Numerical Methods and Machine Learning for Image Processing

Week 5, Class 2: Classification and Regression 2 October 26, 2021

Damon M. Chandler and Yi Zhang

Last time: Classification and Regression, Part 2a

Support vector classification (SVC)

- 1. Motivation and basic idea
- 2. SVC on created data
- 3. SVC on banknote data

Today: Classification and Regression, Part 2b

- 1. Dimensionality reduction and SVC image classification
 - PCA—Principal Components Analysis
 - SVC on MINST database
- 2. Homework 2
 - Classification into three levels of importance
 - Use features that you measure via code

Today: Classification and Regression, Part 2b

- 1. Dimensionality reduction and SVC image classification
 - PCA—Principal Components Analysis
 - SVC on MINST database
- 2. Homework 2
 - Classification into three levels of importance
 - Use features that you measure via code

Suppose we wanted to reduce this 2D data down to 1D.

X1 and X2 both are important, so it's not good to discard one of them.

Can we choose **two new basis vectors**, such that it's OK to use only one of the basis vectors?

Yes! This is a procedure called *Principal Component Analysis*.

- 2x1 blocks are realizations of a two-dimensional random vector $\mathbf{X} = [X_1, X_2]^T$
- Pixels X_1 and X_2 are identically distributed and jointly Gaussian (assume zero-mean) with autocorrelation matrix: $\mathbf{R}_{\mathbf{X}} = E\{\mathbf{X}\mathbf{X}^T\} = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}$

$$\mathbf{R}_{\mathbf{X}} = E\{\mathbf{X}\mathbf{X}^{T}\} = E\{\begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \begin{bmatrix} X_{1} & X_{2} \end{bmatrix}\} = E\{\begin{bmatrix} X_{1}X_{1} & X_{1}X_{2} \\ X_{2}X_{1} & X_{2}X_{2} \end{bmatrix}\}$$
$$= \begin{bmatrix} E\{X_{1}X_{1}\} & E\{X_{1}X_{2}\} \\ E\{X_{2}X_{1}\} & E\{X_{2}X_{2}\} \end{bmatrix} = \begin{bmatrix} \operatorname{var}(X_{1}) & \operatorname{cov}(X_{1}, X_{2}) \\ \operatorname{cov}(X_{1}, X_{2}) & \operatorname{var}(X_{2}) \end{bmatrix}$$

• We seek an **orthogonal transform**, **A**, that can remove the correlation

$$\mathbf{C} = \mathbf{A}\mathbf{X} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

• We seek an orthogonal transform, **A**, that can remove the correlation

$$\mathbf{C} = \mathbf{A}\mathbf{X} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(45^\circ) & \sin(45^\circ) \\ -\sin(45^\circ) & \cos(45^\circ) \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} X_1 + X_2 \\ X_2 - X_1 \end{bmatrix}$$

- What have we achieved?
 - The rotation does not remove any of the variability
 - It packs the variability into C_1 ("energy compaction")
 - Now, if C_2 is lost or quantized away, most of the signal energy is still preserved
 - C_1 and C_2 are now **independent** Gaussian variables, so scalar quantization and 1st-order entropy coding are good!
- We have a name for this transform...

$$\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} X_1 + X_2 \\ X_2 - X_1 \end{bmatrix}$$

For 2D jointly Gaussian data, PCA results in the DCT/Haar DWT/KLT—all the same for 2x1

- Let ${\bf X}$ be a zero-mean random vector with autocorrelation matrix ${\bf R}_{{\bf X}}$
- Our goal is to find a matrix A such that the components of $\mathbf{C} = \mathbf{A}\mathbf{X}$ will be uncorrelated
- Uncorrelated \rightarrow autocorrelation matrix of C is diagonal
- The autocorrelation matrix of C is

 $\mathbf{R}_{\mathbf{C}} = E\left\{\mathbf{C}\mathbf{C}^{T}\right\} = E\left\{(\mathbf{A}\mathbf{X})(\mathbf{A}\mathbf{X})^{T}\right\}$ $= E\left\{\mathbf{A}\mathbf{X}\mathbf{X}^{T}\mathbf{A}^{T}\right\} = \mathbf{A}E\left\{\mathbf{X}\mathbf{X}^{T}\right\}\mathbf{A}^{T}$

