
J. Vis. Commun. Image R. 83 (2022) 103425

A
1

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci

Full length article

Multi-domain residual encoder–decoder networks for generalized
compression artifact reduction✩

Yi Zhang a,∗, Damon M. Chandler b, Xuanqin Mou a

a School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
b College of Information Science and Engineering, Ritsumeikan University, Shiga, 525-8577, Japan

A R T I C L E I N F O

Keywords:
Artifact reduction
Residual network
Compression artifact
Quality factor estimation

A B S T R A C T

A fundamental requirement for designing compression artifact reduction techniques is to restore the artifact
free image from its compressed version regardless of the compression level. Most existing algorithms require
the prior knowledge of JPEG encoding parameters to operate effectively. Although there are works that attempt
to train universal models to deal with different compression levels, some JPEG quality factors (QF) are still
missing. To overcome these potential limitations, in this paper, we present a generalized JPEG-compression
artifact reduction framework that relies on improved QF estimator and rectified networks to take into account
all possible QF values. Our method, called a generalized compression artifact reducer (G-CAR), first predicts
QF by analyzing luminance patches with high activity. Then, based on the estimated QF, images are adaptively
restored by the cascaded residual encoder–decoder networks learned in multiple domains. Results tested on
six benchmark datasets demonstrate the effectiveness of our proposed model.
1. Introduction

With the rapid development of modern cameras and digital imaging
technology, billions of images/videos are captured, stored, and shared
on the Internet every day. These images/videos have to be compressed
for transmission and storage in order to save both bandwidth and
in-device resources. Apart from a few cases where lossless compres-
sion is adopted (e.g., medical imaging and technical drawing), lossy
compression, such as JPEG [1] and JPEG2000 [2], has been widely
used (e.g., online education, entertainment video streaming, wireless
surveillance, remote conference, etc.) to achieve a much higher com-
pression ratio. These coding algorithms generally work by quantizing
and encoding images in the transform domain, giving rising to code
streams that mostly contain zero-value coefficients, and hence encode
images via limited amount of data. For example, the discrete cosine
transform (DCT) is used in JPEG while the discrete wavelet transform
(DWT) is used in JPEG2000. Quantization of these DCT or DWT co-
efficients produces inaccurate superpositions of the respective basis
functions, which ultimately manifest as undesired image artifacts such
as blockiness, ringing, and blurring that are especially visible at low-
bit rates. JPEG2000 typically suffers from blurring due to the loss of
high-frequency components whereas JPEG suffers from blocking due to
the individual treatment of adjacent coding blocks. These compression
artifacts are not only visually unpleasant, but also have a negative

✩ This paper has been recommended for acceptance by Zicheng Liu.
∗ Corresponding author.
E-mail address: yi.zhang.osu@xjtu.edu.cn (Y. Zhang).

impact on various image processing and computer vision algorithms
that take compressed images as input. Thus, algorithms which can
effectively reduce the amount or visibility of compression artifacts in
images/videos are in great demand.

In this paper, we focus on reducing compression artifacts in JPEG
compressed images. Although a large number of image restoration
algorithms have been reported to successfully remove the different
kinds of noise and blur artifacts in images (see [3,4] for a survey),
designing restoration techniques to combat JPEG compression artifacts
still remains quite challenging. This is due to the fact that the non-
linearity of quantization makes the resulting noise non-stationary and
signal dependent [5]. For example, after quantization, banding effects
become visible in smooth regions and ringing artifacts appear around
sharp edges. Moreover, in comparing with JPEG2000 that typically
introduces ringing and blurring artifacts to images, JPEG additionally
introduces a very distinct compression artifact, the blocking artifact,
which occurs due to the independent process of non-overlapping 8 × 8
image blocks and consequently the boundaries between coding blocks
become discontinuous. Thus, restoration algorithms (e.g., [6–9]) that
model quantization noises as signal independent often perform less
effectively on compressed images.

To overcome the blocking artifact problem, a number of
deblocking/soft-decoding approaches have been proposed. Among
vailable online 19 January 2022
047-3203/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jvcir.2021.103425
Received 13 April 2021; Received in revised form 28 August 2021; Accepted 22 De
cember 2021

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:yi.zhang.osu@xjtu.edu.cn
https://doi.org/10.1016/j.jvcir.2021.103425
https://doi.org/10.1016/j.jvcir.2021.103425


Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
these approaches, one idea is to perform filtering operations along
boundaries in the spatial and/or transform domain. Typical spatial-
domain filtering algorithms (e.g., [10–12]) select a filtering mode
according to the pixel behavior of the block boundary and then ap-
ply one-dimensional (1-D) horizontal and vertical filtering or two-
dimensional (2-D) spatially adaptive filtering across different image
regions. Other spatial-domain algorithms include employing postfilter-
ing in shifted windows of image blocks [13], non-linear space-variant
filtering [14], adaptive nonlocal means filtering [15], adaptive bilateral
filtering [16], etc.

