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Last time: Classification and Regression, Part 2a

Support vector classification (SVC)

1. Motivation and basic idea

2. SVC on created data

3. SVC on banknote data



Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code
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Example: Jointly Gaussian Source (2x1 images)

X1 (pixel 1)

X2 (pixel 2)
Suppose we wanted to 
reduce this 2D data 
down to 1D.

X1 and X2 both are 
important, so it’s not 
good to discard one of 
them.

Can we choose two new 
basis vectors, such that 
it’s OK to use only one of 
the basis vectors?

Yes! This is a procedure 
called Principal 
Component Analysis.



Example: Jointly Gaussian Source (2x1 images)

• 2x1 blocks are realizations of a two-dimensional random 
vector X = [X1, X2]

T

• Pixels X1 and X2 are identically distributed and jointly 
Gaussian (assume zero-mean) with autocorrelation 
matrix:
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• We seek an orthogonal transform, A, that can remove 
the correlation
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Example: Jointly Gaussian Source (2x1 images)
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Example: Jointly Gaussian Source (2x1 images)

X1 (pixel 1)

X2 (pixel 2)

C1 (coefficient 1)
C2 (coefficient 2)



Example: Jointly Gaussian Source (2x1 images)
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C1 (coefficient 1)

C2 (coefficient 2)



• We seek an orthogonal transform, A, that can remove 
the correlation
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Example: Jointly Gaussian Source (2x1 images)



• What have we achieved?

– The rotation does not remove any of the variability

– It packs the variability into C1 (“energy compaction”)

– Now, if C2 is lost or quantized away, most of the signal 
energy is still preserved

– C1 and C2 are now independent Gaussian variables, so 
scalar quantization and 1st-order entropy coding are good!

• We have a name for this transform...

Example: Jointly Gaussian Source (2x1 images)
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For 2D jointly Gaussian data, PCA results in the DCT/Haar DWT/KLT—all the same for 2x1



• Let X be a zero-mean random vector with 
autocorrelation matrix RX

• Our goal is to find a matrix A such that the components 
of C = AX will be uncorrelated

• Uncorrelated → autocorrelation matrix of C is diagonal

• The autocorrelation matrix of C is

How to find the transform matrix A?

    TTTT EE AXXAAAXX ==

  ( )( ) TT EE AXAXCCRC ==

T
AARX= Goal is to find A such that RC is diagonal



•

• Note that RX = E{XXT} is a positive semi-definite matrix

How to find the transform matrix A?

T
AARR XC =



•

• Note that RX = E{XXT} is a positive semi-definite matrix

How to find the transform matrix A?

T
AARR XC =

Recall: A matrix M is positive semi-definite 
if it can be written as the product of 
another matrix times its transpose:

M = QQT



•

• Note that RX = E{XXT} is a positive semi-definite matrix

• Two important properties of a positive semi-definite matrix:

1. Its eigenvalues are always ≥ 0
2. Its eigenvectors are orthogonal (for different eigenvalues)

• These properties make finding A straightforward:

How to find the transform matrix A?

T
AARR XC =

A is the matrix whose rows are the eigenvectors of RX

PCA will compute A for us.  And, in Python, the scikit-learn PCA 
class to also apply A to compute the transformed data for us.
If you need to compute PCA manually, you would: (1) compute RX, then (2) compute the 
eigenvectors of RX, and (3) create A by making these eigenvectors the rows of A.

Take-home 
message:



Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code



SVM classification on banknote data (2 features only)
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import ipcv_utils.utils as ipcv_plt

#%% LOAD THE DATA
data = pd.read_csv("data/minst_train.csv")

idxs = [2, 16, 7, 3, 8, 21, 29, 20, 28]
for idx in idxs:

img = np.array(data.iloc[idx, 1:])
ipcv_plt.imshow(img.reshape(28, 28), cmap="gray", 
vmin=0, vmax=255, zoom=5)

data.head()

X = np.array(data.iloc[:, 1:])
y = np.array(data.iloc[:, 0])

X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, 
test_size=0.5, random_state=42)

print("Training set size (length, dims):", X_trn.shape)
print("Testing set size (length, dims):", X_tst.shape)

Training set size (length, dims): (21000, 784)
Testing set size (length, dims): (21000, 784)



SVM classification on banknote data (2 features only)
#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn, y_trn)

y_trn_prd = model.predict(X_trn)
print('Training accuracy: ', 
accuracy_score(y_true=y_trn, y_pred=y_trn_prd))

y_tst_prd = model.predict(X_tst)
print('Testing accuracy: ', 

accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d', 

cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy:  1.0
Testing accuracy:  0.9762857142857143



SVM classification on banknote data (2 features only)
#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA
pca = PCA(n_components=150, 

svd_solver='randomized', whiten=True)
pca.fit(X_trn)

X_trn_pca = pca.transform(X_trn)
X_tst_pca = pca.transform(X_tst)

#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn_pca, y_trn)

y_trn_prd = model.predict(X_trn_pca)
print('Training accuracy: ', 

accuracy_score(y_true=y_trn, y_pred=y_trn_prd))
y_tst_prd = model.predict(X_tst_pca)
print('Testing accuracy: ', 

accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d', 

cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy:  1.0
Testing accuracy:  0.9675714285714285

Reduce to 150 features only 
(150 principal components)



SVM classification on banknote data (2 features only)
#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA
pca = PCA(n_components=15, 

svd_solver='randomized', whiten=True)
pca.fit(X_trn)

X_trn_pca = pca.transform(X_trn)
X_tst_pca = pca.transform(X_tst)

#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn_pca, y_trn)

y_trn_prd = model.predict(X_trn_pca)
print('Training accuracy: ', 

accuracy_score(y_true=y_trn, y_pred=y_trn_prd))
y_tst_prd = model.predict(X_tst_pca)
print('Testing accuracy: ', 

accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d', 

cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy:  0.9998095238095238
Testing accuracy:  0.9563333333333334

Reduce to 15 features only 
(15 principal components)



Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code



Assignment 2: Object Importance Classification

• Importance maps signify how visually important various object are in a photo.

• An example importance map is shown below (rightmost image).

• An importance map contains three levels (classes): 
0=unimportant, 1=somewhat important, 2=important

• Your goal: Create a classification system to classify the importance of each region 
based on various features.

Original image Segmentation map Importance map



Assignment 2: Object Importance Classification

Specific steps (review the lecture video from 10/26 for a demo):
1. Read the paper: A Bayesian approach to predicting the perceived interest of objects.
2. Download the importance map database.
3. Download the starter code.
4. Modify the starter code to measure more features that can help predict importance. You should

measure at least the features mentioned in the paper, plus at least one unique feature of your own.
5. Use your features with various standard classifiers (Bayes, Decision Tree, SVM, etc.) to perform the 

classification.

Original image Segmentation map Importance map