 $= \mathbf{A}\mathbf{R}_{\mathbf{X}}\mathbf{A}^{T}$ Goal is to find **A** such that $\mathbf{R}_{\mathbf{C}}$ is diagonal

- $\mathbf{R}_{\mathbf{C}} = \mathbf{A}\mathbf{R}_{\mathbf{X}}\mathbf{A}^T$
- Note that $\mathbf{R}_{\mathbf{X}} = E\{\mathbf{X}\mathbf{X}^T\}$ is a positive semi-definite matrix

- $\mathbf{R}_{\mathbf{C}} = \mathbf{A}\mathbf{R}_{\mathbf{X}}\mathbf{A}^T$
- Note that $\mathbf{R}_{\mathbf{X}} = E\{\mathbf{X}\mathbf{X}^T\}$ is a positive semi-definite matrix

<u>Recall</u>: A matrix **M** is positive semi-definite if it can be written as the product of another matrix times its transpose: $\mathbf{M} = \mathbf{Q}\mathbf{Q}^{T}$

- $\mathbf{R}_{\mathbf{C}} = \mathbf{A}\mathbf{R}_{\mathbf{X}}\mathbf{A}^{T}$
- Note that $\mathbf{R}_{\mathbf{X}} = E\{\mathbf{X}\mathbf{X}^T\}$ is a positive semi-definite matrix
- Two important properties of a positive semi-definite matrix:
 - 1. Its eigenvalues are always ≥ 0
 - 2. Its eigenvectors are orthogonal (for different eigenvalues)
- These properties make finding A straightforward:

 \mathbf{A} is the matrix whose rows are the eigenvectors of $\mathbf{R}_{\mathbf{X}}$

If you need to compute PCA manually, you would: (1) compute R_X , then (2) compute the eigenvectors of R_X , and (3) create A by making these eigenvectors the rows of A.

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification

- PCA—Principal Components Analysis
- SVC on MINST database
- 2. Homework 2
 - Classification into three levels of importance
 - Use features that you measure via code

from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns

import numpy as np import pandas as pd import matplotlib.pyplot as plt import ipcv_utils.utils as ipcv_plt

```
#%% LOAD THE DATA
data = pd.read_csv("data/minst_train.csv")
```

```
idxs = [2, 16, 7, 3, 8, 21, 29, 20, 28]
for idx in idxs:
    img = np.array(data.iloc[idx, 1:])
    ipcv_plt.imshow(img.reshape(28, 28), cmap="gray",
        vmin=0, vmax=255, zoom=5)
```

data.head()

```
X = np.array(data.iloc[:, 1:])
y = np.array(data.iloc[:, 0])
```

```
X_trn, X_tst, y_trn, y_tst = train_test_split(X, y,
test_size=0.5, random_state=42)
```

print("Training set size (length, dims):", X_trn.shape)
print("Testing set size (length, dims):", X_tst.shape)

	label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	 pixel774	pixel7
0	1	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	0	0	
3	4	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	0	

5 rows × 785 columns

Training set size (length, dims): (21000, 784) Testing set size (length, dims): (21000, 784)

#%% CREATE AND FIT THE SVC model = SVC(kernel='rbf', C=100) model.fit(X_trn, y_trn)

y_trn_prd = model.predict(X_trn)
print('Training accuracy: ',
 accuracy_score(y_true=y_trn, y_pred=y_trn_prd))

y_tst_prd = model.predict(X_tst)
print('Testing accuracy: ',
 accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

```
#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))
```

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',
 cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy: 1.0 Testing accuracy: 0.9762857142857143

Classification Report											
	pre	cision	recall	f1-score	support						
	0	0.98	0.99	0.99	2052						
	1	0.99	0.99	0.99	2330						
	2	0.98	0.97	0.97	2096						
	3	0.98	0.96	0.97	2222						
	4	0.97	0.98	0.98	2053						
	5	0.97	0.97	0.97	1833						
	6	0.98	0.98	0.98	2079						
	7	0.98	0.97	0.98	2191						
	8	0.97	0.98	0.98	2062						
	9	0.97	0.96	0.97	2082						
accur	асу			0.98	21000						
macro	avg	0.98	0.98	0.98	21000						
weighted	avg	0.98	0.98	0.98	21000						

