§3.8 Fanno Flow

(One dimensional adiabatic flow with friction)
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This note derives the governing equations for one dimensional flow with friction from the
wall, also known as the Fanno flow. The model system considered is one dimensional flow
(constant area flow) with friction from the wall modeled as a wall shear stress 7,,. The length
of the flow is L. Note the flow is still inviscid flow although this seems not correct in the

first sense, but it helps understanding the physics behind.
§3.7.1 The integral forms of the governing equations

Consider adiabatic flow in a pipe. The wall friction is modeled as a stress exerted 7, (in
units of N/m?) on the fluid from the wall. For high enough Reynolds number (true for
the case of compressible flow), the boundary layers close to the wall occupies a very small
fraction of the volume. We can thus ignore the boundary layers and assume that the flow is

one dimensional constant area flow with area A = ”TDQ. Here D is the diameter of the pipe.

Figure 1 shows the Moody plot. It is seen that the friction factor c¢; = fplz
2
the Reynolds number Re. For the case of compressible flow, say M > 0.3 and D = 10cm,
the corresponding Reynolds number is Re = 6.37 x 10°. Re = 2.1 x 10° for M = 1. Please

also note that roughness plays a key role.
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Moody Diagram
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Figure 1. Moody graph showing the friction coefficient as a function of the Reynolds
number Re and roughness height h.

1. The continuity equation:
prug = Pty (1)

2. The momentum equation for steady, adiabatic flow with friction from the wall:

//s(pV dS)u = — //S(pdS)x - //S(deS) (2)

L
—prur Aug + paugAug = prA — pa A — / wDT1,dx (3)
0

Divide both sides of equation (3) with A, we have

4 L
P2 —p1+ pzug — pw? = —5/ TwdX (4)
0



3. The energy equation:
2 2

h1+%=h2+%:>T01:T02 (5)

§3.7.2 The differential forms of the governing equations
To understand how friction changes the flow properties, let’s derive differential equations

that govern the flow property change.

1. The density change:

2. The temperature change:

Recalling the definition of total temperature for adiabatic flow, we have Ty = T+ % =
D

const.. Differential this equation with respect to T', we have

AT + Ldu = 0 (7)
Cp
dT du
— = —(y=-1M*=
=~y - )M ®)
3. The pressure change:
From EOS we have p = pRT, thus
d d dTr
dp = RpdT + RTdp = L =% = 9)
p p T

Plugin the relation for C—i)e (equation 6) and 4= (equation 8), we have



dp du
— =l — M?)— 1
2= [+ (- DM (10)
4. The entropy change:
dr d
ds = Cv? — R?p (1].)

Substitute 4- (equation 8) abd % (equation 6) into the above equation, we have

ds = R(1 — M2)d—“ (12)

u

5. The total pressure change:

Recalling that the entropy change ds = ¢, In ‘%0 - R%. For adiabatic flow dTy = 0,

thus ds = —R%. Then we have
dpg ds du
Iyt Sty &

6. The Mach number change: From the definition of Mach number, we know M = # =

—\/w%' Differentiate this equation w.r.t. v and 7', we have

du 1 _dT dM du 1dT
AM = M=r = oMo = e =~ 57 (14)

dM du 1
o = I —(y=1)M?
v -, -1

L S S VL (15)

u 2 U

7. The total temperature is conserved, thus Ty, = Tos.

The flow property changes has been written in terms of %. But it is not straight forward to

know how %“ changes with friction. On the other hand, as the viscous stress from the wall



is a dissipative process, the entropy of the system must increase when the flow passes pipes

with friction, i.e., ds must be positive in this case. To Illustrate how the flow properties

change with friction, let’s now recast equations (6,8,10,12 and 13) in terms of ds. This can

be done with ease. They are listed in the following.

(1) Velocity change:

du _ ! ds
u  R(1— M2
(2) Density change:
dp 1
— = ds

(3) Temperature change:

ar
— =—(y-1)M? d
7 = - DM gy
(4) Pressure change:
dp 5 1
(5) Total pressure change:
dpo _ds
Po R
(6) Mach number change:
M 2 R(1 — M?)

(18)

(19)

(21)

Now let’s analyze how friction affect the flow properties. Note the influence for subsonic flow

and supersonic flow are different.

ds T

M <1 P \l/ap \L?S TaM T7 Po \1/7 u T? T ¢7 TO = const.

M>1 pT>pT78T>M~L>pOi/7U\L>TTT0:CO7/L81€-

Table 1. Flow property change with friction action.



Now let’s discuss the flow property change on the Fanno curve, i.e. T — s curve. From
equation (17), we can get
ar T M? T

%Z_W—l)WRu—M?) T T1-Mze, (22)

For a given inlet condition in region 1, it corresponds to a point in the Fanno curve. Then
the other points on the Fanno curve are collection of all possible states starting from region
1 with different length of the flow. For M > 1, the Fanno curve has a positive slope. For

M < 1, the Fanno curve has a negative slope. In addition, % — Foo when M — 1.
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Figure 2. Fanno curve for one dimensional flow with friction.

