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This note derives the governing equations for one dimensional flow with friction from the
wall, also known as the Fanno flow. The model system considered is one dimensional flow
(constant area flow) with friction from the wall modeled as a wall shear stress τw. The length
of the flow is L. Note the flow is still inviscid flow although this seems not correct in the
first sense, but it helps understanding the physics behind.

§3.7.1 The integral forms of the governing equations

Consider adiabatic flow in a pipe. The wall friction is modeled as a stress exerted τw (in
units of N/m2) on the fluid from the wall. For high enough Reynolds number (true for
the case of compressible flow), the boundary layers close to the wall occupies a very small
fraction of the volume. We can thus ignore the boundary layers and assume that the flow is
one dimensional constant area flow with area A = πD2

4
. Here D is the diameter of the pipe.

Figure 1 shows the Moody plot. It is seen that the friction factor cf = τw
1
2
ρu2 changes with

the Reynolds number Re. For the case of compressible flow, say M > 0.3 and D = 10cm,
the corresponding Reynolds number is Re = 6.37 × 105. Re = 2.1× 106 for M = 1. Please
also note that roughness plays a key role.
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Figure 1. Moody graph showing the friction coefficient as a function of the Reynolds
number Re and roughness height h.

1. The continuity equation:

ρ1u1 = ρ2u2 (1)

2. The momentum equation for steady, adiabatic flow with friction from the wall:∫∫
s

(ρV⃗ · dS⃗)u = −
∫∫

S

(pdS)x−
∫∫

S

(τwdS) (2)

−ρ1u1Au1 + ρ2u2Au2 = p1A− p2A−
∫ L

0

πDτwdx (3)

Divide both sides of equation (3) with A, we have

p2 − p1 + ρ2u
2
2 − ρ1u

2
1 = − 4

D

∫ L

0

τwdx (4)
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3. The energy equation:
h1 +

u2
1

2
= h2 +

u2
2

2
⇒ T01 = T02 (5)

§3.7.2 The differential forms of the governing equations

To understand how friction changes the flow properties, let’s derive differential equations
that govern the flow property change.

1. The density change:

dρ

ρ
= −du

u
(6)

2. The temperature change:

Recalling the definition of total temperature for adiabatic flow, we have T0 = T + u2

2cp
=

const.. Differential this equation with respect to T , we have

dT +
u

cp
du = 0 (7)

dT

T
= −(γ − 1)M2du

u
(8)

3. The pressure change:

From EOS we have p = ρRT , thus

dp = RρdT +RTdρ ⇒ dp

p
=

dρ

ρ
+

dT

T
(9)

Plugin the relation for dρ
ρ

(equation 6) and dT
T

(equation 8), we have
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dp

p
= −[1 + (γ − 1)M2]

du

u
(10)

4. The entropy change:
ds = cv

dT

T
−R

dρ

ρ
(11)

Substitute dT
T

(equation 8) abd dρ
ρ

(equation 6) into the above equation, we have

ds = R(1−M2)
du

u
(12)

5. The total pressure change:

Recalling that the entropy change ds = cp ln dT0

T0
− Rdp0

p0
. For adiabatic flow dT0 = 0,

thus ds = −Rdp0
p0

. Then we have

dp0
p0

= −ds

R
= −(1−M2)

du

u
(13)

6. The Mach number change: From the definition of Mach number, we know M = u
a
=

u√
γRT

. Differentiate this equation w.r.t. u and T , we have

dM = M
du

u
− 1

2
M

dT

T
⇒ dM

M
=

du

u
− 1

2

dT

T
(14)

dM

M
=

du

u
− 1

2
[−(γ − 1)M2du

u
] = (1 +

γ − 1

2
M2)

du

u
(15)

7. The total temperature is conserved, thus T01 = T02.

The flow property changes has been written in terms of du
u

. But it is not straight forward to
know how du

u
changes with friction. On the other hand, as the viscous stress from the wall
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is a dissipative process, the entropy of the system must increase when the flow passes pipes
with friction, i.e., ds must be positive in this case. To Illustrate how the flow properties
change with friction, let’s now recast equations (6,8,10,12 and 13) in terms of ds. This can
be done with ease. They are listed in the following.

(1) Velocity change:
du

u
=

1

R(1−M2)
ds (16)

(2) Density change:
dρ

ρ
= − 1

R(1−M2)
ds (17)

(3) Temperature change:
dT

T
= −(γ − 1)M2 1

R(1−M2)
ds (18)

(4) Pressure change:
dp

p
= −[1 + (γ − 1)M2]

1

R(1−M2)
ds (19)

(5) Total pressure change:
dp0
p0

= −ds

R
(20)

(6) Mach number change:

dM

M
= [1 +

(γ − 1)

2
M2]

1

R(1−M2)
ds (21)

Now let’s analyze how friction affect the flow properties. Note the influence for subsonic flow
and supersonic flow are different.

ds ↑
M < 1 ρ ↓,p ↓,s ↑,M ↑, p0 ↓, u ↑, T ↓, T0 = const.
M > 1 ρ ↑,p ↑,s ↑, M ↓, p0 ↓, u ↓, T ↑ T0 = const.

Table 1. Flow property change with friction action.

5



Now let’s discuss the flow property change on the Fanno curve, i.e. T − s curve. From
equation (17), we can get

dT

ds
= −(γ − 1)M2 T

R(1−M2)
= − M2

1−M2

T

cv
(22)

For a given inlet condition in region 1, it corresponds to a point in the Fanno curve. Then
the other points on the Fanno curve are collection of all possible states starting from region
1 with different length of the flow. For M > 1, the Fanno curve has a positive slope. For
M < 1, the Fanno curve has a negative slope. In addition, dT

ds
→ ∓∞ when M → 1.

