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Introduction

e Markov decision processes (MDP) formally describe an environment
for reinforcement learning

@ Where the environment is fully observable
@ i.e. The current state completely characterises the process

@ Almost all RL problems can be formalised as MDPs, e.g. Optimal
control primarily deals with continuous MDPs; Partially observable
problems can be converted into MDPs; Bandits are MDPs with one
state

o A state s; is Markov if and only if

P[St+1 | St] = P[3t+1 | S150 0 ;St]
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DRCC-MDP

Introduction: MDP

We consider an infinite horizon Markov decision process (MDP) as a
tuple (S, A, P,ro, q, ), where:
e S is a finite state space with |S| states whose generic element is
denoted by s .
e Ais a finite action space with |4 actions and a € A(s) denotes an
action belonging to the set of actions at state s.
o P c RISIXIAIXISI js the distribution of transition probability
p(3]s, a), which denotes the probability of moving from state s to 5
when the action a € A(s) is taken.
® 70(5,0)ses,ae4(s) : S X A — R denotes a running reward, which is
the reward at the state s when the action a is taken.
1o = (10(5,a))ses,acA(s) € RISl is the running reward vector.

q = (q(s0))soes is the probability of the initial state so.

« is the discount factor which satisfies a € [0, 1).
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DRCC-MDP

Introduction: setting of MDP

We consider a discrete time controlled Markov chain (s¢, a:)$2, defined
on the state space S and the action space A, where s; and a; are the
state and action at time ¢, respectively.
o define policy ™ = (1i(als))ses,aca(s) € RIS where yi(als)
denotes the probability that the action a is taken at state s,
e & = {so,a0,81,a1,...,8¢—1, Gr—1, St} is the whole historical
trajectory by time t.
@ history dependent policy, denoted as
Th = (N’t(a|8))868,a€¢4(s)a t=1,2,..,00.
@ stationary policy when policy independent of time: there exists a
vector 7 such that
Th = (Nt(a|8))868,a€f\(s) =T = (ﬁ(a|s))565,a6¢4(s) for all t.
@ Let II;, and II; be the sets of all possible history dependent policies
and stationary policies, respectively.
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Introduction: setting of MDP

When the reward r(s, a) is random, for a fixed 7, € I}, we consider the
discounted expected value function

o0

Valg.m) = 3 By r, (st a)), (1)
t=0

where « € [0, 1) is the given discount factor. The object of the agent is
to maximize the discounted expected value function

o0

max at]Equ (ro(se, at)). (2)
mp€llp =0
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DRCC-MDP

Introduction: occupation measures

We denote by d(q, 7, s,a) the a-discounted occupation measure such
that

doz(Qaﬂ-fHS?a) = (1 - O() Zatpq,ﬂ'n(st =Ss,a¢t = U,),\V/S S S,Cl S A(S)
t=0

As the state and action spaces are finite, the occupation measure is a
well-defined probability distribution (Theorem 3.1 of Altman, 1999). The
discounted expected value function (1) can be written as

Va(%ﬂ-h) = Z Zatpq,ﬂ'h (St =S5,ar = a)TO(S>a)
(s,a)eA t=0
1
= m Z da(Qa Thy S, [1)7'0(8, CL),
(s,a)eA

where A = {(s,a)|s € S,a € A(s)}.
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DRCC-MDP
Introduction: occupation measures

By [Theorem 3.2 of Altman, 1999], we know that the set of occupation
measures corresponding to history dependent policies is equal to that
corresponding to stationary ones. We have:

Lemma 1 (Altman, 1999)

The set of occupation measures corresponding to history dependent
policies is equal to the set

(s,a)EA

Agq=1{ 7RIS
7(s,a) > 0,Vs',;s € S,a € A(s).

