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A Semi-Supervised High-Level Feature Selection
Framework for Road Centerline Extraction

Ruyi Liu, Qiguang Miao , Yi Zhang, Maoguo Gong , and Pengfei Xu

Abstract— Accurate road centerline extraction is very
important for many vital applications. In the road extraction,
the acquisition of labeled data is time-consuming; thus, there is
only a small amount of labeled samples in reality. To solve the
problem of limited labeled samples, a semi-supervised road cen-
terline extraction is proposed, which incorporates high-level fea-
ture selection, Markov random field (MRF), and ridge transversal
method. The proposed road extraction approach consists of three
steps: multiple features extraction, semi-supervised road area
extraction, and road centerlines extraction. To get more abstract
and discriminative high-level features, we apply multiple-feature
adaptive sparse representation in mid-level features in different
views generated by different prototype sets. To obtain an accurate
road area result, we combine the feature learning framework
with MRF. Then, we integrate Gabor filters and nonmaxima
suppression with the ridge transversal method to extract cen-
terlines. It is verified the proposed method achieves comparable
performance with the state-of-the-art methods in terms of visual
and quantitative aspects.

Index Terms— Ensemble projection (EP), feature learning,
road centerline extraction, semi-supervised classification.

I. INTRODUCTION

ROADS are of special importance among various man-
made objects. Thus, it is desired and sometimes highly

demanded to find ways to automatically extract a road net-
work from remote sensing images. However, there are some
difficulties in extracting a road network from remote sensing
images [1]. Although various approaches have been proposed
to address this challenging task, they are far from mature.
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The road extraction task contains road area extraction
and road centerline extraction. Various road area extraction
techniques include knowledge-based methods, mathematical
morphology, differential geometry, region competition, per-
ceptual grouping, dynamic programming, and classification.
Recently, classification has been widely applied to the road
area extraction. Supervised classification relies on labeled
samples for training the classifiers, where the classification
accuracy heavily depends on the amount and quality of the
training samples. Nevertheless, the annotations of such labeled
samples are usually time-consuming and sometimes difficult
to acquire in many real-world problems. In some cases where
there is a small set of labeled samples and a large collection
of unlabeled ones, some semi-supervised classification-based
methods have been proposed, which jointly exploit labeled
and unlabeled samples for training classifiers to improve
classification accuracy. In the road centerline extraction prob-
lems, the morphological thinning algorithm [2], [3] and some
regression-based centerline extraction algorithms [4], [5] can-
not get satisfied performance, so there is a large research space
in the road centerline extraction.

In this letter, a semi-supervised road centerline extraction
method is proposed, which incorporates high-level feature
selection, Markov random field (MRF), and ridge transversal
method. We are inspired by the work of Dai and Van Gool [6],
who introduced a feature learning approach based on ensemble
projection (EP). An effective feature selection method aims
to utilize a simple yet efficient criterion to determine the
usefulness of features [7]–[9]. Road extraction is a typically
two-class classification problem, i.e., road class and nonroad
class. In fact, nonroad class contains many classes. It is not
accurate to represent them as only one class. EP can exactly
consider this diversity because it borrows ideas from ensemble
learning to create an ensemble of diverse prototype sets.
Features in different views can be obtained by EP. According
to the level of fusion, multiview learning classification meth-
ods can be roughly categorized into two groups: 1) feature-
level fusion and 2) classifier-level fusion [10]. To get more
relevant and discriminative features, inspired by multiview
learning, we propose a semi-supervised framework of high-
level feature selection, in which the multiple-feature adaptive
sparse representation (MFASR) [11] is introduced into EP
instead of feature fusion based on the concatenation. After
the classification, MRF is used to do postprocessing. It is a
powerful tool that assumes that adjacent pixels are more likely
to belong to the same class. To overcome the shortcomings
of centerline extraction algorithms, Gabor filter, nonmaxima
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Fig. 1. Flowchart of the proposed method.

suppression, and ridge transversal method [12] are used to
trace road centerlines.