In comparison, transform-domain filtering approaches directly ad-
just DCT coefficients. Such algorithms include that considers the corre-
lation between boundary pixel values of two neighboring blocks [17,
18], the masking effect in the human visual system (HVS) [19], the
local ac coefficient regularization of shifted blocks [13], the local visi-
bility measure of blocking artifacts at block edges [20], and the optimal
correction of the DCT coefficients [21], etc. As the other approach,
the JPEG process itself is employed to reduce the compression artifacts
by reapplying JPEG compression to the various shifted versions of the
compressed image and then average the reapplied results [22,23].

Another type of the deblocking/soft-decoding approach treats com-
pression artifact reduction as an ill-posed inverse problem, where the
prior knowledge about high-quality images, compression algorithms,
and compression parameters is employed to guide the restoration pro-
cess [24]. Typical image priors include: the field of experts prior [25],
the low-rank prior [26–28], the quantization constraint prior [29,30],
non-local similarity [9,31], the sparse representation prior [32–36],
etc. Moreover, some approaches employ more than one image prior
to restore compressed images. For example, the sparse representation
and quantization constraint priors were used in [37–40]; the low-rank
and quantization constraint priors were used in [41]; the Laplacian
prior, sparsity prior, and graph-signal smoothness prior were used
in [42]. However, as mentioned in [24], most of the image-prior-
based deblocking algorithms are time-consuming due to the complex
optimization process.

With the wide/spread utilization of deep learning techniques in
recent years, a third type of the deblocking/soft-decoding approach has
appeared, which relies on a deep convolutional neural network (CNN)
as well as some traditional image transforms, priors, and constraints.
After the first CNN-based deblocking algorithm (ARCNN [43]) was
proposed, successive works have mainly focused on two important
issues: better network architectures and better utilization of the trans-
form domain information. For example, the feed-forward denoising
CNN (DnCNN) was proposed in [44]; the residual encoder–decoder
network (RED-Net) was proposed in [45]; the compression artifact
suppression CNN (CAS-CNN) was proposed in [46]; the one-to-many
network was proposed in [47]; the trainable nonlinear reaction dif-
fusion (TNRD) model was proposed in [48]; the persistent memory
network (MemNet) was proposed in [49]; the scalable CNN (S-Net)
was proposed in [50]; the deep convolutional sparse coding (DCSC)
network was proposed in [51]; the deep residual auto-encoder was
proposed in [52]; the generative adversarial networks (GANs) [53]
were employed in [54–56], and so forth. As JPEG compression is not
optimal, image transforms such as DCT and DWT were also embedded
in the network design to further explore and utilize the redundant
information neglected by the JPEG encoder. Consequently, some dual-
domain deblocking models such as D3 [5], DMCNN [57], DDCN [58],
MWCNN [59], and DPW-SDNet [24] have been proposed. Meanwhile,
to generate visually-comfortable restoration results, various loss func-
tions such as adversarial loss [60,61], structure similarity (SSIM [62])
loss, perceptual loss [63,64], edge emphasized loss [65], and JPEG
loss [47] were employed for network training.

Despite the promising results achieved thus far, one important
issue neglected by most existing approaches is the fact that in most
cases the encoding parameter of a compressed image is unknown.
2

Since most deblocking algorithms require this information to operate
effectively, their practical applications are restricted. To the best of our
knowledge, among the CNN-based deblocking approaches, only a few
works attempt to address this issue. One is the DnCNN model [44]
which was trained on compressed images with quality factors (QFs)
ranging from 5 to 99. The other one is the multiple GANs model [55]
which operates by incorporating a QF estimator such that different
GANs are applied based on different estimated QF values. Though
effective, both models suffer from potential limitations. For example,
since DnCNN was trained on compressed images with a wide range
of QF values, larger restoration errors might occur as compared with
training the same model on images with a single fixed QF value. In
comparison, although in [55] each generator of GANs was trained on
images with fixed QF values, the algorithm performance is influenced
by the accuracy of the QF estimator. Also, the compression artifacts of
images corresponding to other QF values not observed in the training
data may not be effectively removed, especially when QF value is
small (i.e., images are heavily compressed), because the algorithm
always employs a generative model whose trained QF is closer to the
output of the QF estimator to perform the deblocking task. Finally,
both models operate in the pixel domain only, while many existing
works (e.g., [24,38,58], etc.) suggest that incorporating analyses in
other domains (e.g., DCT or DWT) can possibly benefit the restoration
performance.