> 7(s,a) (0(s',5) —ap(s'ls, a)) = (1 — a)q(y), }

(3)
where §(s', s) is the Kronecker delta, such that the expected discounted
value function defined by (2) remains invariant to time.
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DRCC-MDP

Introduction: MDP and Constrained MDP

MDP problem with history dependent policies:

1
max T— Z 7(s,a)ro(s, a) (4a)
(s,a)eN
st. TE AL, (4b)

Constrained MDP can be written as:

1

max —— Z T(s,a)ro(s, a) (5a)
(s,a)EA
s.t. Z T(s,a)rE(s,a) > &k =1,2, ..., K, (5b)
(s,a)EA
T €Ay (5¢)

Here rj(s,a)(s,a)en : S x A — R,k =1,2,..., K be the running
constraint rewards and 7, = (7%(5,a))(s,a)en € R be the running
constraint rewards vector.
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DRCC-MDP

Introduction: chance constrained MDP

Joint chance constrained MDP (J-CCMDP) can be defined as:

(]~ COMDP) max - i —Ep,[7" 7o) (6a)
st. Pp(r! -rp > &k=1,2,..,K) >¢ (6b)
TEAnyq (6¢c)
Individual CCMDP,
(I-CCMDP) max i ~Epy[r" - 79] (7a)
st Pp (1" 1p > &) > e, k=1,2,.... K, (7b)
T € Aug, (7¢)

where Fy, is the probability distribution of 7 and ¢ € [0,1] is the
confidence level of the k—th constraint.
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DRCC-MDP

Introduction: DRO chance constrained MDP

The joint DRCCMDP (J-DRCCMDP):

. T,
AP el )
st Tory > k= LK) > €
s.t Fuég_ Pe(r' 1 > & k=1,2,..., K) > ¢, (8b)
T € Ayyg (8¢)

Individual DRCCMDP (I-DRCCMDP) :

ol BT 52
b T >&) > =1,2,..,
s.t Fknelg‘k Pr (1" - re > &) > € k=1,2,.., K, (9b)
T € Anygs (9¢)
where Fj, is the ambiguity set for the distribution Fy and F is the

ambiguity set for the unknown joint distribution F' of r1,ro, ..., 7%.
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DRCC-MDP

Introduction: chance constrained MDP

Related research:

@ Delage and Mannor (2010) studied reformulations of chance
constrained MDP (CCMDP) with random rewards or transition
probabilities.

e Varagapriya et al. (2022) applied joint chance constraints in
constrained MDP and find its reformulations when the rewards
follow an elliptical distribution.

@ Nguyen et al. (2022) studied individual DRCCMDP with
moments-based, ¢-divergence based and Wasserstein distance based
ambiguity sets.

Open questions:
@ joint chance constraint in DRCCMDP

@ high-kurtosis, fat-tailedness or multimodality of the reference
distribution (a-prior information)

@ new Al-based solution methods

Jia Liu Distributionally robust chance constrained MDP



DRCC-MDP
Outline

@ Reformulation of K-L divergence based DRCCMDP
@ Reformulation of moment-based DRCCMDP

@ Dynamical neural network approach for DRCCMDP
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KL divergence
KL divergence

Definition 2
Let Dk, denotes the Kullback-Leibler divergence distance

Dy (Fi||Fy) = /Q ¢ <;§k2:i;> fe, (ri)dry,

where F}, is the reference distribution of 7y, fr, (rg) and fﬁk (rg) are the
density functions of the true distribution and the reference distribution of
r. on support y, respectively. ¢(t) is defined as follows

[ togt—t+1, t>0,
¢(t)_{oo, t <0.
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KL divergence based ambiguity sets

The marginal ambiguity sets are
Fy = { Bl Dk (Bl 1 By) < 8 p k= 0,1, K,

where F}, is the reference distribution of reward vector 1., the radius &y,
controls the size of the ambiguity sets.

The joint K-L ambiguity set with jointly independent rows is
F=Fi X xFxg={F=F x---x Fg|F, € Fy,k=1,...K},

where F' is the joint distribution of 71,73, ..., with jointly independent
marginals Fy, ..., Fx, and Fj, is a K-L ambiguity set with reference
marginal distribution F}, and radius 6,k =1,.... K.
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KL divergence

KL: elliptical reference distribution

Definition 3 (Fang 2018)

A d-dimensional vector X follows an elliptical distribution Eg(u, 2, ) if
its characteristic function has the form E(e®® X) = ¢ 1y)(bT ), where
i € R4 is the location parameter, 3 € R%*? is the dispersion matrix, v is
the characteristic generator.

