A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint

Jia Liu

Xi'an Jiaotong University

TEL:086-82663748, E-mail: jialiu@xjtu.edu.cn

Joint work with Zhiping Chen & Xinkai Zhuang (Xi'an Jiaotong University)

(Shanghai, JORSC-FERM, 2019.8.29)

Index tracking

- Index tracking problems aim to replicate the holdings and performance of a designated index, which is a popular form of passive fund management.
- A classic index tracking model (L2-norm):

$$\min_{x} \quad \mathbb{E}(r^{\mathsf{T}}x - r_{I})^{2} \\ \text{s.t.} \quad e_{n}^{\mathsf{T}}x = 1,$$

• Index tracking model penalties deviations of portfolio return both above and below the benchmark index. Others: *L*₁-norm...

Enhanced indexation

- Enhanced indexation model penalties deviations only below the benchmark index: a positive portfolio management
- An classic enhanced indexation model:

 $\max_{x} \quad \mathbb{E}[r^{\top}x - r_{I}]$ s.t. $\mathbb{E}[(r^{\top}x - r_{I})_{-}] \leq \alpha,$ $e_{n}^{\top}x = 1.$

• Tracking error measures: mean-absolute deviation; chance constraints; conditional Value-at-Risk; stochastic dominance.

Enhanced indexation(Con'd)

- Dose and Cincotti (2005PASMA) desire a relatively high excess return within a reduced tracking error by adopting historical look-back approach.
- Konno and Hatagi (2005JIMO) use a mean-absolute deviation objective in an index-plus-alpha model and get the linearly constrained concave minimization.
- Goel et al. (2018JCAM) use mixed conditional Value-at-Risk measure to track the index.
- Roman et al. (2013EJOR) study the second-order stochastic dominance based models and demonstrate an empirical study in enhanced indexation problem.
- Xu et al. (2018JGO) present a sparse enhanced indexation model with chance constraints and cardinality constraints.
- Canakgoz and Beasley (2009EJOR) formulate the enhanced indexation problem as mixed-integer linear programming.

Our motivation

Motivation: sustainability

- Stable performance in long-run
 - Model adaptive to market environment
 - Non-fixed target
 - Regime switching
- Reduce transaction complexity
 - Limit size of portfolio set
 - Cardinality constraints: L₀ norm

Regime switching

Regime switching (Hamilton, 1989): nonlinear dynamic change of the market environment

- observation switching
- Markov switching

We assume that the regime switching is Markovian, with *J* finite states, and stationary.

- current regime is s_0 ; regime forthcoming in next period is s_f .
- $Q_{s^is^j} := Q\{s_f = s^j : s_0 = s^i\}$: transition probability from regime s^i in the current period to regime s^j in the next period.

$$Q = \begin{bmatrix} Q_{s^1s^1} & Q_{s^1s^2} & \cdots & Q_{s^1s^J} \\ Q_{s^2s^1} & Q_{s^2s^2} & \cdots & Q_{s^2s^J} \\ \cdots & \cdots & \cdots & \cdots \\ Q_{s^Js^1} & Q_{s^Js^2} & \cdots & Q_{s^Js^J} \end{bmatrix}$$

Enhanced indexation model

Regime-based cardinality constrained enhanced indexation model

(RCEI)
$$\begin{array}{l} \max_{x} \quad \mathbb{E}[R^{\top}x - R_{I}(s_{f})] \\ \text{s.t.} \quad \mathbb{E}[(R^{\top}x - R_{I}(s_{f}))_{-} : s_{f} = s^{j}] \leq \alpha(s^{j}), \ j = 1, 2, \dots, J, \\ e_{N}^{\top}x = 1, \\ \|x\|_{0} \leq K(s_{0}), \end{array}$$

- *R_I*(*s_f*): return rate of the market index whose distribution relies on the forthcoming market regime *s_f*.
- Cardinality upper bound $K(s_0)$: rely on current market regime s_0 .

Sample reformulation

- S: set of T historical observations of R, $\{r_1, r_2, \ldots, r_T\}$,
- *s*(*t*): market regime to which the *t*-th observation belongs.
- S_j : observations under the *j*-th market regime, $S = \bigcup_{1,2,\dots,J} S_j$

$$\max_{x} \quad \sum_{j=1}^{J} \left(Q(s_{0}, s^{j}) \frac{1}{T_{j}} \sum_{t \in S_{j}} (r_{t}^{\top} x - r_{I}(s(t))) \right), \\ \text{s.t.} \quad \frac{1}{T_{j}} \sum_{t \in S_{j}} \left[(r_{t}^{\top} x - r_{I}(s(t)))_{-} \right] \leq \alpha(s^{j}), \ j = 1, 2, \dots, J, \\ e_{N}^{\top} x = 1, \\ ||x||_{0} \leq K(s_{0}).$$

