
Numerical Methods and Machine
Learning for Image Processing

Damon M. Chandler and Yi Zhang

Week 5, Class 2: Classification and Regression 2
October 26, 2021

Last time: Classification and Regression, Part 2a

Support vector classification (SVC)

1. Motivation and basic idea

2. SVC on created data

3. SVC on banknote data

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Example: Jointly Gaussian Source (2x1 images)

X1 (pixel 1)

X2 (pixel 2)
Suppose we wanted to
reduce this 2D data
down to 1D.

X1 and X2 both are
important, so it’s not
good to discard one of
them.

Can we choose two new
basis vectors, such that
it’s OK to use only one of
the basis vectors?

Yes! This is a procedure
called Principal
Component Analysis.

Example: Jointly Gaussian Source (2x1 images)

• 2x1 blocks are realizations of a two-dimensional random
vector X = [X1, X2]

T

• Pixels X1 and X2 are identically distributed and jointly
Gaussian (assume zero-mean) with autocorrelation
matrix:

==

19.0

9.01
TE XXRX

=

==

2212

211121

2

1

XXXX

XXXX
E

XX

X

X
EE T

XXRX

=

=

)var(),cov(

),cov()var(

221

211

2212

2111

XXX

XXX

XXEXXE

XXEXXE

• We seek an orthogonal transform, A, that can remove
the correlation

==

2

1

2,21,2

2,11,1

X

X

AA

AA
AXC

Example: Jointly Gaussian Source (2x1 images)

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Example: Jointly Gaussian Source (2x1 images)

X1 (pixel 1)

X2 (pixel 2)

C1 (coefficient 1)
C2 (coefficient 2)

Example: Jointly Gaussian Source (2x1 images)

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

C1 (coefficient 1)

C2 (coefficient 2)

• We seek an orthogonal transform, A, that can remove
the correlation

==

2

1

2,21,2

2,11,1

X

X

AA

AA
AXC

−

=

2

1

)45cos()45sin(

)45sin()45cos(

X

X

−
=

2

1

11

11

2

1

X

X

−

+
=

12

21

2

1

2

1

XX

XX

C

C

Example: Jointly Gaussian Source (2x1 images)

• What have we achieved?

– The rotation does not remove any of the variability

– It packs the variability into C1 (“energy compaction”)

– Now, if C2 is lost or quantized away, most of the signal
energy is still preserved

– C1 and C2 are now independent Gaussian variables, so
scalar quantization and 1st-order entropy coding are good!

• We have a name for this transform...

Example: Jointly Gaussian Source (2x1 images)

−

+
=

12

21

2

1

2

1

XX

XX

C

C

−
=

11

11

2

1
A

For 2D jointly Gaussian data, PCA results in the DCT/Haar DWT/KLT—all the same for 2x1

• Let X be a zero-mean random vector with
autocorrelation matrix RX

• Our goal is to find a matrix A such that the components
of C = AX will be uncorrelated

• Uncorrelated → autocorrelation matrix of C is diagonal

• The autocorrelation matrix of C is

How to find the transform matrix A?

 TTTT EE AXXAAAXX ==

 ()() TT EE AXAXCCRC ==

T
AARX= Goal is to find A such that RC is diagonal

•

• Note that RX = E{XXT} is a positive semi-definite matrix

How to find the transform matrix A?

T
AARR XC =

•

• Note that RX = E{XXT} is a positive semi-definite matrix

How to find the transform matrix A?

T
AARR XC =

Recall: A matrix M is positive semi-definite
if it can be written as the product of
another matrix times its transpose:

M = QQT

•

• Note that RX = E{XXT} is a positive semi-definite matrix

• Two important properties of a positive semi-definite matrix:

1. Its eigenvalues are always ≥ 0
2. Its eigenvectors are orthogonal (for different eigenvalues)

• These properties make finding A straightforward:

How to find the transform matrix A?

T
AARR XC =

A is the matrix whose rows are the eigenvectors of RX

PCA will compute A for us. And, in Python, the scikit-learn PCA
class to also apply A to compute the transformed data for us.
If you need to compute PCA manually, you would: (1) compute RX, then (2) compute the
eigenvectors of RX, and (3) create A by making these eigenvectors the rows of A.