Table: The characteristic generator of three different elliptical distributions

Distribution Gaussian | Laplace | Generalized stable laws

@2

Characteristic generator 1 (t) et l%rt et i, we >0
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KL divergence

KL-individual: reformulation under elliptical

Theorem 4

Consider ambiguity set in Assumption 1. Assume the reference
distribution Fy, ~ B\ (pr, Xk, ¥x), k= 0,1,..., K, ¥ is a positive
definite matrix, v is continuous, %25 Yo(t) > e~%. Then (I-DRCCMDP)

(9) is equivalent to

by
min 77 po + arlog [Yo(— 5 5] + ad, (10a)
st. T e+ @t (1= &)VT TSR > &,k =1,2,..., K, (10b)
a >0, (10c)
T € Agg, (10d)
where @y, is the CDF of the variable Z;, ~ FE1(0,1,y),
~ ‘5kx€k 1
= f -
= G 5=

Ref: [Hu and Hong, 2013, Jiang and Guan, 2016]



KL divergence

-joint: reformulation under elliptical

Consider Fq in Assumption 1 and F := F1 x --- X Fy in Assumption 2.
Assume Iy, ~ Ejp) (g, Br, Yr), K =0,1,..., K, Xq is p.d., Yo is
continuous, %gg Yo(t) > e=%. (J-DRCCMDP) (8) is equivalent to
T
‘ D,
min —TT/J(] —+ « log [’U}'()(— 207—)} aF O[(s(], (113)
T,y 2
st. T e+ @ (1= Gp)VT ST > &k =1,2,..., K, (11b)
0<yp<1l,k=1,2,..., K, (11c)
K
I >¢ (11d)
k=1
a >0, (11e)
T E Agﬁq, (11f)
where g, = mf {& 75'””% e ~zr-1y
€(0,1)
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KL divergence

KL-joint: reformulation under Gaussian

Proposition 1

Consider Fq defined in Assumption 1 and F := F; x --- X Fk defined in
Assumption 2. If Fy is a Gaussian distribution N (ug, X),
k=0,1,...,K, and ¥ is positive definite, then (8) is equivalent to

min  —7" o + /28077 o, (12a)

Y

st. T pe+ @ (L= ) VT ST > &k =1,2,..., K, (12b)
0<yp<1,k=12,... K, (12¢)
K
[v=>¢ (12d)
T EAgg. (12¢)

where g, = %fl){m} and @y, is the CDF of the standard

Gaussian distribution N(0,1).

v
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KL divergence

KL-joint: sequence approximation

Firstly, we compute g3 = 1nf {%} and update 7 by solving
min - —7 ' gy + /2807 ST, (13a)
st. T e+ @ (L= GVT I Sk > &k =1,2,..., K, (13b)

T E Ag’q. (13C)

Then we fix 7 = 7" and update y by solving

K
i Ty 14a
min Z KUk (142)
[ & — 7"
st —<gn<l-®(E_T_Hhyp_192 K, (l4b
2~ (‘ /TnsznT ( )
0<wyr<1l,k=12..K, (14c)
K
Zlogyk > logé, (14d)

~ e OkgVk 1
— inf {ehalioly
Yk IEH%I 1 { }

Jia Liu Distributionally robust chance constrained MDP



KL divergence

KL-joint: sequence approximation

We denote 7 = & (yx) = %fl){%} By Jiang and Guan

2016, the infimum of x4 (yx) is attained in the interval (0,1). For any
0 <wyr <1, xg(yr) > 0. By the Envelope Theorem (Tercca 2021),
Xk (yk) is strictly monotonically decreasing w.r.t. yx. Thus we can
reformulate (14b) as

1 fk _TnTﬂk -1 1
(1—‘1’(W)> < Yk SXk (5)7 (15)
k

where x~1(-) denotes the inverse function of x(-).
We apply the following approximation

7 2.515517 + 0.802853 x t + 0.010328 x t2
1+ 1.432788 x t + 0.189269 x 2 + 0.001308 x t3’
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KL divergence

KL-joint: algorithm

Algorithm 1: A hybrid algorithm to solve problem (20)