	0	2035	0	5	4	5	4	15	2	2	7
	-	0	2305	6	4	2	1	1	6	8	4
	2	3	8	2035	14	4	2	3	12	3	2
e	б	1	2	7	2138	0	20	0	1	8	15
Predicted label	4	1	2	12	0	2007	3	5	10	8	13
edicte	2	2	1	0	22	1	1777	6	1	8	5
Pr	9	7	2	7	1	6	14	2044	0	4	0
	7	0	6	12	10	1	0	0	2136	2	20
	80	1	2	10	19	0	5	5	4	2016	7
	6	2	2	2	10	27	7	0	19	3	2009
		0	1	2	3	4 GT I	5 abel	6	7	8	9

#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA	Training accu	-				
<pre>pca = PCA(n_components=150, </pre>	Testing accur	racy: 0.96	5/5/1428	5714285		
svd_solver='randomized', whiten=True) Reduce to 150 features only	Classificatio	on Report				
pca.fit(X_trn) (150 principal components)		precision	recall	f1-score	support	
X_trn_pca = pca.transform(X_trn)	0	0.98	0.99	0.98	2052	
$X_tst_pca = pca.transform(X_tst)$	1	0.99	0.99	0.99	2330	
	2		0.97	0.96	2096	
	3	0.96	0.95	0.95	2222	
	4	0.97	0.96	0.97	2053	
#%% CREATE AND FIT THE SVC	5	0.96	0.95	0.95	1833	
<pre>model = SVC(kernel='rbf', C=100)</pre>	7	0.98 0.98	0.98 0.96	0.98 0.97	2079 2191	
<pre>model.fit(X_trn_pca, y_trn)</pre>	8	0.98	0.98	0.96	2191	
	9	0.96	0.96	0.96	2002	
<pre>y_trn_prd = model.predict(X_trn_pca)</pre>						
print('Training accuracy: ',	accuracy			0.97	21000	
<pre>accuracy_score(y_true=y_trn, y_pred=y_trn_prd))</pre>	macro avg	0.97	0.97	0.97	21000	
<pre>y_tst_prd = model.predict(X_tst_pca)</pre>	weighted avg	0.97	0.97	0.97	21000	
print('Testing accuracy: ',						
	o 2033 1	5 3 4	5 14 1	6 7	~ •	•1 1-
accuracy_score(y_true=y_tst, y_pred=y_tst_prd))	2000				Sim	nilar results
	← 0 2301	4 1 4	1 1 9	5 2		
	N 4 11	2025 32 18	5 4 24	9 3	wit	h a lot fewer
#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES						
print("")	<u> </u>	8 <mark>2100</mark> 0	31 0 5	11 22	fea	tures needed!
<pre>print("Classification Report")</pre>	1 ⁴ 1 3	15 2 1979	4 8 12	2 4 16	icu	tares necaca.
<pre>print(classification_report(y_tst, y_tst_prd))</pre>	Predicted label		700 44 0			
	2 2 5	0 36 1 1	739 11 2	9 7		
<pre>cm = confusion_matrix(y_tst, y_tst_prd)</pre>	^{- ω} 7 1	5 3 7	21 2032 0	7 0		
<pre>sns.set(font scale=0.75)</pre>		12 9 2	0 0 211	4 2 21		
<pre>sns.sec(ront_scare=0.75) sns.heatmap(cm.T, square=True, annot=True, fmt='d',</pre>	⊳ 0 6		0 0 211	4 2 21		
	∞ 2 2	19 21 6	23 9 4	2006 14		
<pre>cbar=False, linewidths=0.5) </pre>	. 2 0	3 15 32	4 0 20	3 1990		
<pre>plt.xlabel('GT label')</pre>	0, 2	10 02		1000		
<pre>plt.ylabel('Predicted label')</pre>	0 1	2 3 4	5 6 7	89		
		GT la	bel			