Now let’s discuss the flow properties on the Fanno curve, i.e, in the T-s curve. Several key

points should be mentioned:

(1) There are two branches, one for subsonic flow, one for the super sonic flow.

(2) Friction increases the entropy of the flow. Thus it drives the flow towards the sonic
condition, i.e., increase the Mach number for a subsonic flow and decrease the Mach

number for a supersonic flow.



(3) It is not possible to achieve supersonic flow by friction.

(4) When the sonic condition is reached, the flow is said to be chocked, the corresponding
pipe length is denoted as L*. When L > Lx, for subsonic flow, the wave propagates
upstream to change the inlet conditions, reducing the mass flow rate and lower the inlet
Mach number to accommodates the length. The new Mach number is determined when
L* = L. For supersonic flow, there will be a normal shock wave stand in the pipe. The

location of the normal shock wave needs to be determined interactively.
Viscous chocking is very important in the design of pipe flows as it may reduce the total
pressure and also the mass flow rate.
Example questions. See textbook Examples 3.15 (p.110), 3.16 (p.110).

§3.8.3 Integral form of flow property change with friction

1. The Mach number relation

From equation (4), for a small dz, we have

4
d(p + pu*) = —Edeiﬂ (23)

Introducing the friction factor f = 7,,/(1/2pu?) into the above equation, one obtains

d(p + pu®) = —%qu%fdw — %fdw = —2d(p + pu®)/(pu?) (24)

Recalling d(p + pu®) = dp + pudu + ud(pu) and d(pu) = 0, equation (24) becomes

4 9 dp du
Efdx = —2(dp + pudu)/(pu”) = _Z(ﬁ + "

) (25)

From EOS, we know p = p/(RT). Substitute this into equation (25), one obtains

4 T
A pgy = (BT du

1 dp du

P yu? u M2 p

) (26)

Substitute equation (10) into the above equation, we have

1 du  du. 2(1— M?)du

7M2[1+(7—1)M2]};+;)=W7 (27)

4

7



% into the above equation, we have

Substitute equation (15) for %

4 1 — M? 1 dM?
— fdx = ( ) —
VMQ (1 + ’YTMZ) M2

This equation related the Mach number change over a distance dzx.

Integrating over L between xq(M;) and zo(Ms), we have

/302 Afdr _ 2 I 7+1ln( M2 o
. D TM2 2y 14 M
2. The total temperature relation

To1 = To2

3. The static temperature relation

T, BT 1+%5M 2+ (y-1)M}

Ti T 1+%IM2 2+ (y- 1)M3

4. The pressure relation

From the continuity equation p;u; = pous and definition of speed of sound a? =

we have
YP1u1  YP2U2
2 2
ay 5

med Moy My Ty

P2 _ _
My T,

= - =
P1 Uz ay Mj aq

Substitute equation (31) into the above equation, we have

(28)

(30)

(31)

P
P’

(32)

(33)



p2 _ M 2+ (v - 1)M12]1/2

= =L 34
1 My 24 (y—1)M3 (34

5. The density relation

p2_pTh M 2+(’7_1)M12]—1/2

= = == 35
pp ;T My 2+ (y—1)M3 (35)

6. The total pressure relation

Poz _ Po2 P2 D1 [2 + (v — 1)M22]7/(771)%[2 + (v - 1)M12]1/2 _ %[2 +(y=1M;
— = >

Po1 P2 P1Po1 2+ (y—1)M?

So how to solve a problem practically?

Given conditions in region 1, i.e., My, D and f, M, can be obtained using equation (29).
Then using equations (31,34,35,36) other flow properties can be calculated. However it is

alway difficult to calculate M, from equation (29).

A more practical way is to use a reference state as we did for Rayleigh flow. Let us choose a
reference state with M=1 and solve the other state parameters with reference to this M=1

state. Let My =1 in equations 29,31, and 34-36, which corresponds to L = L*, we have:

T v+1
T 2+ (y—1)M? (37)
P 1 v+1
r_ 2 38
P M2+ (y—1)M?2 (38)
1 1
T o e e I (39)

o Aﬂz+w—1mﬂ

](’Y+1)/[2(’Y*1)]



1D Flow with Friction
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Figure 3. Change of flow properties w.r.t. the sonic reference state as a function of the

Mach number.

2
po_ 12+ (y-1M J+1)/ 20

ppb Mo y+l
L 4fde 1 v+ 1 M? .
D = [_ M2 _ 9 1I1< ~y—1 2)]M
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Here f = ﬁfOL* fdx and % = 4%1 - 4%5

Equation 37-42 are plotted as a function of M in figure 3.

Example problems: see P115 example 3.17 and 3.18 from the textbook.
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