Data: ug, Bx, O, &k, Asg Mmaz, &, € 7, k=0,1,..., K.
Result: 7, V",

1 Set n =0
2 Choose an initial point " = |47, ..., 4} | feasible for (23c) and (23d);
3 while n € npar and [y ' —y™"| = € do
X Sk Vi y e " - . .
1 Compute g inf {% }. Solve problem (22) with gj!. Let 7", V™ be an optimal

xe(0,1)
solution and the optimal value of (22) respectively. Let #™ be the optimal dual multiplier
vector to constraints (22b) :

r nl
5 Use the line search method to find _r/l, e (3) and yrovm =y, M(1-@ %])
A T AT
k=0
6 Solve problem (23) where we replace (23b) by y/V" <y < yi B k=1 Kooand iset

T =07 - (2 'Y (L— GV Eer™;

let % be an optimal solution of problem (23);
Y ey +y(§ —y"),n < n+ 1. Here, v € (0,1) is the step length.

8 end
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Moment-based
Moment-based ambiguity set
Moment-based ambiguity set

7 {Fk

We then assume that different rows in the joint chance constraint are
independent of each other and consider the following ambiguity set for
the joint distribution

Covp, [rk] 25 p2.xXk.

(Enre] = )T (5) 7 B ] = ) < pre, } (16)

F=FixxFg={F=F x-x Fg|F, € Fr,k=1,..,.K},
(17)
where I is the joint distribution for independent random vectors
71, ...,TK With marginals Fy, ..., Fk.
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Moment-based

Moment-based: reformulation

Given the ambiguity set F defined in (17), the J-DRCCMDP problem (8)
can be reformulated as:

min 1 [
[A] K —
'rG]RJr ,h€R+

S.t. ! Wi — (

(Zo)i 7] (182)

£1,0

x/PTJF\/fT) I(E0) 27l = &,

k=1,2,.. (18b)
Oghkgl,kzl,Q,...,K, (18¢)
K
[17=>e (18d)
k=1
TEApg (18e)/
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Moment-based

Moment-based: reformulation

By logarithmic transformation:

_uge‘?—log (1—a)-15 + ||(E())%6‘F+(% log (p1,0)—log (lfa))lm‘ ”

. hy,
FHlog (4] —<k VP2 /P E) LA

st e —||(Sk)2e 1—ch | > &, k=1,2,.. K
hie <0, k=1,2,.... K,
K ~
hy, > log(é),

k=1
7 e Ay

where

Boy = {% R X 661 ) — ap(lsa)) =(1 @)l Vs

(20)
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Moment-based

Moment-based: algorithm

Algorithm 1: Sequential convex approximation algorithm(Problem (13))
Data: pui, Ek, p1,k, P2,k Eky Daygs Mmaz, 1, 6 L, k=0,1,..., K.
Result: 7", V™.

1 Set n=0;

2 Choose an initial point A° feasible for (21¢)-(21d);

3 while n <m0, and [h" ' — h"| = L do
4 Solve problem (20); let 7, 0™, V™ be an optimal solution, the optimal Lagrangian dual

variable and the optimal value of (20), respectively;

5 Solve problem (21) with
™ Ty — € P [(E)ir| 7
T k k 1.k Pk [ 2,k
=7 & [—=, k=67 ) [ )’
ISl ype VP2 2(1 "A- AL hg)

let 2 be an optimal solution of (21);
6 A"l — p™ 4 “,(L h™),n <« n+ 1. Here, v € (0,1) is the step length.

7 end
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DNN approach: introduction

DNN approach is a machine learning technique to solve optimization
problems, initiated by Hopfield and Tank (1985). DNN solve

o linear programming (Jun Wang 1993, Youshen Xia 1996)

@ second-order cone programming (Chun-Hsu Ko et al. 2011, Nazemi
2020),

quadratic programming (Xia 1996, Nazemi 2014, 2021)

nonlinear programming (Forti et al. 2004, Xin-Yu Wu et al. 2004)
minimax problems (Nazemi 2011, Xing-Bao Gao, Li-Zhi Liao 2004)
stochastic game problems (Wu, Lisser 2021),

geometric programming problems (Tassouli, Lisser 2023).
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DNN approach
DNN approach: introduction
Joint DRCCMDP

A 4

Nonconvex
optimization problem

KKT system

v

DNN model

Figure: Flowchart of the DNN approach for solving J-DRCCMDP
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DNN approach: introduction

These ODE systems have been shown to have global convergence
properties, meaning that the state solutions converge to the optimal
solution as the independent variable approaches infinity.

o Dissanayake et al. (1994) were the first to use a neural network to
approximate the solution of differential equations, where the loss
function contains two terms that satisfy the initial/boundary
condition and the differential equation.

o Lagaris et al. (1998) developed a trial solution method that ensures
initial conditions are always satisfied.

