Numerical Methods and Machine Learning for Image Processing

Week 5, Class 2: Classification and Regression 2
October 26, 2021

Damon M. Chandler and Yi Zhang

Last time: Classification and Regression, Part 2a

Support vector classification (SVC)

1. Motivation and basic idea
2. SVC on created data
3. SVC on banknote data

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification

- PCA—Principal Components Analysis
- SVC on MINST database

2. Homework 2

- Classification into three levels of importance
- Use features that you measure via code

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification

- PCA—Principal Components Analysis
- SVC on MINST database

2. Homework 2

- Classification into three levels of importance
- Use features that you measure via code

Example: Jointly Gaussian Source (2×1 images)

Suppose we wanted to reduce this 2D data down to 1D.

X1 and X2 both are important, so it's not good to discard one of them.

Can we choose two new basis vectors, such that it's OK to use only one of the basis vectors?

Yes! This is a procedure called Principal Component Analysis.

Example: Jointly Gaussian Source (2×1 images)

- 2×1 blocks are realizations of a two-dimensional random vector $\mathbf{X}=\left[X_{1}, X_{2}\right]^{T}$
- Pixels X_{1} and X_{2} are identically distributed and jointly Gaussian (assume zero-mean) with autocorrelation matrix:

$$
\mathbf{R}_{\mathbf{X}}=E\left\{\mathbf{X X}^{T}\right\}=\left[\begin{array}{cc}
1 & 0.9 \\
0.9 & 1
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{R}_{\mathbf{x}} & =E\left\{\mathbf{X X}^{T}\right\}=E\left\{\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]\right\}=E\left\{\left[\begin{array}{ll}
X_{1} X_{1} & X_{1} X_{2} \\
X_{2} X_{1} & X_{2} X_{2}
\end{array}\right]\right\} \\
& =\left[\begin{array}{ll}
E\left\{X_{1} X_{1}\right\} & E\left\{X_{1} X_{2}\right\} \\
E\left\{X_{2} X_{1}\right\} & E\left\{X_{2} X_{2}\right\}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{var}\left(X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & \operatorname{var}\left(X_{2}\right)
\end{array}\right]
\end{aligned}
$$

Example: Jointly Gaussian Source (2×1 images)

- We seek an orthogonal transform, A, that can remove the correlation

$$
\mathbf{C}=\mathbf{A X}=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

Example: Jointly Gaussian Source (2×1 images)

C_{2} (coefficient 2)

Example: Jointly Gaussian Source (2×1 images)

Example: Jointly Gaussian Source (2×1 images)

- We seek an orthogonal transform, A, that can remove the correlation

$$
\begin{aligned}
& \mathbf{C}=\mathbf{A X}=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos \left(45^{\circ}\right) & \sin \left(45^{\circ}\right) \\
-\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right)
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
&=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
& {\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
X_{1}+X_{2} \\
X_{2}-X_{1}
\end{array}\right] }
\end{aligned}
$$

Example: Jointly Gaussian Source (2×1 images)

- What have we achieved?
- The rotation does not remove any of the variability
- It packs the variability into C_{1} ("energy compaction")
- Now, if C_{2} is lost or quantized away, most of the signal energy is still preserved
- C_{1} and C_{2} are now independent Gaussian variables, so scalar quantization and $1^{\text {st-order entropy coding are good! }}$
- We have a name for this transform...

$$
\mathbf{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \quad\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
X_{1}+X_{2} \\
X_{2}-X_{1}
\end{array}\right]
$$

How to find the transform matrix A?

- Let \mathbf{X} be a zero-mean random vector with autocorrelation matrix $\mathbf{R}_{\mathbf{X}}$
- Our goal is to find a matrix \mathbf{A} such that the components of $\mathbf{C}=\mathbf{A X}$ will be uncorrelated
- Uncorrelated \rightarrow autocorrelation matrix of \mathbf{C} is diagonal
- The autocorrelation matrix of \mathbf{C} is

$$
\begin{aligned}
\mathbf{R}_{\mathbf{C}} & =E\left\{\mathbf{C C}^{T}\right\}=E\left\{(\mathbf{A} \mathbf{X})(\mathbf{A X})^{T}\right\} \\
& =E\left\{\mathbf{A} \mathbf{X} \mathbf{X}^{T} \mathbf{A}^{T}\right\}=\mathbf{A} E\left\{\mathbf{X} \mathbf{X}^{T}\right\} \mathbf{A}^{T} \\
& =\mathbf{A} \mathbf{R}_{\mathbf{X}} \mathbf{A}^{T} \quad \text { Goal is to find } \mathbf{A} \text { such that } \mathbf{R}_{\mathbf{C}} \text { is diagonal }
\end{aligned}
$$

How to find the transform matrix \mathbf{A} ?

