Solution to problems of Chapter 5

Yi-Chao XIE

November 1, 2023
5.1 A supersonic wind tunnel is designed to produce flow in the test section at Mach 2.4 at standard atmospheric conditions. Calculate:
(a). The exit-to-throat area ratio of the nozzle.
(b). Reservoir pressure and temperature.

Solution:
(a) The flow is isentropic. From the area-Mach number relation:

$$
\begin{equation*}
\left(\frac{A}{A^{*}}\right)^{2}=\frac{1}{M^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2} M^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}} \tag{1}
\end{equation*}
$$

Substitute $M=2.4$ and $\gamma=1.4$ into equation (1), we have the exit to throat ratio

$$
\frac{A e}{A_{t}}=\frac{A_{e}}{A^{*}}=2.403
$$

(b) The pressure and temperature at the exit is $p=1 \mathrm{~atm}$ and $T=288 \mathrm{~K}$ (Standard sea level condition). From the isentropic relation, we have

$$
\begin{equation*}
\frac{T_{0}}{T}=1+\frac{\gamma-1}{2} M^{2} \quad \text { and } \quad \frac{p_{0}}{p}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}} \tag{2}
\end{equation*}
$$

Substitute $p=1 \mathrm{~atm}, T=288 \mathrm{~K}$ and $M=2.4$ into equation (2), we have

$$
p_{0}=14.62 a t m \quad \text { and } \quad T_{0}=619.8 K
$$

The reservoir pressure is 14.62 atm and its temperature is 619.8 K .
5.2 The reservoir pressure of a supersonic wind tunnel is 10 atm . A Pitot tube inserted in the test section measures a pressure of 0.627 atm . Calculate the test section Mach number and area ratio.
Solution:
The pressure measured by the Pitot tube is the total pressure behind the normal shock in front of it, i.e., $p_{02}=0.627$ atm . The total pressure in front of the normal shock is the reservoir pressure, i.e., $p_{01}=10 \mathrm{~atm}$. Thus

$$
\frac{p_{02}}{p_{01}}=\frac{0.627}{10}=0.0627
$$

From table A_{2}, when $p_{02} / p_{01}=0.0627$, we have $M=5$. For $M=5, A_{e} / A_{t}=25$.
5.3 The reservoir pressure of a supersonic wind tunnel is 5 atm . A static pressure probe is moved along the centreline of the nozzle, taking measurements at various stations. For these probe measurements, calculate the local Mach number and area ratio:
(a). 4.00 atm .
(b). 2.64 atm .
(c). 0.50 atm .

Solution:

The process is isentropic. Thus the relation between the static pressure and Mach number is

$$
\begin{equation*}
\frac{p_{0}}{p}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\gamma /(\gamma-1)} \tag{1}
\end{equation*}
$$

The relation between the Area ratio and the Mach number is

$$
\begin{equation*}
\left(\frac{A}{A^{*}}\right)^{2}=\frac{1}{M^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}\right) M^{2}\right]^{(\gamma+1) /(\gamma-1)} \tag{2}
\end{equation*}
$$

For the three cases we have
(a) $p_{0} / p=5 / 4$, substitute p_{0} / p and $\gamma=1.4$ into equation (1), hence $M=0.574$;

Substitute $M=0.574$ into equation (2), hence $A / A^{*}=1.221$
(b) $p_{0} / p=5 / 2.64=1.984$, substitute p_{0} / p and $\gamma=1.4$ into equation (1), hence $M=1$;

Substitute $M=1$ into equation (2), hence $A / A^{*}=1$
(c) $p_{0} / p=5 / 0.5=10$, substitute p_{0} / p and $\gamma=1.4$ into equation (1), hence $M=2.157$;

Substitute $M=2.157$ into equation (2), hence $A / A^{*}=1.930$
5.4 Consider the purely subsonic flow in a convergent-divergent duct. The inlet, throat, and exit area are $1.00 \mathrm{~m}^{2}$, $0.70 \mathrm{~m}^{2}$, and $0.85 \mathrm{~m}^{2}$, respectively. If the inlet Mach number and pressure are 0.3 and $0.8 \times 10^{5} \mathrm{~N} / \mathrm{M}^{2}$, respectively, calculate:
(a). M and p at the throat.
(b). M and p at the exit.