@ Flamant et al. (2020) take the parameter of ODE system models as
an input variable to the neural network, allowing a neural network to
be the solution of multiple differential equations, namely solution
bundles.
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DNN approach

Bi-convex reformulation

we first get the following bi-convex reformulation with respect to 7 and

Z.

min
reRIM zeRK

s.t.

1 1

—— [-7Tho + vrsl(o) (212)

TM-(V vm-hml>MMVﬂ>&,
k=1,2,. (21b)

xkgak=1awwK, (21c)

K

ka > logé, (21d)

k=1

SIAY (21e)
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DNN approach
Bi-convex reformulation

We can then write for short

‘rl{l‘in . f(r) (22a)
reRIM zerK
s.t. on(T,2) <0,k=1,... K, (22b)
gr(x) <0,k=1,... K, (22¢)
h(z) <0, (22d)
ws(T) < 0,5 €5, (22e)
—ws(17) < 0,5 €8, (22f)
v(r) <0. (22g)

where f(7) = 1= [_TTMO + /P10 |(20)%T||}v
ou(r.2) = (/15 P + /oTE) (S0 37l =+ o,

K
(@) =z, k=1,.,K, h(z) =logé — 3 ay,
k=1

ws(t) = 32 7(s,a")(6(s,8") —ap(s|s’,a’)) — (1 = a)q(s), s € S
(s’,a’)EA

and v(7) = —.
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DNN approach
KKT system

The partial optimum is a KKT point and KKT system is

+Zﬂkv Gr(T7,27) + > (01,6 — 02,6) Vs (") + 0Vu(77) =0,

ses
(23a)
K K
> BeVadk(T,2") + > xkVar(z") + (Vh(z") =0, (23b)
k=1 k=1
ﬁk >0 ﬂkﬁbk( , L )—0 Bkﬁbk(T x )—0, k:].,...,K, (23C)
Xk 2 0, ngk( ) 0, k= 1, ...,K, (23d)
¢>0, Ch(a") =0, (23¢)
01,5 >0, 01:5ws(77) =0, O25>0, Osws(77)=0, s€S, (23f)
0>0, ou(r) =0, (23g)
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DNN approach

dynamical equations for KKT

construct the dynamical equations for KKT system as

O = (VI() + Veo(r,2) (B4 6(r,2) " + Veolr) (01 + ()
= Va(r)" (02 = w(r) " +9u(n) (0 +v(n)F)
& e (Vatlr, @) (B + 07, 2) + Vo@) (x+ 9(@) "+ Vh@) (¢ + A
B 6+ o2 -5,
B _(x+ gt~
& —crn@nt ¢
T =0+ w(r)* 0
T2 =02~ w(r))* ~ bn
%%‘@+VHD+—Q

(24)
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DNN approach

dynamical system of DNN

Let z = (7,z, 8, X, ¢, 61,02, 0), then the dynamical system can be written
as

dz
dat l<&<p( ) 2
{ 2(to) = 2o, (25)
where
—(VF(1) + Vro(m,2) (B + d(r,2)) T + V(1) T (61 + w(r)) "
»1(2) —Vw(T) T (02 —w(T)t + V(1) T (0 + v(7))T)
w2(z) —(Veo(r,2) T (B+ ¢(r,2)) T + Vglx) T (x + g(z)) T
3(2) +Vh(z) T (¢ + h(z))T)
(p(z) _ ‘P4(Z) — B+ ¢(7—7$))+ -B
©5(2) (x+glx)* *X ’
we(2) (¢ + h(x))*T
w7(2) (01 + w(r )) - 91
ws(2) (02 —w(r))*t — 92
| (e+v(m)t -
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DNN approach