In summary, the main contributions are listed as follows.
First, we propose a semi-supervised framework of high-level
feature selection for road extraction. Second, the perceptually
homogeneous superpixel element is more appropriate for the
human visual system, so we propose a superpixel-based feature
learning framework. To the best of our knowledge, this is the
first work that combines superpixel and EP, while previous
works related to EP used square-image patches that cannot
preserve edge information well. The remainder of this letter is
arranged as follows. Section II presents the proposed method-
ology. Experimental evaluations and comparisons are reported
in Section III. Conclusions are drawn in Section IV.

II. METHODOLOGY

The proposed road extraction approach consists of three
steps: multiple features extraction, semi-supervised road area
extraction, and road centerlines extraction. The flowchart of
the proposed method is shown in Fig. 1.

A. Multiple Features Extraction

The main information of remote sensing image lies on the
spectral dimension and spatial dimension. Therefore, three
different kinds of features are employed as low-level fea-
tures, including the spectral values, the extended multiat-
tribute profile (EMAP), and 3-dimensional discrete-wavelet
transform (3-D-DWT)-based feature. EMAP is widely used
to capture the geometric and texture features. 3-D-DWT is
adopted to generate spectral-spatial features, which have been
validated to be more discriminative than the original spectral
signature [13].

B. Semi-supervised Road Area Extraction

1) Multiscale Over-segmentation: Linear spectral cluster-
ing (LSC) is of linear computational complexity and high
memory efficiency and is able to capture perceptually impor-
tant global image properties [14]. Therefore, LSC is employed
to obtain the multiscale oversegmentation for very high reso-
lution (VHR) remote sensing images. We can get multiscale

Fig. 2. Multiscale segmentation results with different superpixel numbers
(the numbers increase from left to right).

segmentation with different superpixel numbers. As shown
in Fig. 2, we get three different oversegmentation results
for each image. It can be seen that LSC superpixels have
high boundary adherence. This is effective for suppressing the
probability of misclassification of image pixels.

2) Road Area Extraction Based on Feature Learning Frame-
work and MRF: For each oversegmentation result, the spectral
attribute of a superpixel is defined as the average spectral value
within this superpixel. The EMAP feature of a superpixel is
calculated as the mean value of the EMAP features in this
superpixel. Similarly, 3-D-DWT-based feature of a superpixel
is defined as the average 3-D-DWT values within this super-
pixel. Multiple features of superpixels are exploited by feature
learning framework to obtain the high-level features and road
probability of each segment. The feature learning framework
can be shown in Fig. 3.

At a certain scale, we have obtained N superpixels
after oversegmentation. For clarity, X = {xi }N

i=1 denotes
the N superpixels, where xi denotes the feature vector
of superpixel i . In semi-supervised learning, only
limited labeled samples are available. Suppose that
labeled data are Dl = {(xi , yi )}l

i and unlabeled data
Du = {x j }l+u

j=l+1, where yi ∈ {0, 1} is its label.
Prototype sets originate from psychology and cogni-

tion fields. They are sampled automatically from all avail-
able data to represent a rich set of visual categories and
attributes. We use max–min sampling and ensemble learn-
ing to get T prototype sets Pt,t∈{1,...,T } = {(st