Solution:

The flow is isentropic process. Thus

$$
\begin{equation*}
\left(\frac{A}{A^{*}}\right)^{2}=\frac{1}{M^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}\right) M^{2}\right]^{(\gamma+1) /(\gamma-1)} \tag{1}
\end{equation*}
$$

For $M=0.3$ and $A_{e}=1 \mathrm{~m}^{2}$, we have $A_{e} / A^{*}=2.035 \Rightarrow A^{*}=A_{e} / 2.035=0.491 \mathrm{~m}^{2}$.
The pressure at the inlet is the total pressure, i.e., $p_{0} / p_{2}=\left(1+\frac{(\gamma-1) M^{2}}{2}\right)^{\gamma /(\gamma-1)}$.
Substitute $M=0.3$ and $p_{e}=0.8 \times 10^{5} \mathrm{~Pa}$ into the above equation, we have $p_{0}=8.52 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$.
(a) At the throat, $A_{t} / A^{*}=0.7 / 0.491=1.453$.

Substitute $A_{t} / A^{*}=1.453$ into equation (1), we have $M=0.46$ and $p_{0} / p_{t}=1.156$.
Thus, $p_{t}=8.52 \times 10^{4} / 1.156=7.37 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$.
(b) At the exit, $A_{e} / A^{*}=0.85 / 0.491=1.731$.

Substitute $A_{e} / A^{*}=1.731$ into equation (1), we have $M=0.36$ and $p_{0} / p_{e}=1.094$.
Thus, $p_{t}=8.52 \times 10^{4} / 1.094=7.79 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$.
5.5. Consider the subsonic flow through a divergent duct with area ratio $A_{2} / A_{1}=1.7$. If the inlet conditions are $T_{1}=300 \mathrm{~K}$ and $u_{1}=250 \mathrm{~m} / \mathrm{s}$, and the pressure at the exit is $p_{2}=1 \mathrm{~atm}$, calculate:
(a). Inlet pressure p_{1}.
(b). Exit velocity u_{2}.

Solution:

The Mach number at the inlet is

$$
M_{1}=\frac{u_{1}}{\sqrt{\gamma R T_{1}}}=\frac{250}{\sqrt{1.4 \times 287 \times 300}}=0.73
$$

For $\mathrm{M}=0.73, A_{1} / A_{*}=1.075, T_{0} / T_{1}=1.107$ and $p_{0} / p_{1}=1.426$,
thus

$$
\frac{A_{2}}{A^{*}}=\frac{A_{2}}{A_{1}} \frac{A_{1}}{A^{*}}=1.7 \times 1.075=1.828
$$

Thus $M_{2}=0.34, T_{0} / T_{2}=1.023$ and $p_{0} / p_{2}=1.083$.

$$
\begin{gathered}
\frac{T_{2}}{T_{1}}=\frac{T_{2}}{T_{0}} \frac{T_{0}}{T_{1}}=\frac{1}{1.023} \times 1.107=1.082 \Rightarrow T_{2}=1.082 \mathrm{~T} 1=324.63 \mathrm{~K} \\
u_{2}=M_{2} \times a_{2}=M_{2} \times \sqrt{\gamma R T_{2}}=0.34 \times \sqrt{1.4 \times 287 \times 324.63}=122.74 \mathrm{~m} / \mathrm{s} \\
\frac{p_{2}}{p_{1}}=\frac{p_{2}}{p_{0}} \frac{p_{0}}{p_{1}}=1 / 1.083 \times 1.426=1.314 \Rightarrow p_{1}=\frac{p_{2}}{1.314}=0.761 \mathrm{~atm}
\end{gathered}
$$

5.6 The mass flow of a calorically perfect gas through a choked nozzle is given by

$$
\dot{m}=\frac{p_{0} A^{*}}{\sqrt{T_{0}}} \sqrt{\frac{\gamma}{R}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}
$$

