Solution to problems of Chapter 1

Yi-Chao XIE

October 14, 2022

Relation between the units:

$$
\begin{gathered}
1 \mathrm{ft}=0.3048 \mathrm{~m} \\
1 \mathrm{lb}=0.454 \mathrm{~kg} \\
1 \mathrm{lb} / \mathrm{ft}^{2}=47.89 \mathrm{~N} / \mathrm{m}^{2}=47.89 \mathrm{~Pa} \\
1^{\circ} \mathrm{R}=5 / 9 \mathrm{~K}
\end{gathered}
$$

1.1 At the nose of a missile in flight, the pressure and temperature are 5.6 atm and $850^{\circ} \mathrm{R}$, respectively. Calculate the density and specific volume. (Note: $1 \mathrm{~atm}=2116 \mathrm{lb} / \mathrm{ft}^{2}$.)

Solution:
The temperature is $T=850^{\circ} \mathrm{R}=850 \times 5 / 9 \mathrm{~K}=472.2 \mathrm{~K}$
The pressure is $\mathrm{p}=5.6 \mathrm{~atm}=5.6 \times 1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=5.656 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
The density is $\rho=\frac{p}{R T}=\frac{5.656 \times 10^{5}}{287 \times 472.2}=4.1735 \mathrm{~kg} / \mathrm{m}^{3}$.
The specific volume is $v=\frac{1}{\rho}=0.2396 \mathrm{~m}^{3} / \mathrm{kg}$
1.2 In the reservoir of a supersonic wind tunnel, the pressure and temperature of air are 10 atm and 320 K , respectively. Calculate the density, the number density, and the mole-mass ratio. (Note: $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.) Solution:
The density is $\rho=\frac{p}{R T}=\frac{10 \times 1.01 \times 10^{5}}{287 \times 320}=10.997 \mathrm{~kg} / \mathrm{m}^{3}$.
The number density is $n=\frac{p}{k T}=\frac{10 \times 1.01 \times 10^{5}}{1.38 \times 10^{-23} \times 320}=2.287 \times 10^{26} / \mathrm{m}^{3}$.
The mole-mass ratio is $\eta=\frac{p v}{\mathscr{R} T}=\frac{p}{\rho \mathscr{R} T}=\frac{10 \times 1.01 \times 10^{5}}{10.997 \times 8314 \times 320}=0.0345 \mathrm{~kg} \cdot \mathrm{~mol} / \mathrm{kg}$.
1.3 For a calorically perfect gas, derive the relation $c_{p}-c_{v}=R$. Repeat the derivation for a thermally perfect gas.

Solution:
For calorically perfect gas $h=c_{p} T$ and $c_{v} T$.
From the definition of enthalpy, we have $h=e+p v \Rightarrow c_{p} T=c_{v} T+R T \Rightarrow c_{p}-c_{v}=R$.
For thermally perfect gas $d h=d e+d(p v), d h=c_{p} d T$ and $d e=c_{v} d T$.
Thus we have $c_{p} d T=c_{v} d T+d(R T) \Rightarrow c_{p}=c_{v}+R \Rightarrow c_{p}-c_{v}=R$.
1.4 The pressure and temperature ratios across a given portion of a shock wave in air are $p_{2} / p_{1}=4.5$ and $T_{2} / T_{1}=$ 1.687, where 1 and 2 denote conditions ahead of and behind the shock wave, respectively. Calculate the change in entropy in units of $(\mathrm{a})(\mathrm{ft} \cdot \mathrm{lb}) /\left(\mathrm{slug} \cdot{ }^{\circ} \mathrm{R}\right)$ and (b) $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Solution:
The change in entropy is given by

$$
\Delta S=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}}=\frac{\gamma R}{\gamma-1} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}}
$$

. Substitute $\gamma=1.4$ and $\mathrm{R}=287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ into the above equation, we have $\Delta S=93.6349 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
1.5 Assume that the flow of air through a given duct is isentropic. At one point in the duct, the pressure and temperature are $p_{1}=1800 \mathrm{lb} / \mathrm{ft}^{2}$ and $T_{1}=500^{\circ} \mathrm{R}$, respectively. At a second point, the temperature is $400{ }^{\circ} \mathrm{R}$. Calculate the pressure and density at this second point.