Based on the abovementioned points, in this paper we propose a
generalized JPEG compression artifact reduction framework based on
learning a cascaded residual encoder–decoder network (CRED-Net) in
the pixel, DCT, and DWT domains. Our method, called a generalized
compression artifact reducer (G-CAR), operates via two main stages:
(1) JPEG-compression quality factor estimation; and (2) QF-specific
compression artifact reduction, as shown in Fig. 1. In the first stage,
the luminance channel (Y channel of the YCbCr space) of an image is
divided into non-overlapping patches, and patches with high activity
are selected for QF estimation. The QF of the whole image is then
computed as the rounded average of all estimated QF values. In the
second stage, corresponding multi-domain CRED-Nets are applied to
the Y channel and corresponding CbCr-Nets are applied to the Cb and
Cr channels to perform the compression artifact reduction task. Specif-
ically, for Y channel restoration, if the estimated QF equals one of the
predefined values or fall into one of the predefined ranges (please refer
to Section 2.2.3 for more details), then a single corresponding multi-
domain CRED-Net is directly applied to obtain the deblocking result.
Otherwise, the multi-domain CRED-Net is first applied, and then its
output along with the original input are fed into another CRED-Net for
further restoration. These additional CRED-Nets (also called rectified
networks) are trained on images with small QF variations (e.g., QF ∈
[8, 9], [11, 14], 𝑒𝑡𝑐.) to overcome the potential limitation that a single
network cannot effectively address images with all compression levels.
For Cb and Cr channels restoration, the optimal CbCr-Net is applied
based on investigating the specific range into which the estimated QF
value falls. Finally, the restored Y, Cb, and Cr channels are converted
back to the RGB space to produce the restored image.

Compared with existing deblocking approaches, our method has
several appealing properties. First, it is a blind and generalized frame-
work, meaning that the algorithm requires no prior knowledge of
the encoding parameters. Like [55], we also trained a QF estimator
to indicate compression quality. However, different from [55], our
method on the one hand focuses on quality-relevant regions (instead
of all image patches) for more accurate QF estimation. On the other
hand, we additionally train rectified networks to take into account all
compression levels and perform restoration on both color and grayscale
images. Second, learning compression artifact reduction models in
multiple domains allows us to explore the spatial redundancies, fre-
quency redundancies, and spatial-frequency redundancies at the same
time to gain better restoration performance. As claimed in [58], the
non-linear representation of the DCT-domain patches afforded by us-

ing a CNN can help discover and utilize redundancies in the DCT



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.

w
p
a
a
F

Fig. 1. A block diagram of the proposed G-CAR framework. Note that ‘‘Condition 1’’ denotes that the estimated QF equals one of the predefined values or falls into one of the
predefined ranges. See Section 2.2.3 for more details.
w
a
p
f
s
o
o
a
i
c

h
t
p
d
c
e
s
2

𝜎

w

𝜇

a

domain (e.g., the inter-DCT-block correlations), but DCT coefficients
mainly contain global information and do not respect the spatial con-
tinuity property of normal images. Thus, we also employ pixel and
wavelet domain analyses to recover the high-frequency details, espe-
cially considering that the DWT can capture both the frequency and the
location information of an image. Finally, compared with U-Net [66]
and RED-Net [45] that have been widely used in image restoration
and segmentation tasks, the proposed CRED-Net architecture has the
advantage of learning residual feature maps at different image scales.
Experimental results demonstrate the advantages of our model over
other recent state-of-the-art deblocking methods.

The rest of the paper is organized as follows. Section 2 describes
details of the proposed G-CAR framework. In Section 3, we analyze
and discuss the performance of the proposed model on various JPEG-
compressed images. General conclusions are presented in Section 4.