Figure 2. Fanno curve for one dimensional flow with friction.

Now let’s discuss the flow properties on the Fanno curve, i.e, in the T-s curve. Several key
points should be mentioned:

(1) There are two branches, one for subsonic flow, one for the super sonic flow.

(2) Friction increases the entropy of the flow. Thus it drives the flow towards the sonic
condition, i.e., increase the Mach number for a subsonic flow and decrease the Mach
number for a supersonic flow.
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(3) It is not possible to achieve supersonic flow by friction.

(4) When the sonic condition is reached, the flow is said to be chocked, the corresponding
pipe length is denoted as L∗. When L > L∗, for subsonic flow, the wave propagates
upstream to change the inlet conditions, reducing the mass flow rate and lower the inlet
Mach number to accommodates the length. The new Mach number is determined when
L∗ = L. For supersonic flow, there will be a normal shock wave stand in the pipe. The
location of the normal shock wave needs to be determined interactively.

Viscous chocking is very important in the design of pipe flows as it may reduce the total
pressure and also the mass flow rate.

Example questions. See textbook Examples 3.15 (p.110), 3.16 (p.110).

§3.8.3 Integral form of flow property change with friction

1. The Mach number relation

From equation (4), for a small dx, we have

d(p+ ρu2) = − 4

D
τwdx (23)

Introducing the friction factor f = τw/(1/2ρu
2) into the above equation, one obtains

d(p+ ρu2) = −1

2
ρu2 4

D
fdx =⇒ 4

D
fdx = −2d(p+ ρu2)/(ρu2) (24)

Recalling d(p+ ρu2) = dp+ ρudu+ ud(ρu) and d(ρu) = 0, equation (24) becomes

4

D
fdx = −2(dp+ ρudu)/(ρu2) = −2(

dp

ρu2
+

du

u
) (25)

From EOS, we know ρ = p/(RT ). Substitute this into equation (25), one obtains

4

D
fdx = −2(

dp

p

γRT

γu2
+

du

u
) = −2(

1

γM2

dp

p
+

du

u
) (26)

Substitute equation (10) into the above equation, we have

4

D
fdx = −2{− 1

γM2
[1 + (γ − 1)M2]}du

u
+

du

u
) =

2(1−M2)

γM2

du

u
(27)
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Substitute equation (15) for du
u

into the above equation, we have

4

D
fdx =

(1−M2)

γM2

1

(1 + γ−1
2
M2)

dM2

M2
(28)

This equation related the Mach number change over a distance dx.

Integrating over L between x1(M1) and x2(M2), we have

∫ x2

x1

4fdx

D
= [− 1

γM2
− γ + 1

2γ
ln( M2

1 + γ−1
2
M2

)]M2
M1

(29)

2. The total temperature relation

T01 = T02 (30)

3. The static temperature relation

T2

T1

=
T2

T0

T0

T1

=
1 + γ−1

2
M2

1

1 + γ−1
2
M2

2

=
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

(31)

4. The pressure relation

From the continuity equation ρ1u1 = ρ2u2 and definition of speed of sound a2 = γp
ρ

,
we have

γp1u1

a21
=

γp2u2

a22
(32)

p2
p1

=
u1

u2

a22
a21

=
M1

M2

a2
a1

=
M1

M2

(
T2

T1

)1/2 (33)

Substitute equation (31) into the above equation, we have
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p2
p1

=
M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]1/2 (34)

5. The density relation

ρ2
ρ1

=
p2
p1

T1

T2

=
M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]−1/2 (35)

6. The total pressure relation

p02
p01

=
p02
p2

p2
p1

p1
p01

= [
2 + (γ − 1)M2

2

2 + (γ − 1)M2
1

]γ/(γ−1)M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]1/2 =
M1

M2

[
2 + (γ − 1)M2

2

2 + (γ − 1)M2
1

](γ+1)/[2(γ−1)]

(36)

So how to solve a problem practically?

Given conditions in region 1, i.e., M1, D and f , M2 can be obtained using equation (29).
Then using equations (31,34,35,36) other flow properties can be calculated. However it is
alway difficult to calculate M2 from equation (29).

A more practical way is to use a reference state as we did for Rayleigh flow. Let us choose a
reference state with M=1 and solve the other state parameters with reference to this M=1
state. Let M2 = 1 in equations 29,31, and 34-36, which corresponds to L = L∗, we have:

T

T ∗ =
γ + 1

2 + (γ − 1)M2
(37)

p

p∗
=

1

M

γ + 1

2 + (γ − 1)M2
(38)

ρ

ρ∗
=

1

M
[

γ + 1

2 + (γ − 1)M2
]−1/2 (39)
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Figure 3. Change of flow properties w.r.t. the sonic reference state as a function of the
Mach number.

p0
p∗0

=
1

M
[
2 + (γ − 1)M2

γ + 1
](γ+1)/[2(γ−1)] (40)

∫ L∗

0

4fdx

D
= [− 1

γM2
− γ + 1

2γ
ln( M2

1 + γ−1
2
M2

)]1M (41)

4f̄L∗

D
=

1−M2

γM2
+

γ + 1

2γ
ln( (γ + 1)M2

2 + (γ − 1)M2
) (42)

Here f̄ = 1
L∗

∫ L∗

0
fdx and 4f̄L

D
=

4f̄L∗
1

D
− 4f̄L∗

2

D

Equation 37-42 are plotted as a function of M in figure 3.

Example problems: see P115 example 3.17 and 3.18 from the textbook.
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