Derive this relation.
Solution:
The mass flow can be calculated at the throat, i.e., $\dot{m}=\rho^{*} u^{*} A^{*}$ and $M^{*}=1$. From the isentropic relation with $M=1$, we have

$$
\begin{gathered}
\frac{\rho_{0}}{\rho^{*}}=\left(1+\frac{\gamma-1}{2}\right)^{\frac{1}{\gamma-1}} \Rightarrow \rho^{*}=\frac{\rho_{0}}{((\gamma+1) / 2)^{1 /(\gamma-1)}} \\
\frac{T_{0}}{T *}=1+\frac{\gamma-1}{2}=\frac{\gamma+1}{2} \\
u^{*}=a^{*}=\sqrt{\gamma R T^{*}}
\end{gathered}
$$

Consider the equation of state for idea gas, we have $p_{0}=\rho_{0} R T_{0}$. Combining the above three equations together with the equation of state, we have

$$
\dot{m}=\frac{p_{0} A^{*}}{\sqrt{T_{0}}} \sqrt{\frac{\gamma}{R}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}
$$

5.7 When the reservoir pressure and temperature of a supersonic wind tunnel are 15 atm and 750 K , respectively, the mass flow is $1.5 \mathrm{~kg} / \mathrm{s}$. If the reservoir conditions are changed to $p_{0}=20 \mathrm{~atm}$ and $T_{0}=600 \mathrm{~K}$, calculate the mass flow.

Solution: From problem 5.6, we can write $\dot{m}=c \frac{p_{0}}{\sqrt{T_{0}}}$ with c being a constant for a given tunnel. Let $\dot{m_{1}}$ be the mass flow for $p_{01}=15 \mathrm{~atm}$ and $T_{01}=750 \mathrm{~K}$ and \dot{m}_{2} be the mass flow for $p_{02}=20 \mathrm{~atm}$ and $T_{02}=600 \mathrm{~K}$. Hence,

$$
\frac{\dot{m_{2}}}{\dot{m_{1}}}=\frac{p_{02}}{p_{01}} \sqrt{\frac{T_{01}}{T_{02}}}=\frac{20}{15} \times \sqrt{\frac{750}{600}}=1.49 \Rightarrow \dot{m_{2}}=\dot{m_{1}} \times 1.49=2.24 \mathrm{~kg} / \mathrm{s}
$$

5.8 A blunt-nosed aerodynamic model is mounted in the test section of a supersonic wind tunnel. If the tunnel reservoir pressure and temperature are 10 atm and $800^{\circ} \mathrm{R}$, respectively, and the exit-to-throat area ratio is 25 , calculate the pressure and temperature at the nose of the model.

Solution:
For supersonic flow, there will be a normal shock wave in front of the blunt nosed model. Thus, the pressure and temperature at the nose of the model is the total pressure and temperature after a normal shock wave, i.e., T_{02} and p_{02}.

For $A_{e} / A_{t}=25$, we can calculate from the area-Mach-number relation that $M_{e}=5$. From the normal shock relation, we know the Mach number behind the wave is $M_{2}=0.4152$. Thus

$$
\begin{gathered}
\frac{p_{02}}{p_{01}}=\frac{p_{02}}{p_{2}} \frac{p_{2}}{p_{1}} \frac{p_{1}}{p_{01}}=0.06172 \Rightarrow p_{02}=0.6172 \mathrm{~atm} \\
\frac{T_{02}}{T_{01}}=\frac{T_{02}}{T_{2}} \frac{T_{2}}{T_{1}} \frac{T_{1}}{T_{01}}=1.035 \times 5.8 \times \frac{1}{6}=1.005 \Rightarrow T_{02}=1.005 T_{01}=446.6 \mathrm{~K}
\end{gathered}
$$

5.10 Consider a supersonic nozzle with a Pitot tube mounted at the exit. The reservoir pressure and temperature are 10 atm and 500 K , respectively. The pressure measured by the Pitot tube is 0.6172 atm . The throat area is $0.3 \mathrm{~m}^{2}$. Calculate:
(a). Exit Mach number M_{e}.
(b). Exit area A_{e}.
(c). Exit pressure and temperature p_{e} and T_{e}.
(d). Mass flow through the nozzle.

