Problems of Chapter 1

September 29, 2023

Relation between the units:

$$
1 \mathrm{ft}=0.3048 \mathrm{~m} ; 1 \mathrm{lb}=0.454 \mathrm{~kg} ; 1 \mathrm{lb} / \mathrm{ft}^{2}=47.89 \mathrm{~N} / \mathrm{m}^{2}=47.89 \mathrm{~Pa} ; 1^{\circ} \mathrm{R}=5 / 9 \mathrm{~K}
$$

Read carefully chapter 1 , especially Ch 1.3 and 1.4 . You will found the questions are rather easy to solve :).
Deadline: September 22nd, 2023
1.1 At the nose of a missile in flight, the pressure and temperature are 5.6 atm and $850^{\circ} \mathrm{R}$, respectively. Calculate the density and specific volume. (Note: $1 \mathrm{~atm}=2116 \mathrm{lb} / \mathrm{ft}^{2}$.)
1.2 In the reservoir of a supersonic wind tunnel, the pressure and temperature of air are 10 atm and 320 K , respectively. Calculate the density, the number density, and the mole-mass ratio. (Note: $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.)
1.3 For a calorically perfect gas, derive the relation $c_{p}-c_{v}=R$. Repeat the derivation for a thermally perfect gas.
1.4 The pressure and temperature ratios across a given portion of a shock wave in air are $p_{2} / p_{1}=4.5$ and $T_{2} / T_{1}=$ 1.687, where 1 and 2 denote conditions ahead of and behind the shock wave, respectively. Calculate the change in entropy in units of (a) ($\mathrm{ft} \cdot \mathrm{lb}$) $/\left(\right.$ slug. ${ }^{\circ} \mathrm{R}$) and (b) $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
1.5 Assume that the flow of air through a given duct is isentropic. At one point in the duct, the pressure and temperature are $p_{1}=1800 \mathrm{lb} / \mathrm{ft}^{2}$ and $T_{1}=500^{\circ} \mathrm{R}$, respectively. At a second point, the temperature is $400{ }^{\circ} \mathrm{R}$. Calculate the pressure and density at this second point.
1.6 Consider a room that is 20 ft long, 15 ft wide, and 8 ft high. For standard sea level conditions, calculate the mass of air in the room in slugs. Calculate the weight in pounds. (Note: If you do not know what standard sea level conditions are, consult any aerodynamics text, such as Refs. 1 and 104, for these values. Also, they can be obtained from any standard atmosphere table.)
1.7 In the infinitesimal neighborhood surrounding a point in an inviscid flow, the small change in pressure, $d p$, that corresponds to a small change in velocity, $d V$, is given by the differential relation $d p=-\rho V d V$. (This equation is called Euler's Equation; it is derived in Chap. 6.) a. Using this relation, derive a differential relation for the fractional change in density, $d \rho / \rho$, as a function of the fractional change in velocity, $d V / V$, with the compressibility τ as a coefficient.
b. The velocity at a point in an isentropic flow of air is $10 \mathrm{~m} / \mathrm{s}$ (a low speed flow), and the density and pressure are $1.23 \mathrm{~kg} / \mathrm{m}^{3}$ and $1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, respectively (corresponding to standard sea level conditions). The fractional change in velocity at the point is 0.01 . Calculate the fractional change in density.
c. Repeat part (b), except for a local velocity at the point of $1000 \mathrm{~m} / \mathrm{s}$ (a high-speed flow). Compare this result with that from part (b), and comment on the differences.