Further reformulation

Further reformulation

$$\max_{x,y} \quad \sum_{j=1}^{J} \left(Q(s_0, s^j) \frac{1}{T_j} \sum_{t \in S_j} r_t^\top x \right), \\ \text{s.t.} \quad \frac{1}{T_j} \sum_{t \in S_j} y_t \le \alpha(s^j), \ j = 1, 2, \dots, J, \\ y_t \ge r_I(s(t)) - r_t^\top x, \ t = 1, 2, \dots, T, \\ y_t \ge 0, \ t = 1, 2, \dots, T, \\ e_N^\top x = 1, \\ ||x||_0 \le K(s_0).$$

• Linear programming with an L₀ norm constraint

イロト イポト イヨト イヨト

Current approaches

- Reformulated by MIP (Canakgoz and Beasley, 2003EJOR; Guastaroba and Speranza, 2012EJOR)
- Relax L₀ norm into L₁-norm (Bruckstein, 2009SIAMrew), L_p-norm (Chen et al. 2013) or L₁-norm (Zhao et al., 2019JORS)
- Nonmonotone projected gradient method (Xu, Lu, Xu, 2015OMS)
- Heuristic method (Chang, et al. 2000COR)
- DC approximation (Gulpinar et al. 2010OPTIM)
- Cutting plance (Roman et al. 2013EJOR)

Our approach

- Block structure: ADMM (not converge for more than 3 blocks, Chen, He, Ye, Yuan, 2016MP) ⇒ Proximal ADMM (He, Yuan, Chen, Ye, Wang, Zhang, Xu, Hong, Luo et al.)
- Motivated by GY Li & TK Pong, 2015SIAMOPT (Non-constrained; smooth part + non-smooth part); Chen et al. 2017;
- Extended to constrained problem (relaxation with partial penalty) with smooth part + non-smooth part (*L*₀-norm)

• Rewrite (RCEI)

$$\max_{x,w} \quad \sum_{j=1}^{J} \left(Q(s_0, s^j) \frac{1}{T_j} \sum_{t \in S_j} r_t^{\mathsf{T}} Aw \right), \\ \text{s.t.} \quad \frac{1}{T_j} \sum_{t \in S_j} B_t w \le \alpha(s^j), \ j = 1, 2, \dots, J, \\ B_t w \ge r_l(s(t)) - r_t^{\mathsf{T}} Aw, \ t = 1, 2, \dots, T, \\ Bw \ge 0, \\ e_N^{\mathsf{T}} Aw = 1, \\ Aw - x = 0, \\ ||x||_0 \le K(s_0). \end{cases}$$

=

• Rewrite (RCEI) shortly

$$\min_{\substack{x,w\\ s.t.}} c^{\top}w + \delta_C(x),$$

s.t. $\bar{A}w \leq \bar{b},$
 $\bar{C}w = \bar{d},$
 $Aw - x = 0.$

partial penalty

$$\min_{\substack{x,w,u,v} \\ s.t. } c^{\top}w + \mu(||u_{+}||^{2} + ||v||^{2}) + \delta_{C}(x), \\ \bar{A}w - u = \bar{b}, \\ \bar{C}w - v = \bar{d}, \\ Aw - x = 0,$$

augmented Lagrangian function

$$\begin{aligned} \mathcal{L}_{\mu}(x, w, u, v, \lambda; \beta) &= c^{\top} w + \mu(||u_{+}||^{2} + ||v||^{2}) + \delta_{C}(x) \\ &+ \lambda^{T}(\mathcal{A}w + \mathcal{B}\begin{bmatrix} u \\ v \end{bmatrix} + \mathcal{D}x - b) + \frac{\beta}{2} ||\mathcal{A}w + \mathcal{B}\begin{bmatrix} u \\ v \end{bmatrix} + \mathcal{D}x - b||^{2}, \end{aligned}$$

- Step 1. Given an initial point (x⁰, w⁰) ∈ ℝ^N × ℝ^{N+T}, the outer tolerance ε_O > 0, γ > 1. Let k = 1, μ^k > 0;
- Step 2. Solve the enhanced indexation subproblem (7) by the proximal ADMM algorithm:
 - Step 2.1. Given $\mu = \mu^k$, the inner tolerance $\epsilon_I > 0$, $\sigma > 0$. Let $\beta > 0$, $(x^0, w^0) = (x^{k-1}, w^{k-1})$, $u^0 = \bar{A}w^0 \bar{b}$, $v^0 = \bar{C}w^0 \bar{d}$, $\lambda^0 \in \mathbb{R}^{J+2T+N+1}$, i = 0;
 - Step 2.2. Perform the (i + 1)-th iteration as follows:

$$\begin{cases} x^{i+1} &= \arg\min_{x} \mathcal{L}_{\mu}(x, w^{i}, u^{i}, v^{j}, \lambda^{i}; \beta), \\ w^{i+1} &= \arg\min_{w} \{\mathcal{L}_{\mu}(x^{i+1}, w, u^{i}, v^{i}, \lambda^{i}; \beta) + \frac{\sigma}{2} \|w - w^{i}\|^{2} \} \\ \begin{bmatrix} u^{i+1} \\ v^{i+1} \end{bmatrix} &= \arg\min_{w,v} \mathcal{L}_{\mu}(x^{i+1}, w^{i+1}, u, v, \lambda^{i}; \beta), \\ \lambda^{i+1} &= \lambda^{i} + \beta(\mathcal{A}w^{i+1} + \mathcal{B} \begin{bmatrix} u^{i+1} \\ v^{i+1} \end{bmatrix} + \mathcal{D}z^{i+1} - b), \end{cases}$$

