵ̂),

τ̃ ∈ ∆̃α,q,

where

∆̃α,q =

{
τ̃ ∈ R|Λ| |

∑
(s,a)∈Λ

eτ̃(s,a) (δ(s′, s)− αp(s′|s, a))=(1− α)q(s′),∀s′, s, a.
}

(20)

Jia Liu Distributionally robust chance constrained MDP



Introduction DRCC-MDP KL divergence Moment-based DNN approach

Moment-based: algorithm
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DNN approach: introduction

DNN approach is a machine learning technique to solve optimization
problems, initiated by Hopfield and Tank (1985). DNN solve

linear programming (Jun Wang 1993, Youshen Xia 1996)

second-order cone programming (Chun-Hsu Ko et al. 2011, Nazemi
2020),

quadratic programming (Xia 1996, Nazemi 2014, 2021)

nonlinear programming (Forti et al. 2004, Xin-Yu Wu et al. 2004)

minimax problems (Nazemi 2011, Xing-Bao Gao, Li-Zhi Liao 2004)

stochastic game problems (Wu, Lisser 2021),

geometric programming problems (Tassouli, Lisser 2023).
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DNN approach: introduction

Figure: Flowchart of the DNN approach for solving J-DRCCMDP
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DNN approach: introduction

These ODE systems have been shown to have global convergence
properties, meaning that the state solutions converge to the optimal
solution as the independent variable approaches infinity.

Dissanayake et al. (1994) were the first to use a neural network to
approximate the solution of differential equations, where the loss
function contains two terms that satisfy the initial/boundary
condition and the differential equation.

Lagaris et al. (1998) developed a trial solution method that ensures
initial conditions are always satisfied.

Flamant et al. (2020) take the parameter of ODE system models as
an input variable to the neural network, allowing a neural network to
be the solution of multiple differential equations, namely solution
bundles.
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Bi-convex reformulation

we first get the following bi-convex reformulation with respect to τ and
x.

min
τ∈R|Λ|

+ ,x∈RK
−

1

1− α

[
−τ⊤µ0 +

√
ρ1,0∥(Σ0)

1
2 τ∥
]

(21a)

s.t. τ⊤µk −

(√
exk

1− exk

√
ρ2,k +

√
ρ1,k

)
∥(Σk)

1
2 τ∥ ≥ ξk,

k = 1, 2, ...,K (21b)

xk ≤ 0, k = 1, 2, ...,K, (21c)
K∑

k=1

xk ≥ log ϵ̂, (21d)

τ ∈ ∆α,q (21e)
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Bi-convex reformulation
We can then write for short

min
τ∈R|Λ|

+ ,x∈RK
−

f(τ) (22a)

s.t. ϕk(τ, x) ≤ 0, k = 1, ...,K, (22b)

gk(x) ≤ 0, k = 1, ...,K, (22c)

h(x) ≤ 0, (22d)

ωs(τ) ≤ 0, s ∈ S, (22e)

−ωs(τ) ≤ 0, s ∈ S, (22f)

ν(τ) ≤ 0. (22g)

where f(τ) = 1
1−α

[
−τ⊤µ0 +

√
ρ1,0∥(Σ0)

1
2 τ∥
]
,

ϕk(τ, x) =
(√

exk

1−exk

√
ρ2,k +

√
ρ1,k

)
∥(Σk)

1
2 τ∥ − τ⊤µk + ξk,

gk(x) = xk, k = 1, ...,K, h(x) = log ϵ̂−
K∑

k=1

xk,

ωs(τ) =
∑

(s′,a′)∈Λ

τ(s′, a′) (δ(s, s′)− αp(s|s′, a′))− (1− α)q(s), s ∈ S

and ν(τ) = −τ .
Jia Liu Distributionally robust chance constrained MDP
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KKT system

The partial optimum is a KKT point and KKT system is

∇f(τ∗) +

K∑
k=1

βk∇τϕk(τ
∗, x∗) +

∑
s∈S

(θ1,s − θ2,s)∇ωs(τ
∗) + ϱ∇ν(τ∗) = 0,

(23a)
K∑

k=1

βk∇xϕk(τ
∗, x∗) +

K∑
k=1

χk∇gk(x
∗) + ζ∇h(x∗) = 0, (23b)

βk ≥ 0, βkϕk(τ
∗, x∗) = 0, βkϕk(τ

∗, x∗) = 0, k = 1, ...,K, (23c)

χk ≥ 0, χkgk(x
∗) = 0, k = 1, ...,K, (23d)

ζ ≥ 0, ζh(x∗) = 0, (23e)

θ1,s ≥ 0, θ1,sωs(τ
∗) = 0, θ2,s ≥ 0, θ2,sωs(τ

∗) = 0, s ∈ S, (23f)

ϱ ≥ 0, ϱν(τ∗) = 0, (23g)
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dynamical equations for KKT

construct the dynamical equations for KKT system as

dτ

dt
=−

(
∇f(τ) +∇τϕ(τ, x)

⊤(β + ϕ(τ, x))+ +∇ω(τ)⊤(θ1 + ω(τ))+

−∇ω(τ)⊤(θ2 − ω(τ))+ +∇ν(τ)⊤(ϱ+ ν(τ))+
)
,

dx

dt
=−

(
∇xϕ(τ, x)

⊤(β + ϕ(τ, x))+ +∇g(x)⊤(χ+ g(x))+ +∇h(x)⊤(ζ + h(x))+
)
,

dβ

dt
=(β + ϕ(τ, x))+ − β,

dχ

dt
=(χ+ g(x))+ − χ,

dζ

dt
=(ζ + h(x))+ − ζ,

dθ1
dt

=(θ1 + ω(τ))+ − θ1,

dθ2
dt

=(θ2 − ω(τ))+ − θ2,

dϱ

dt
=(ϱ+ ν(τ))+ − ϱ.