- $\mathbf{R}_{\mathbf{C}}=\mathbf{A} \mathbf{R}_{\mathbf{x}} \mathbf{A}^{T}$
- Note that $\mathbf{R}_{\mathbf{X}}=E\left\{\mathbf{X} \mathbf{X}^{T}\right\}$ is a positive semi-definite matrix

How to find the transform matrix \mathbf{A} ?

- $\mathbf{R}_{\mathbf{C}}=\mathbf{A} \mathbf{R}_{\mathbf{X}} \mathbf{A}^{T}$
- Note that $\mathbf{R}_{\mathbf{X}}=E\left\{\mathbf{X X}^{T}\right\}$ is a positive semi-definite matrix

Recall: A matrix \mathbf{M} is positive semi-definite if it can be written as the product of another matrix times its transpose:

$$
\mathbf{M}=\mathbf{Q} \mathbf{Q}^{\top}
$$

How to find the transform matrix \mathbf{A} ?

- $\mathbf{R}_{\mathbf{C}}=\mathbf{A} \mathbf{R}_{\mathbf{X}} \mathbf{A}^{T}$
- Note that $\mathbf{R}_{\mathbf{X}}=E\left\{\mathbf{X} \mathbf{X}^{T}\right\}$ is a positive semi-definite matrix
- Two important properties of a positive semi-definite matrix:

1. Its eigenvalues are always ≥ 0
2. Its eigenvectors are orthogonal (for different eigenvalues)

- These properties make finding A straightforward:
\mathbf{A} is the matrix whose rows are the eigenvectors of $\mathbf{R}_{\mathbf{X}}$
Take-home PCA will compute A for us. And, in Python, the scikit-learn PCA class to also apply \mathbf{A} to compute the transformed data for us.
If you need to compute PCA manually, you would: (1) compute R_{X}, then (2) compute the eigenvectors of R_{X}, and (3) create A by making these eigenvectors the rows of A.

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification

- PCA—Principal Components Analysis
- SVC on MINST database

2. Homework 2

- Classification into three levels of importance
- Use features that you measure via code

SVM classification on banknote data (2 features only)

data.head()

X = np.array(data.iloc[:, 1:])
$y=n p \cdot \operatorname{array}(d a t a \cdot i l o c[:, 0])$
5 rows $\times 785$ columns

X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.5, random_state=42)
print("Training set size (length, dims):", X_trn.shape)
print("Testing set size (length, dims):", X_tst.shape)

Training set size (length, dims): $(21000,784)$
Testing set size (length, dims): (21000, 784)

SVM classification on banknote data (2 features only)

```
#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn, y_trn)
y_trn_prd = model.predict(X_trn)
print('Training accuracy:
    accuracy_score(y_true=y_trn, y_pred=y_trn_prd))
y_tst_prd = model.predict(X_tst)
print('Testing accuracy:
    accuracy_score(y_true=y_tst, y_pred=y_tst_prd))
#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Training accuracy: 1.0 \\
Testing accuracy: 0.9762857142857143
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Classification Report precision recall f1-score support} \\
\hline 0 & 0.98 & 0.99 & 0.99 & 2052 \\
\hline 1 & 0.99 & 0.99 & 0.99 & 2330 \\
\hline 2 & 0.98 & 0.97 & 0.97 & 2096 \\
\hline 3 & 0.98 & 0.96 & 0.97 & 2222 \\
\hline 4 & 0.97 & 0.98 & 0.98 & 2053 \\
\hline 5 & 0.97 & 0.97 & 0.97 & 1833 \\
\hline 6 & 0.98 & 0.98 & 0.98 & 2079 \\
\hline 7 & 0.98 & 0.97 & 0.98 & 2191 \\
\hline 8 & 0.97 & 0.98 & 0.98 & 2062 \\
\hline 9 & 0.97 & 0.96 & 0.97 & 2082 \\
\hline accuracy & & & 0.98 & 21000 \\
\hline macro avg & 0.98 & 0.98 & 0.98 & 21000 \\
\hline weighted avg & 0.98 & 0.98 & 0.98 & 21000 \\
\hline
\end{tabular}
```