Solution:
(a) The pressure measured by the Pitot tube is the total pressure behind a normal shock wave in front of it. Thus we have $p_{02} / p_{2}=0.6172 / 10=0.06172$.
Substitute this value into the Rayleigh-Pitot relation, we have the Mach number at the exit $M_{e}=5$.
(b) Substitute $M_{e}=5$ into the area-Mach-number relation, we have $A_{e} / A^{*}=A_{e} / A_{t}=25$.

Thus $A_{e}=25 \times A_{t}=0.3 \times 25=7.5 \mathrm{~m}^{2}$.
(c) The process is isentropic. For $M_{e}=5$, we have $p_{0} / p_{e}=529.1 \Rightarrow p_{e}=0.0189 \mathrm{~atm}$ and $T_{0} / T_{e}=6 \Rightarrow T_{e}=83.33 \mathrm{~K}$.
(d) The mass flow through the nozzle can be calculated at the exit, i.e.,

$$
\dot{m}=\rho_{e} u_{e} A_{e}=\frac{p_{e}}{R T_{e}} M_{e} \sqrt{\gamma R T_{e}} A_{e}=0.0054 \mathrm{~kg} / \mathrm{s}
$$

5.14 In a supersonic nozzle flow, the exit-to-throat area ratio is $10, p_{0}=10.00 \mathrm{~atm}$, and the back pressure $p_{B}=0.04 \mathrm{~atm}$. Calculate the angle θ through which the flow is deflected immediately after leaving the edge (or lip) of the nozzle exit.
Solution:
From the area-Mach-number relation with $A_{e} / A_{t}=A_{e} / A^{*}=10$, we know the Mach number at the exit is $M_{e}=3.95$ and $p_{0} / p_{e}=142$.
Thus $p_{e}=p_{0} / 142=0.0704 \mathrm{~atm}$.
As $p_{e}>p_{B}$ there must be an expansion wave such that the pressure behind the expansion wave matches the back pressure.
The Mach number in front of the expansion wave is $M_{1}=M_{e}=3.95$.
The pressure ratio across the expansion wave is $p_{0} / p_{B}=250$.
Thus the Mach number behind the expansion wave is $M=4.4$
The deflection angle of the expansion wave is then $\theta=\nu\left(M_{2}\right)-\nu\left(M_{1}\right)=70.71^{\circ}-65.12^{\circ}=5.59^{\circ}$
Here $\nu(M)$ is the Prandtl-Mayer function.
5.17 We wish to design a Mach 3 supersonic wind tunnel, with a static pressure and temperature in the test section of 0.1 atm and $400^{\circ} \mathrm{R}$, respectively. Calculate:
(a). The exit-to-throat area ratio of the nozzle.
(b). The ratio of diffuser throat area to nozzle throat area.
(c). Reservoir pressure.
(d). Reservoir temperature.

Solution:
(a) From the area-Mach-number relation with $M_{e}=3$, we know $A_{e} / A_{t}=A_{e} / A^{*}=4.235$.
(b) There must exist a normal shock before the diffuser throat. The Mach number behind the normal shock with $M_{e}=3$ is $M_{2}=0.4752$ It can be proved that

$$
A_{t 2} / A_{t 1}=p_{01} / p_{02}=\frac{p_{01}}{p_{1}} \frac{p_{1}}{p_{2}} \frac{p_{2}}{p_{02}}=3.056
$$

(c) For $M_{e}=3, p_{0} / p_{e}=36.73 \Rightarrow p_{0}=36.73 p_{e}=3.673 \mathrm{~atm}$.
(d) For $M_{e}=3, T_{0} / T_{e}=2.8 \Rightarrow T_{0}=2.8 T_{e}=621.6 \mathrm{~K}$.

