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2022 年 1 月 21 日

Relation between the units:

1 ft=0.3048m
1lb=0.454 kg

1lb/ft2=47.89N/m2=47.89 Pa
1oR=5/9K

4.1 Consider an oblique shock wave with wave angle equal to 35o. Upstream of the wave p1 = 2000lb/ft2,
T1 = 520oR, and V1 = 3355ft/s. Calculate p2, T2, V2, and the flow deflection angle.

Solution:
The Mach number in front of the oblique shock is

M1 =
V1

a1
=

V1√
γRT1

= 3.0

For M1=3.0 and β = 35o, from the θ−β−M1 relation, we know the flow deflection angle θ = 18o(β = 35.47o).
For Mn1 = M1 sinβ = 1.72.
From the normal shock relation

M2
n2 =

2 +M2
n1(γ − 1)

2γM2
n1 − (γ − 1)

we have Mn2=0.6355 and p2/p1 = 3.285 and T2/T1 = 1.473.
Thus

M2 =
Mn2

sin(β − θ)
=

0.6355

sin(35o − 18o)
= 2.17

p2 = 3.285p1 = 3.285× 2000× 47.89Pa = 3.15× 105Pa

T2 = 1.473T1 = 1.473× 520× 5

9
= 425.5K

V2 = M2 × a2 = M2 ×
√
γRT2 = 897.3m/s

.

4.2 Consider a wedge with a half angle of 10o flying at Mach 2. Calculate the ratio of total pressure across
the shock wave emanating from the leading edge of the wedge.
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Solution:
The total pressure across the oblique shock is determined by the Mach numbers in front and behind the shock.
From θ − β −M1 relation, we have β=39.32o for M = 2 and θ = 10o. Mn1 = M1 sinβ = 1.267.
From the normal shock relation, we have Mn2 = 0.8071 (for Mn1 = 1.26). Thus M2 = Mn2/ sin(β − θ) = 1.65.

p02
p01

=
p02
p2

p2
p1

p1
p01

= (1 +
γ − 1

2
M2

2 )
γ/(γ−1)(1 +

2γ

γ + 1
(M2

n1 − 1))(1 +
γ − 1

2
M2

1 )
−γ/(γ−1) = 0.9864

4.3 Calculate the maximum surface pressure (in units of Newton per square meter) that can be achieved
on the forward face of a wedge flying at Mach 3 at standard sea level conditions (p1 = 1.01× 105 N/m2) with
an attached shock wave.

Solution:
From the θ−β−M1 relation, it can be seen that for a given Mach number, there is a maximum wave deflection
angle β beyond which the shock will be detached.
The larger the wave deflection angle β, the larger the pressure behind the oblique shock.
For M = 3, the maximum wave angle is β = 65.24o and p2/p1 = 8.492. The half angle of the wedge is then
θ = 34.07o.
Thus the maximum pressure is p2 = 8.492× p1 = 8.492 atm.

4.4 In the flow past a compression corner, the upstream Mach number and pressure are 3.5 and 1 atm,
respectively. Downstream of the corner, the pressure is 5.48 atm. Calculate the deflection angle of the corner.

Solution:
The pressure ratio across the oblique shock wave is p2/p1 = 5.48. From the normal shock relation, we know
Mn1 = M1 sinβ = 2.2.
Thus sinβ = Mn1/M1 = 2.2/2.5 = 0.88 ⇒ β = 38.95o.
From θ − β −M1 relation, we know θ = 23.63o.

4.5 Consider a 20o half angle wedge in a supersonic flow at Mach 3 at standard sea level (p1 = 2116lb/ft2 =

1atm and T1 = 519oR = 288K). Calculate the wave angle, and the surface pressure, temperature, and Mach
number.

Solution:
From the θ − β −M1 relation for M1 = 3 and θ = 20o, we know the wave angle β = 37.76o and M2 = 1.994.
Thus Mn1 = M1 sinβ = 1.84.
From normal shock relation, we know T2/T1 = 1.562 and p2/p1 = 3.783 ⇒ p2 = 3.783 atm and T2 = 449.9K

4.6 A supersonic stream at M1 = 3.6 flows past a compression comer with a deflection angle of 20o. The
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incident shock wave is reflected from an opposite wall which is parallel to the upstream supersonic flow, as
sketched in Fig. 4.18. Calculate the angle of the reflected shock relative to the straight wall.

Solution:
From the θ− β −M1 relation, we know the wave angle for M1= 3.6 and θ = 20o is β = 34.11o and M2 = 2.40.
For the reflected wave with compression angle of θ and M2 = 2.40, we know the angle between the reflected
wave and the incident wave is β2 = 44.34o.
Thus the angle between the reflected wave and the straight wall is β2 − θ = 24.32o.

4.7 An incident shock wave with wave angle= 30o impinges on a straight wall. If the upstream properties
are M1 = 2.8, p1 = 1 atm, and T1 = 300 K, calculate the pressure, temperature, Mach number, and total
pressure downstream of the reflected wave.