Step 2.3. If the inner stopping criterion

$$\max\{\mu, \beta, 1\}(\|w^{i+1} - w^i\| + \|(\lambda^{i+1} - \lambda^i)/\beta\|) \le \epsilon_I$$

is satisfied, stop the proximal ADMM algorithm and go to Step 3; otherwise, let $\beta = \gamma \beta$, i = i + 1 and go to Step 2.2;

Step 3. If the outer stopping criterion

$$\|\mathcal{A}w^k + \mathcal{B}\begin{bmatrix}u^k\\v^k\end{bmatrix} + \mathcal{D}x^k - b\| \le \epsilon_0$$

is satisfied, stop the algorithm and return the approximate optimal solution (x^k, w^k) ; otherwise, let $\mu^{k+1} = \gamma \mu^k$ and go to Step 2 with k = k + 1.

イロト イ押ト イヨト イヨト

Table 1. Test settings.

	Constituent Stocks	Benchmark	Κ	In-Sample Weeks	Out-of-Sample Period (Weeks)
Test 1	100	FTSE 100	5, 10, 20	50	2004.12.23-2018.12.27 (732)
Test 2	500	S&P 500	5, 10, 20	50	2007.12.24-2018.12.31 (576)

- Rolling forward out-of-sample tests with moving window
- Adopt method in Liu and Chen (2018EJOR) to determine market regimes based on the average values of the market index over a time window.

Transaction probability matrix of regime (assume to be stationary)

$$Q_{\text{FTSE}} = \begin{bmatrix} 0.9023 & 0.0951 & 0.0026 \\ 0.2482 & 0.5674 & 0.1844 \\ 0.0237 & 0.1361 & 0.8402 \end{bmatrix}, \quad Q_{\text{S\&P}} = \begin{bmatrix} 0.9342 & 0.0608 & 0.0051 \\ 0.2933 & 0.5467 & 0.1600 \\ 0.0310 & 0.0775 & 0.8915 \end{bmatrix}$$

Stable to stay in the bull or bear regime; but instable to stay in consolidation regime

Table 2. Mean and standard deviation of out-of-sample return rates under different market regimes.

Index	Mean (s^1)	Mean (s^2)	Mean (s^3)	Mean	Std (s^1)	Std (s^2)	Std (s^3)	Std
FTSE 100	0.0036	0.0010	-0.0063	0.0005	0.0187	0.0195	0.0318	0.0224
S&P 500	0.0033	0.0014	-0.0071	0.0009	0.0190	0.0240	0.0396	0.0254

Noticeably different among three market regimes

Figure 1. Out-of-sample performances of RCEI and CEI models in FTSE 100.

Figure 2. Out-of-sample performances of RCEI and CEI models in S&P 500.

Index	Model	Mean	Std	SR	MDD	TE+	TE_	Time(s)
	RCEI	0.0015	0.0158	0.0931	0.2522	0.0067	0.0057	1.07
FTSE 100	CEI	0.0010	0.0143	0.0709	0.5918	0.0063	0.0057	1.10
	Index	0.0005	0.0224	0.0209	0.7717	-	-	-
	RCEI	0.0031	0.0220	0.1425	0.1986	0.0060	0.0038	18.79
S&P 500	CEI	0.0014	0.0258	0.0553	0.2104	0.0041	0.0036	18.94
	Index	0.0009	0.0254	0.0364	0.6117	-	-	-

Table 3. Statistics of out-of-sample portfolio return rates of RCEI and CEI models.

• Regime switching helps, especially in maximum drawdown.

Index	Model	Mean	Std	SR	TE+	TE_	Stocks	Time(s)
FTSE 100	RCEI	0.0015	0.0158	0.0931	0.0067	0.0057	9.36	1.07
	REI	0.0017	0.0173	0.0974	0.0071	0.0061	88.75	0.06
S&P 500	RCEI	0.0031	0.0220	0.1425	0.0060	0.0038	9.67	18.79
	REI	0.0036	0.0282	0.1277	0.0104	0.0083	383.17	0.83

Table 5. Statistics of out-of-sample return rates of RCEI and REI models.

 Adding cardinality constraint significantly reduce the number of really invested stocks without losing too much performance.

Conclusions

- Propose enhanced indexation model with regime switching and cardinality constraint
- Solution method by the partial penalty proximal ADMM
- Numerical evidences examine the necessariness of regime switching and efficiency of cardinality constraint

Further work

- Static \Rightarrow dynamic
- Other tracking error measures

Thank you!

æ

・ロト ・得ト ・ヨト ・ヨト