(24)
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dynamical system of DNN

Let z = (τ, x, β, χ, ζ, θ1, θ2, ϱ), then the dynamical system can be written
as {

dz
dt = κφ(z),
z(t0) = z0,

(25)

where

φ(z) =



φ1(z)
φ2(z)
φ3(z)
φ4(z)
φ5(z)
φ6(z)
φ7(z)
φ8(z)


=



−
(
∇f(τ) +∇τϕ(τ, x)⊤(β + ϕ(τ, x))+ +∇ω(τ)⊤(θ1 + ω(τ))+

−∇ω(τ)⊤(θ2 − ω(τ))+ +∇ν(τ)⊤(ϱ+ ν(τ))+
)

−
(
∇xϕ(τ, x)⊤(β + ϕ(τ, x))+ +∇g(x)⊤(χ+ g(x))+

+∇h(x)⊤(ζ + h(x))+
)

(β + ϕ(τ, x))+ − β
(χ+ g(x))+ − χ
(ζ + h(x))+ − ζ
(θ1 + ω(τ))+ − θ1
(θ2 − ω(τ))+ − θ2
(ϱ+ ν(τ))+ − ϱ


,
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DNN approach

Figure: Flowchart of the DNN approach for solving J-DRCCMDP
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existence of solution

Theorem 6

Let (τ∗, x∗, β∗, χ∗, ζ∗, θ∗1 , θ
∗
2 , ϱ

∗) be an equilibrium point of the neural
network, then (τ∗, x∗) is a KKT point. On the other hand, if (τ∗, x∗) is
a KKT point, then there exists
τ∗ ≥ 0, x∗ ≥ 0, β∗ ≥ 0, χ∗ ≥ 0, ζ∗ ≥ 0, θ∗1 ≥ 0, θ∗2 ≥ 0, ϱ∗ ≥ 0 such that
(τ∗, x∗, β∗, χ∗, ζ∗, θ∗1 , θ

∗
2 , ϱ

∗) is an equilibrium point of the DNN model.

Theorem 7

For any initial point z0 = (τ0, x0, χ0, ζ0, θ
0
1, θ

0
2, ϱ0), there exists a unique

continuous solution z(t) = (τ(t), x(t), χ(t), ζ(t), θ1(t), θ2(t), ϱ(t)) for the
DNN model.
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Stability analysis

Lemma 8

The Jacobian matrix ∇φ(z) is a negative semidefinite matrix.

Lemma 9 (Rockafellar, Wets 2009)

A differentiable mapping F : Rn → Rn is monotonic if and only if the
Jacobian matrix ∇F (x),∀x ∈ Rn is positive semidefinite.

monotonic: (x− y)⊤(F (x)− F (y)) ≥ 0,∀x, y ∈ Rn.

Theorem 10

Define V (z) = ∥φ(z)∥2 + 1
2∥z − z∗∥2, we have dV (z(t))

dt ≤ 0, i.e., DNN
model is stable in the Lyapunov sense and converges to
(τ∗, x∗, β∗, χ∗, ζ∗, θ∗1 , θ

∗
2 , ϱ

∗), where (τ∗, x∗) is a KKT point.
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Numerical experiments: machine replacement problem

Figure: The transition probabilities for the MDP

c0: opportunity cost comes from the potential production losses
when the machine is under repair.

c1: operational consumption of machines, such as the required
electricity fees and fuel costs when the machine is working;

c2: the production of inferior quality products.
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Numerical experiments: setting

Table: The mean values of three costs

States
Maintenance cost Operation consumption cost Inferior quality cost

c0(s, a1) c0(s, a2) c1(s, a1) c1(s, a2) c2(s, a1) c2(s, a2)
1 1 0 1.5 8 0 5
2 1 0 1.5 8 0 5
3 1 0 1.5 8 0 8
4 4 30 5 100 1.5 30
5 4 70 5 200 3 50
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Numerical results: optimal policy

Table: Optimal policies of Moments based J-DRCCMDP

States 1 2 3 4 5

DNN
repair 1.7576e-08 2.8942e-08 ≈ 1 ≈ 1 ≈ 1

do not repair ≈ 1 ≈ 1 3.2052e-08 4.4931e-07 2.7283e-07

SCA
repair 3.5698e-10 4.8275e-10 ≈ 1 ≈ 1 ≈ 1

do not repair ≈ 1 ≈ 1 2.1067e-11 2.2559e-10 5.0490e-10
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Numerical results: convergence quality

Figure: Objective value for SCA
algorithm

Figure: Objective value for DNN
approach
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Numerical results: generalization performance

Figure: SCA Figure: DNN

Figure: Out-of-sample values PKj (τ⊤rk ≥ ξk, k = 1, 2, ...,K), j = 1, 2, ..., 100
with randomly generated distributions Kj , j = 1, 2, ..., 100, where the optimal
solutions τ are obtained by DNN approach and SCA algorithm, respectively.
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Conclusions
Summary:

Apply DRO-CC in MDP

Joint CC with two kinds of ambiguity sets

DNN approach for DRO-CC-MDP

Limitation:

ambiguity reward; deterministic transaction probability

environment is fully observable

Ongoing:

joint ambiguity in transaction probability and reward

environment is NOT fully observable (reinforcement learning)

quantitative convergence, error estimation of the dynamic system

Thank you!
Contract: jialiu@xjtu.edu.cn
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