<pre>#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA pca = PCA(n_components=15,</pre>	Traini Testin	<u> </u>		-							
<pre>svd_solver='randomized', whiten=True) pca.fit(X_trn) Reduce to 15 features only (15 principal components)</pre>	Class	ificat		Repor recis		ı	recal	11	f1-s	core	support
X_trn_pca = pca.transform(X_trn)			0		.98		0.9			0.98	2052
X tst pca = pca.transform(X tst)			1		.98		0.9			0.98	2330
			2 3		.95		0.9 0.9			0.96 0.94	2096 2222
			5 4		.94		0.9			0.94 0.95	2053
#%% CREATE AND FIT THE SVC			5		.95		0.9			0.94	1833
<pre>model = SVC(kernel='rbf', C=100)</pre>			6	0	.97		0.9	98		0.98	2079
model.fit(X trn pca, y trn)			7		.96		0.9			0.96	2191
			8		.95		0.9			0.94	2062
<pre>y_trn_prd = model.predict(X_trn_pca)</pre>			9	0	.92		0.9	92		0.92	2082
<pre>print('Training accuracy: ',</pre>	a	ccurac	у							0.96	21000
<pre>accuracy_score(y_true=y_trn, y_pred=y_trn_prd))</pre>		cro av	-		.96		0.9			0.96	21000
<pre>y_tst_prd = model.predict(X_tst_pca)</pre>	weight	ted av	g	0	.96		0.9	96		0.96	21000
<pre>print('Testing accuracy: ',</pre>											1
<pre>accuracy_score(y_true=y_tst, y_pred=y_tst_prd))</pre>	0	2024) 10	5	8	2	9	1	1	9	Nea
		0 23	03 7	11	3	6	3	6	6	4	
#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES	5	6 9	201	8 22				15	16	5	resu
<pre>print("")</pre>	3 3	4 4	4 16	2100	2	41	1	5	45	23	15 f
<pre>print("Classification Report")</pre>	ed lat	2	3 7	0	1936	6 4	5	10	5	52	201
<pre>print(classification_report(y_tst, y_tst_prd))</pre>	Predicted label 5 4	2	1 4	29	1	1714	4 10	3	22	13	nee
<pre>cm = confusion_matrix(y_tst, y_tst_prd)</pre>	Pre 6	7 2	2 2	1	7	20	2032	2 0	11	3	
<pre>sns.set(font_scale=0.75)</pre>	2	1 5	5 18	6	4	1	0	210	6 3	52	
<pre>sns.heatmap(cm.T, square=True, annot=True, fmt='d',</pre>	ŝ	2 () 13	40	4	26	7	5	1942	2 13	
cbar=False, linewidths=0.5)											
<pre>plt.xlabel('GT label')</pre>	5	4 3	5 1	8	78	13	0	40	11	1908	
<pre>plt.ylabel('Predicted label')</pre>		0	1 2	3	4	5	6	7	8	9	
					GT	label	ł.				

Nearly similar results with only 15 features needed!

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification

- PCA—Principal Components Analysis
- SVC on MINST database
- 2. Homework 2
 - Classification into three levels of importance
 - Use features that you measure via code

Assignment 2: Object Importance Classification

- Importance maps signify how visually important various object are in a photo.
- An example importance map is shown below (rightmost image).
- An importance map contains **three levels (classes)**: 0=unimportant, 1=somewhat important, 2=important
- Your goal: Create a classification system to classify the importance of each region based on various features.

Original image

Segmentation map

Importance map

Assignment 2: Object Importance Classification

Specific steps (review the lecture video from 10/26 for a demo):

- 1. Read the paper: A Bayesian approach to predicting the perceived interest of objects.
- 2. Download the importance map database.
- 3. Download the starter code.
- 4. Modify the starter code to measure more features that can help predict importance. You should measure at least the features mentioned in the paper, plus at least one unique feature of your own.
- 5. Use your features with various standard classifiers (Bayes, Decision Tree, SVM, etc.) to perform the classification.

Original image

Segmentation map

Importance map