Take-home
message:

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code

SVM classification on banknote data (2 features only)
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import ipcv_utils.utils as ipcv_plt

#%% LOAD THE DATA
data = pd.read_csv("data/minst_train.csv")

idxs = [2, 16, 7, 3, 8, 21, 29, 20, 28]
for idx in idxs:

img = np.array(data.iloc[idx, 1:])
ipcv_plt.imshow(img.reshape(28, 28), cmap="gray",
vmin=0, vmax=255, zoom=5)

data.head()

X = np.array(data.iloc[:, 1:])
y = np.array(data.iloc[:, 0])

X_trn, X_tst, y_trn, y_tst = train_test_split(X, y,
test_size=0.5, random_state=42)

print("Training set size (length, dims):", X_trn.shape)
print("Testing set size (length, dims):", X_tst.shape)

Training set size (length, dims): (21000, 784)
Testing set size (length, dims): (21000, 784)

SVM classification on banknote data (2 features only)
#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn, y_trn)

y_trn_prd = model.predict(X_trn)
print('Training accuracy: ',
accuracy_score(y_true=y_trn, y_pred=y_trn_prd))

y_tst_prd = model.predict(X_tst)
print('Testing accuracy: ',

accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',

cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy: 1.0
Testing accuracy: 0.9762857142857143

SVM classification on banknote data (2 features only)
#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA
pca = PCA(n_components=150,

svd_solver='randomized', whiten=True)
pca.fit(X_trn)

X_trn_pca = pca.transform(X_trn)
X_tst_pca = pca.transform(X_tst)

#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn_pca, y_trn)

y_trn_prd = model.predict(X_trn_pca)
print('Training accuracy: ',

accuracy_score(y_true=y_trn, y_pred=y_trn_prd))
y_tst_prd = model.predict(X_tst_pca)
print('Testing accuracy: ',

accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',

cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy: 1.0
Testing accuracy: 0.9675714285714285

Reduce to 150 features only
(150 principal components)

SVM classification on banknote data (2 features only)
#%% THIS TIME, DO PCA FIRST, THEN FIT SVC TO PCA-transformed DATA
pca = PCA(n_components=15,

svd_solver='randomized', whiten=True)
pca.fit(X_trn)

X_trn_pca = pca.transform(X_trn)
X_tst_pca = pca.transform(X_tst)

#%% CREATE AND FIT THE SVC
model = SVC(kernel='rbf', C=100)
model.fit(X_trn_pca, y_trn)

y_trn_prd = model.predict(X_trn_pca)
print('Training accuracy: ',

accuracy_score(y_true=y_trn, y_pred=y_trn_prd))
y_tst_prd = model.predict(X_tst_pca)
print('Testing accuracy: ',

accuracy_score(y_true=y_tst, y_pred=y_tst_prd))

#%% PRINT THE CLASSIFICATION RESULTS SUMMARIES
print("")
print("Classification Report")
print(classification_report(y_tst, y_tst_prd))

cm = confusion_matrix(y_tst, y_tst_prd)
sns.set(font_scale=0.75)
sns.heatmap(cm.T, square=True, annot=True, fmt='d',

cbar=False, linewidths=0.5)
plt.xlabel('GT label')
plt.ylabel('Predicted label')

Training accuracy: 0.9998095238095238
Testing accuracy: 0.9563333333333334

Reduce to 15 features only
(15 principal components)

Today: Classification and Regression, Part 2b

1. Dimensionality reduction and SVC image classification
• PCA—Principal Components Analysis

• SVC on MINST database

2. Homework 2
• Classification into three levels of importance

• Use features that you measure via code

Assignment 2: Object Importance Classification

• Importance maps signify how visually important various object are in a photo.

• An example importance map is shown below (rightmost image).

• An importance map contains three levels (classes):
0=unimportant, 1=somewhat important, 2=important

• Your goal: Create a classification system to classify the importance of each region
based on various features.

Original image Segmentation map Importance map

Assignment 2: Object Importance Classification

Specific steps (review the lecture video from 10/26 for a demo):
1. Read the paper: A Bayesian approach to predicting the perceived interest of objects.
2. Download the importance map database.
3. Download the starter code.
4. Modify the starter code to measure more features that can help predict importance. You should

measure at least the features mentioned in the paper, plus at least one unique feature of your own.
5. Use your features with various standard classifiers (Bayes, Decision Tree, SVM, etc.) to perform the

classification.

Original image Segmentation map Importance map