i , ct
i )}rn

i=1,
where st

i ∈ {1, . . . , l + u} is the index of the i chosen
superpixel and ct

i ∈ {1, . . . , r} is the pseudolabel indicating
to which prototype st

i belongs to. r is the number of classes
in Pt and n is the number of superpixels sampled for each
prototype (e.g., r = 3 and n = 3 in Fig. 3). For the skeleton,
we randomly sampled m hypotheses, each hypothesis consists
of r random-sampled superpixels and keeps the one having the
largest mutual distance. Once the skeleton is created, the Min-
step extends each seed superpixel to a superpixel prototype
by introducing its n nearest neighbors (including itself). The
pseudolabels are shared by all superpixels specifying the same
prototype. Here, we used the EMAP feature of superpixels
in max–min sampling, because it needs a low-dimensional
feature to define neighborhoods. Clearly, information carried
by a single prototype set Pt is quite limited, so we create T
prototype sets. Ensemble learning benefits from the precision
of its base learners and their diversity. For good precision, dis-
criminative learning method is employed as the base learner.
In order to learn precise projection function, we use the
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Fig. 3. Feature learning framework. The shapes with colors stand for the nonzero values, while the others represent the zero values.

concatenation of all the three features of superpixels. Logistic
regression is the base learner to further ensure the accuracy.

After an ensemble of base learners is constructed, each base
learner projects x to a similarity vector

Sj = (Sj,1, . . . , Sj,c) (1)

where j ∈ {1, . . . , T }. Sj,c(c ∈ {1, . . . , r}) measures
the probability of x belonging to pseudo-label class c
using base learner j . The diversity of the base learn-
ers is used to handle intraclass variance as different
base learners capture different properties of the superpixel.
A new superpixel representation SMF = {Sj } j=1,2,....,T is
obtained. Similarly, the corresponding T vector dictionary set
DMF = {D j } j=1,2,....,T can be constructed by extracting super-
pixels from these vectors. Then, we use MFASR to utilize the
similarities and diversities of multiple mid-level features (see
Fig. 3). The multiple-feature-based adaptive sparse coefficients
Â = [α̂1, α̂2, . . . , α̂T ] can be obtained by

Â = arg min
A

T∑
k=1

‖Sk − Dk Ak‖
F

, s.t.‖A‖adaptive,0 ≤ K0 (2)

where ‖A‖adaptive,0 is the adaptive norm, which can select
a number of the most representative adaptive sets from the
multiple-feature sparse matrix A. Each adaptive set is denoted
as the indexes of nonzero scalar coefficients, which belong to
the same class in A. K0 is the sparsity level. The optimization
problem in (2) can be efficiently solved by an adaptive sparse
algorithm that was introduced in [15]. After obtaining Â,
the joint residual errors can be calculated as

Rl
l∈{0,1}

=
T∑

k=1

∥∥Sk − Dk
l Âk

l

∥∥
F

(3)

where Âk
l is the lth class subset of the kth feature’s sparse

vector, and l = 0 and l = 1 denote the nonroad class and the
road class, respectively. Here, we get the road likelihood rather
than the class label of each superpixel. Therefore, the road-
class likelihood as

prob_road = R0

R0 + R1
. (4)

For a certain scale, all the pixels in the same superpixel are
given an identity likelihood value as the superpixel. Similarly,
we can get the probabilistic maps at different scales.

In general, adjacent pixels have the same label, so we
enforce a spatially smooth label prior by treating the labels
in y as an MRF. This prior encourages neighboring pixels to
belong to the same class. Specifically, our segmentation model
is given by

ŷ = arg max
y∈l

⎧⎨
⎩

n∑
i=1

log prob_road(xi ) + μ
∑

(i, j )∈C

δ(yi − y j )

⎫⎬
⎭
(5)

where C is the set of cliques over the image and δ() is the
unit impulse function. It should be noted that the pairwise
interaction terms δ(yi − y j ) obtain higher probability when
neighboring labels are equal than when they are not equal.
μ denotes the level of smoothness. In this way, the MRF
prior encourages piecewise smooth segmentations. Therefore,
three complementary road segmentation maps can be obtained.
We fuse all road segmentation maps from the three different
scales into an integrated one by a majority voting strategy.

3) Filtering by Shape Features: Although MRF has been
used to postprocessing the classification maps, many road-like
segments are also included in the final segmentation result.
Therefore, we exploit the linear feature index (LFI) [1] to
distinguish between potential road segments and road-like
segments.