Solution:
Mn1 = M1 sinβ1 = 2.8× sin 30o = 1.4.

M2
n2 =

2 +M2
n1(γ − 1)

2γM2
n1 − (γ − 1)

= 0.5472 ⇒ Mn2 = 0.74

M2 =
Mn2

sin(β1 − θ1)
=

0.74

sin 18o
= 2.4

From the θ − β −M1 relation, we know
θ1 = 12o

; From the normal shock relation, we know

p2/p1 = 2.12, T2/T1 = 1.255, and p02/p01 = 0.9582

Now calculate the flow properties of the reflected wave:
The incoming flow condition of the reflected wave is M2 = 2.4 and θ2 = 12o.
From the θ − β −M1 relation, we know

β2 = 35.01o

Thus M
′

2n = M2 sinβ2 = 2.4× sin 35.01o = 1.38.
From normal shock relation, we have Mn3 = 0.75 ⇒ M3 = Mn3/ sin(β2 − θ2) = 0.72/ sin(23o) = 1.92,

p3/p2 = 2.055, T3/T2 = 1.242, p03/p02 = 0.9630

p3 =
p3
p2

p2
p1

p1 = 2.055× 2.12× 1 = 4.36atm

T3 =
T3

T2

T2

T1

T1 = 1.242× 1.255× 300 = 467.6K

p03 =
p03
p02

p02
p01

p01 = 0.9630× 0.9582× 27.14 = 25.04atm (p01 = 27.14p = 27.14atm).
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4.8 Consider a streamline with the properties M1 = 4.0 and p1 = 1 atm.Consider also the following two
different shock structures encountered by such a streamline: (a) a single normal shock wave; and (b) an oblique
shock wave with β = 40o, followed by a normal shock. Calculate and compare the total pressure behind the
shock structure of each (a) and (b) above. From this comparison, can you deduce a general principal concerning
the efficiency of a single normal shock in relation to an oblique shock plus normal shock in decelerating a
supersonic flow to subsonic speeds (which, for example, is the purpose of an inlet of a convectional jet engine).

Solution:
(a) For a single normal shock with M=4.0, the total pressure before the normal shock is p01 = 151.8p1 =

151.8atm

The total pressure ratio is p02/p01 = 0.1388 ⇒ p02 = 0.1388× p01 = 21.07atm

(b) For a oblique shock followed by a normal shock:
First consider the oblique shock with β = 40o.
From θ−β−M1 relation, we know θ = 26o(β = 39.74o). Mn1 = M1 sinβ = 4× sin 40o = 2.5712. From normal
shock relation with M = 2.57, we know p02/p01 = 0.4793 and Mn2 = 0.5064.
Thus M2 = Mn2/ sin(β − θ) = 0.5064/ sin(40o − 26o) = 2.093.

For a normal shock with M=2.093, we know p03/p02 = 0.6742(M = 2.1).
Thus

p03
p01

=
p03
p02

p02
p01

= 0.6742× 0.4793 = 0.3231 ⇒ p03 = 0.3132× 151.8 = 49.07atm

It is seen that the total pressure in method in (b) is 2.33 times larger than that in method (a), suggesting that
method (b) is more efficient in keeping the total pressure. As it is always desire to keep the total pressure loss
small, method (b) should be used in actual jet engine.

4.9 Consider the intersection of two shocks of opposite families, as sketched in Fig. 4.23. For M1 = 3,
p1 = 1atm, θ2 = 20o, and θ3 = 15o, calculate the pressure in region 4 and 4

′ , and the flow direction Φ behind
the refracted shocks.

Solution:

4.10 Consider the flow past a 30o expansion corner, as sketched in Fig. 4.32.The upstream conditions are
M1 = 2, p1 = 3 atm, and T1 = 400 K, calculate the following downstream conditions: M2, p2, T2, T02, and p02.

Solution:

ν(M2) = ν(M1) + θ2 = ν(2) + 30o = 26.38o + 30o = 56.38o ⇒ M2 = 3.35(ν(3.35) = 56.07)

p2 =
p2
p02

p01
p1

p1 = 1/61.52× 7.824× 3 = 0.38atm

T2 =
T2

T02

T01

T1

p1 = 1/3.244× 1.8× 400 = 221.9K
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T02 = 3.244T2 = 719.8K p02 = 61.52p2 = 23.37atm

4.11 For a given Prandtl-Meyer expansion, the upstream Mach number is 3 and the pressure ratio across
the wave is p2/p1 = 0.4. Calculate the angle of the forward and the rearward Mach lines of the expansion fan
relative to the free stream direction.

Solution:
The Mach angle is given by µ = arcsin 1

M
.