7(t)
x(1)
A1)
20
4

te[0, T]

0,(t)

0:=9, = 0,(t)

p(t)

Neural Network Z( tk)

Figure: Flowchart of the DNN approach for solving J-DRCCMDP
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DNN approach
existence of solution

Let (7*,z*, 8%, x*, (*, 07,05, 0%) be an equilibrium point of the neural
network, then (7*,x*) is a KKT point. On the other hand, if (7*,z*) is
a KKT point, then there exists

>0,z >0,6* >0,x* >0,{" > 0,07 >0,05 >0, 0" >0 such that
(7%, 2%, 8%, x*, (*, 07,05, 0%) is an equilibrium point of the DNN model. )

For any initial point zy = (7o, 0, X0, Co, 09, 09, 00), there exists a unique
continuous solution z(t) = (7(t), z(t), x(t), ¢(¢t), 01 (¢), 62(¢), o(t)) for the
DNN model. )
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Stability analysis

The Jacobian matrix V(z) is a negative semidefinite matrix.

v

Lemma 9 (Rockafellar, Wets 2009)

A differentiable mapping F' : R™ — R™ is monotonic if and only if the
Jacobian matrix VF(z),Vx € R™ is positive semidefinite.

monotonic: (z —y) " (F(z) — F(y)) > 0,Vx,y € R".

Theorem 10

Define V(2) = ||p(2)|% + 3|1z — 2*||2, we have &M <, je, DNN

model is stable in the Lyapunov sense and converges to
(7%, x*, 8%, x*, (*, 07,05, 0%), where (7*,2*) is a KKT point.
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DNN approach

Numerical experiments: machine replacement problem

0.1 0.1 0.1 1) M

PN X X X

<1>@/ : \) [ONERTCOR 09 ( YR ( . >>(02>
N 02 \ \
02

< </ AN
3
08 O )\ l
f‘\ o2
038 -
\\\_ ©08)

.

Figure: The transition probabilities for the MDP

@ ¢(: opportunity cost comes from the potential production losses
when the machine is under repair.

@ cy1: operational consumption of machines, such as the required
electricity fees and fuel costs when the machine is working;

@ cy: the production of inferior quality products.
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DNN approach

Numerical experiments: setting

Table: The mean values of three costs

Maintenance cost Operation consumption cost Inferior quality cost
States

co(s,a1) | co(s,a2) | ci(s,ar1) c1(s,a2) ca(s,a1) | ca(s,a2)

1 1 0 15 8 0 5

2 1 0 15 8 0 5

3 1 0 1.5 8 0 8

4 4 30 5 100 1.5 30

5 4 70 5 200 3 50
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DNN approach

Numerical results: optimal policy

Table: Optimal policies of Moments based J-DRCCMDP

States 1 2 3 4 5
DNN repair 1.7576e-08 2.8942e-08 ~1 ~ 1 ~1

do not repair ~ 1 ~ 1 3.2052e-08 | 4.4931e-07 | 2.7283e-07
SCA repair 3.5698e-10 | 4.8275e-10 ~ 1 ~ 1 ~ 1

do not repair ~ 1 ~ 1 2.1067e-11 | 2.2559e-10 | 5.0490e-10
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DNN approach

Numerical results: convergence quality
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Figure: Objective value for SCA Figure: Objective value for DNN
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Numerical results: generalization performance
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Figure: Out-of-sample values Py; (7 7% >&ek=1,2, wK),j=1,2,...,100
with randomly generated distributions K7, j = 1,2, ..., 100, where the optimal
solutions 7 are obtained by DNN approach and SCA algorithm, respectively.
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Conclusions

Summary:
e Apply DRO-CC in MDP
@ Joint CC with two kinds of ambiguity sets
@ DNN approach for DRO-CC-MDP

Limitation:
@ ambiguity reward; deterministic transaction probability
@ environment is fully observable

Ongoing:
@ joint ambiguity in transaction probability and reward
@ environment is NOT fully observable (reinforcement learning)
@ quantitative convergence, error estimation of the dynamic system

Thank you!

Contract: jialiu@xjtu.edu.cn
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