C. Road Centerlines Extraction

We extract road centerlines as follows: given the binary
segmentation, we continuously filter the image with different
scale Gabor filters. After continuous filtering, the real road
centerline positions tend to have local maximum values. Then,
nonmaxima suppression is applied to find a local maxima
and a classic ridge transversal method [12] is applied to
connect the local maxima. Finally, we remove small unwanted
branches and use a linking procedure to connect some
discontinuities.
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Fig. 4. Result of each step. (a) Aerial image. (b) Reference map. (c)–(e) Multiscale oversegmentation results with three different numbers of superpixels,
such as 8000, 10 000, and 12 000. (f)–(h) Multiscale road area extraction results obtained by the feature learning framework. (i)–(k) Multiscale results refined
by MRF. (l) Final result by majority voting. (m) Image after postprocessing based on shape features. (n) Road centerline results.

Fig. 5. Visual comparisons of road centerline extraction results. (a1)–(a3) Original image. (b1)–(b3) Results of Miao et al. [5]. (c1)–(c3) Results of
Shi et al. [4]. (d1)–(d3) Results of Cheng et al. [1]. (e1)–(e3) Results of proposed method. (f1)–(f3) Reference maps. Due to the space limit, we only display
three images.

III. EXPERIMENTAL RESULTS

To demonstrate the performance, we do some experiments
with aerial images and discuss our results. For evaluation,

we use two public data sets in our experiments. One is the
EPFL-data set, which is provided by Türetken et al. [16].
It contains 14 images. The road width in this data set
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TABLE I

QUANTITATIVE EVALUATION RESULTS OF VARIOUS METHODS

is about 8–10 pixels. The other data set is developed by
Cheng et al. [1], which contains 224 VHR urban road images
with a spatial resolution of 1.2 m/pixel. The road width is
about 12–15 pixels. Some images are under the conditions of
complex backgrounds and occlusions of trees. The procedure
of the proposed method is shown in Fig. 4. It can be seen
that the proposed method can extract relatively smooth and
continuous road centerline well.

For a fair comparison, the comparing methods are mainly
unsupervised or semi-supervised. We have compared the pro-
posed algorithm with three existing road extraction methods
from the literature, i.e., Cheng et al. [1], Shi et al. [4], and
Miao et al. [5]. Fig. 5 gives the comparison results of different
road extraction methods. A vision comparison reveals that the
quality of the proposed method is superior to those of the
other three methods. To evaluate these methods quantitatively,
the completeness (Com), correctness (Cor), and quality (Q) of
each method is computed as follows:

Com = TP/(TP + FN) (6)

Cor = TP/(TP + FP) (7)

Q = TP/(TP + FP + FN) (8)

where TP, FP, and FN are the true-positive, false-positive, and
false-negative, respectively. The results are given in Table I.
As we can see, the proposed method is comparable with
or better than other methods, which gains the best perfor-
mance among the comparing methods. It demonstrates that
the high-level feature selection framework is suitable for the
road extraction task. We also validate the efficiency of the
semi-supervised high-level feature selection framework with
CNN features. The CNN features perform significantly better
than the rest. However, in order to get CNN features, we need
a great amount of labeled data to train the neural network.
If there is a small set of labeled samples, the proposed method
is very appropriate.

IV. CONCLUSION

In this letter, a new method has been proposed to extract
road centerline from high-resolution imagery accurately and

smoothly. Specifically, in the first stage, spectral values,
EMAP, and 3-D-DWT-based features are extracted. In the sec-
ond stage, to get more abstract and discriminative high-level
features, MFASR is applied to mid-level features generated by
different prototype sets. After classification, MRF is used to
do postprocessing to get accurate road area. Finally, we extract
road centerlines by Gabor filter, nonmaxima suppression, and
ridge transversal method. In terms of both quantitative and
visual performances, the proposed method achieves better
results than all the other comparing methods.
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