For the forward Mach wave with M=3, the Mach angle is µ1 = arcsin(1/3) = 19.47o.
For M=3, p01/p1 = 36.73.

p2/p1 = p2/p02 × p01/p1 ⇒ p02/p2 = 36.73/0.4 = 91.825 ⇒ M2 = 3.63 ⇒ µ2 = arcsin(1/3.63) = 15.99o

4.12 Consider a supersonic flow with upstream Mach number of 4 and pressure of 1 atm. This flow is first
expanded around an expansion corner with θ = 15o, and then compressed through a compression corner with
equal angle θ = 15o, so that it is returned to its original upstream direction. Calculate the Mach number and
pressure downstream of the compression corner.

Solution:
Consider the expansion wave first.

ν(M2) = ν(M1) + θ = 65.78o + 15o = 80.78o ⇒ M2 = 5.4(ν(5.4) = 80.43o)

p2
p1

=
p2
p02

p02
p01

p01
p1

= 1/833.5× 1× 151.8 = 0.1821

Now consider the oblique shock with a compression angle θ = 15o.
From θ − β −M1 relation, we know for M2 = 5.4 and θ = 15o, the wave deflection angle is β = 23.5o.
Mn2 = M2 sinβ = 2.15. From the normal shock relation with Mn2 = 2.15, we know

Mn3 = 0.5540 ⇒ M3 = Mn3/ sin(β − θ2) = 0.5540/ sin(23.5o − 15o) = 3.748

p3/p2 = 5.226

Thus the pressure downstream of the compression corner is

p3 =
p3
p2

p2
p1

p1 = 5.266× 0.1821× 1 = 0.96atm

4.13 Consider the incident and reflected shock waves as sketched in Fig. 4.17. Show by means of sketches
how you will use shock polars to solve for the reflected wave properties.
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Solution:
激波极线表示的激波反射如下图所示

图中 λx = Vx

a∗ 且 λy = Vy

a∗ 。箭头 1 的位置代表是来流速度大小。箭头 2 的位置代表经过气流折角为 θ 的斜激

波以后的流动速度大小和方向。箭头 3 代表经过反射的斜激波以后的气流速度大小和相对于来流的气流方向。

4.14 Consider a supersonic flow past a compression corner with θ = 20o. The upstream properties are
M1 = 3 and p1 = 2116lb/ft2. A Pitot tube is inserted in the flow downstream of the corner. Calculate the
value of pressure measured by the Pitot tube.

Solution:
A normal shock forms in front of the Pitot tube if the downstream Mach number is larger than 1. The pressure
measured by the Pitot tube is the total pressure behind the normal shock.
First consider the flow properties behind the oblique shock:
From θ − β −M1 relation, we know β = 37.76o for M1 = 3.Thus Mn1 = M1 sinβ = 1.84.
From normal shock relation, we know

M2
n2 =

2 +M2
n1(γ − 1)

2γM2
n1 − (γ − 1)

⇒ Mn2 = 0.6078 ⇒ M2 =
Mn2

sin(β − θ)
= 2.0 andp02/p01 = 0.7948

Now consider the normal shock in front of the Pitot tube with M=2.0:
The total pressure upstream and downstream of the normal shock is p03/p02 = 0.7209. Thus the pressure
measure by the Pitot tube p03 is

p03 =
p03
p02

p02
p01

p01
p1

p1 = 0.7209× 0.7948× 36.73 = 21.04atm.

4.20 The flow of a chemically reacting gas is sometimes approximated by the use of relations obtained
assuming a calorically perfect gas, such as in this chapter, but using an “effective gamma,”a ratio of specific
heats less than 1.4.

Consider the Mach 3 flow of chemically reacting air, where the flow is approximated by a ratio of specific
heats equal to 1.2. If this gas flows over a compression corner with a deflection angle of 20 degrees, calculate
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the wave angle of the oblique shock. Compare this result with that for ordinary air with a ratio of specific
heats equal to 1.4. What conclusion can you make about the general effect of a chemically reacting gas on
wave angle?

Solution:
The θ − β −M1 relation reads:

tan θ = 2 cotβ[ M2
1 sin2 β − 1

M2
1 (γ + cos(2β)) + 2

] (1)

Substitute M1 = 3, θ = 20o and γ = 1.2 into equation (1), we have β = 35.57o.
For M1 = 3, θ = 20o and γ = 1.4, we have β = 37.67o.
Comparing the two cases, it is seen that chemically reacting gas with smaller γ reduces the wave deflection
angle.

4.21For the two cases treated in Problem 4.20, calculate and compare the pressure ratio (shock strength)
across the oblique shock wave. What can you conclude about the effect of a chemically reacting gas on shock
strength?

Solution:

Mn1 = M1 sinβ

p2
p1

= 1 +
2γ

γ + 1
(M2

n1 − 1)

For γ = 1.2 and β = 35.57 p2/p1 = 3.59

For γ = 1.4 and β = 37.76 p2/p1 = 3.77

It is seen that chemically reacting gas reduces the shock strength.
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