$\mathrm{cm}=$ confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',
cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

-	2035	0	5	4	5	4	15	2	2	7
-	0	2305	6	4	2	1	1	6	8	4
~	3	8	2035	14	4	2	3	12	3	2
	1	2	7	2138	0	20	0	1	8	15
	1	2	12	0	2007	3	5	10	8	13
	2	1	0	22	1	1777	6	1	8	5
	7	2	7	1	6	14	2044	0	4	0
\wedge	0	6	12	10	1	0	0	2136	2	20
∞	1	2	10	19	0	5	5	4	2016	7
の	2	2	2	10	27	7	0	19	3	2009
	0	1	2	3	$\begin{gathered} 4 \\ \text { GT } \end{gathered}$	$\begin{gathered} 5 \\ \text { abel } \end{gathered}$	6			9

SVM classification on banknote data (2 features only)

```
#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA
pca = PCA(n_components=150,
    svd_solver='randomized', whiten=True)
ca.fit(X_trn)
```

Reduce to 150 features only (150 principal components)

Training accuracy: 1.0
Testing accuracy: 0.9675714285714285
Classification Report

	precision	recall	f1-score	support
0	0.98	0.99	0.98	2052
1	0.99	0.99	0.99	2330
2	0.95	0.97	0.96	2096
3	0.96	0.95	0.95	2222
4	0.97	0.96	0.97	2053
5	0.96	0.95	0.95	1833
6	0.98	0.98	0.98	2079
7	0.98	0.96	0.97	2191
8	0.95	0.97	0.96	2062
9	0.96	0.96	0.96	2082
			0.97	21000
accuracy			0.97	0.97
macro avg	0.97	0.97000		
weighted avg	0.97	0.97	0.97	21000

Similar results with a lot fewer features needed!
\#\%\% PRINT THE CLASSIFICATION RESULTS SUMMARIES print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))
cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',
cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

SVM classification on banknote data (2 features only)

```
#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA
pca = PCA(n_components=15,
    svd solver='randomized',
        whiten=True)
```

Reduce to $\mathbf{1 5}$ features only (15 principal components)

Training accuracy: 0.9998095238095238 Testing accuracy: 0.9563333333333334

Classificati	n Report precision	recall	f1-score	support
0	0.98	0.99	0.98	2052
1	0.98	0.99	0.98	2330
2	0.95	0.96	0.96	2096
3	0.94	0.95	0.94	2222
4	0.96	0.94	0.95	2053
5	0.95	0.94	0.94	1833
6	0.97	0.98	0.98	2079
7	0.96	0.96	0.96	2191
8	0.95	0.94	0.94	2062
9	0.92	0.92	0.92	2082
accuracy			0.96	21000
macro avg	0.96	0.96	0.96	21000
weighted avg	0.96	0.96	0.96	21000

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',
cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Nearly similar results with only 15 features needed!

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification

- PCA—Principal Components Analysis
- SVC on MINST database

2. Homework 2

- Classification into three levels of importance
- Use features that you measure via code

Assignment 2: Object Importance Classification

- Importance maps signify how visually important various object are in a photo.
- An example importance map is shown below (rightmost image).
- An importance map contains three levels (classes): 0=unimportant, 1=somewhat important, 2=important
- Your goal: Create a classification system to classify the importance of each region based on various features.

Original image

Segmentation map

Importance map

Assignment 2: Object Importance Classification

Specific steps (review the lecture video from 10/26 for a demo):

1. Read the paper: A Bayesian approach to predicting the perceived interest of objects.
2. Download the importance map database.
3. Download the starter code.
4. Modify the starter code to measure more features that can help predict importance. You should measure at least the features mentioned in the paper, plus at least one unique feature of your own.
5. Use your features with various standard classifiers (Bayes, Decision Tree, SVM, etc.) to perform the classification.

Original image

Segmentation map

Importance map