Solution:

For isentropic process, we have

$$
\frac{p_{2}}{p_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma}=\left(\frac{T_{2}}{T_{1}}\right)^{\gamma /(\gamma-1)}
$$

Thus

$$
\begin{gathered}
p_{2}=p_{1}\left(\frac{T_{2}}{T_{1}}\right)^{\gamma /(\gamma-1)}=824.30 \mathrm{lb} / \mathrm{ft}^{2} \\
\rho_{2}=\frac{p_{2}}{R T_{2}}=0.6179 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

1.6 Consider a room that is 20 ft long, 15 ft wide, and 8 ft high. For standard sea level conditions, calculate the mass of air in the room in slugs. Calculate the weight in pounds. (Note: If you do not know what standard sea level conditions are, consult any aerodynamics text, such as Refs. 1 and 104, for these values. Also, they can be obtained from any standard atmosphere table.)

Solution:
$V=20 \times 15 \times 8=2400 f^{3}$
$\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}=2.4 \times 10^{-3}$ slug $/ \mathrm{ft}^{3}$ for standard sea level condition.
Thus $m=\rho V=5.76$ slug $=5.76 \times 14.5935 / 0.454 l b=185.15 l b$.
1.7 In the infinitesimal neighborhood surrounding a point in an inviscid flow, the small change in pressure, $d p$, that corresponds to a small change in velocity, $d V$, is given by the differential relation $d p=-\rho V d V$. (This equation is called Euler's Equation; it is derived in Chap. 6.) a. Using this relation, derive a differential relation for the fractional change in density, $d \rho / \rho$, as a function of the fractional change in velocity, $d V / V$, with the compressibility τ as a coefficient.
b. The velocity at a point in an isentropic flow of air is $10 \mathrm{~m} / \mathrm{s}$ (a low speed flow), and the density and pressure are $1.23 \mathrm{~kg} / \mathrm{m}^{3}$ and $1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, respectively (corresponding to standard sea level conditions). The fractional change in velocity at the point is 0.01 . Calculate the fractional change in density.
c. Repeat part (b), except for a local velocity at the point of $1000 \mathrm{~m} / \mathrm{s}$ (a high-speed flow). Compare this result with that from part (b), and comment on the differences.

Solution:
(a)

$$
\begin{equation*}
\tau=1 \frac{1}{V} \frac{d V}{d p} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\frac{1}{\rho} \Rightarrow d V=\frac{1}{\rho^{2}} d \rho \tag{2}
\end{equation*}
$$

Substitute equation (2) into equation (1), we have

$$
\begin{equation*}
\tau=\frac{1}{\rho^{2} V} \frac{d \rho}{d p} \tag{3}
\end{equation*}
$$

. Substitute the Euler's equation into equation (3), we have

$$
\begin{equation*}
\tau=-\frac{1}{\rho} \frac{d \rho}{\rho V d V} \Rightarrow \frac{d \rho}{\rho}=-\tau \rho V^{2} \frac{d V}{V} \tag{4}
\end{equation*}
$$

(b). For isentropic flow, we have

$$
\begin{gather*}
\frac{p}{\rho^{\gamma}}=c \Rightarrow p=c \rho^{\gamma} \Rightarrow d p=\gamma c \rho^{\gamma-1} d \rho=\gamma c \frac{\rho^{\gamma}}{\rho}=\gamma \frac{p}{\rho} d \rho \Rightarrow \frac{d p}{d \rho}=\gamma \frac{p}{\rho} \tag{5}\\
\tau=\frac{1}{\rho} \frac{d p}{d \rho}=\frac{1}{\gamma p} \tag{6}
\end{gather*}
$$

Substitute equation (6) into equation (4), we have

$$
\begin{equation*}
\frac{d \rho}{\rho}=-\frac{1}{\gamma p} \rho V^{2} \frac{d V}{V} \tag{7}
\end{equation*}
$$

For $\mathrm{V}=10 \mathrm{~m} / \mathrm{s}, \mathrm{p}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}, \gamma=1.4$ and $\frac{d V}{V}=0.01$, we have $\frac{d \rho}{\rho}=-8.99 \times 10^{-6}$.
(c) For $\mathrm{V}=1000 \mathrm{~m} / \mathrm{s}$, we have $\frac{d \rho}{\rho}=-8.99 \times 10^{-2}$

It can be seen that the larger the velocity, the larger the relative change in density.