2. Algorithm

The goal of compression artifact reduction is to recover from a
compressed image I𝐶 an artifact free image I𝑅 which is as similar
as possible to the original uncompressed image I. Let I𝐶 = 𝐴(I),

here 𝐴(⋅) denotes a compression-decompression algorithm. Then, the
roblem of compression artifact reduction can been treated as to seek
n inverse function 𝐺 = 𝐴−1 to satisfy 𝐺(I𝐶 ) ≈ I. Different compression
lgorithms have different 𝐴, resulting in different compression artifacts.
or JPEG, the original uncompressed image is first divided into 8 × 8

coding blocks, and each block undergoes the DCT transform. Then,
each of the 64 DCT coefficients is quantized by referring to a 64-
element quantization table controlled by a quality factor (QF). Different
quantization tables can give rise to different compression levels, and
it is this quantization step that produces a combination of various
compression artifacts: blockiness, ringing, and blurring. As mentioned
previously, the QF value of a compressed image is often unknown to
a deblocking algorithm. Thus, in this paper, we propose a general-
ized JPEG-compression artifact reduction model, which decouples the
compression artifact reduction task into two subtasks: (1) compression
quality factor estimation and (2) QF-specific compression artifact re-
duction, as shown in Fig. 1. We provide details for each stage in the
following subsections.

2.1. Compression quality factor estimation

The first stage of G-CAR is to perform JPEG-compression quality fac-
tor estimation. To this end, the Y channel of a test image is divided into
non-overlapping blocks, and the QF value of each block is evaluated
by a QF estimator which is a fully convolutional model. As shown in
Table 1, the network consists of four types of layers: (1) convolutional
3

layer (Conv); (2) convolutional layer followed by Rectified Linear Unit G
Table 1
Network structure of the proposed QF estimator.

Layer Kernel size Stride Padding Output size

Conv 11 × 11 1 0 134 × 134 × 64
Conv 7 × 7 1 0 128 × 128 × 64
Conv+ReLU 3 × 3 1 1 128 × 128 × 128
Conv+ReLU 3 × 3 2 1 64 × 64 × 128
Conv+ReLU 3 × 3 1 1 64 × 64 × 256
Conv+ReLU 3 × 3 2 1 32 × 32 × 256
Conv+ReLU 3 × 3 1 1 32 × 32 × 512
Conv+ReLU 3 × 3 2 1 16 × 16 × 512
AvgPool – – – 1 × 512
FC – – – 1 × 1024
FC – – – 1 × 1024
FC – – – 1 × 1

(ReLU) for nonlinearity (Conv + ReLU); (3) average pooling layer
(AvgPool); and (4) fully connected (FC) layer. For the first and second
convolutional layers, 64 convolution filters of size 11 × 11 × 1 and
7 × 7 × 64 are respectively used to generate 64 feature maps. Then

e apply six Conv+ReLU layers using a kernel size of 3 × 3 pixels
nd one pixel padding for high-level feature extraction. Next, average
ooling is applied to collapse each feature map into a scalar, and two
ully connected layers which respectively have 512 and 1024 nodes are
ubsequently used. The last layer is a simple linear regression with a
ne dimensional output that gives the QF value. Given an image patch
f size 144 × 144 pixels, the dimensions of the output of each layer
re shown in Table 1. The network is trained on a large number of
mage patches with random compression levels using L1 loss, which is
omputed over the predicted and ground-truth QF values.

After obtaining the QF value of each patch, a pooling operation
as to be applied to collapse all values into a scalar. As in most cases
he flat region of an image cannot represent JPEG compression quality
roperly (because JPEG compression often eliminates high-frequency
etails of an image while flat regions mainly consist of low-frequency
omponents), patches with sharper edges/textures are selected. To this
nd, we compute local standard deviation (LSD) of the image, and then
elect image patches whose average LSD values are between the top
0% and top 50% of all the patches considered for QF estimation.

Specifically, the LSD of a grayscale image 𝐼(𝑖, 𝑗) is computed by

(𝑖, 𝑗) =

√

√

√

√

𝐾
∑

𝑘=−𝐾

𝐿
∑

𝑙=−𝐿
𝜔𝑘,𝑙(𝐼𝑘,𝑙(𝑖, 𝑗) − 𝜇(𝑖, 𝑗))2, (1)

here

(𝑖, 𝑗) =
𝐾
∑

𝑘=−𝐾

𝐿
∑

𝑙=−𝐿
𝜔𝑘,𝑙𝐼𝑘,𝑙(𝑖, 𝑗) (2)

nd 𝜔𝑘,𝑙(𝑘 = −𝐾,… , 𝐾; 𝑙 = −𝐿,… , 𝐿) is a 2D circularly-symmetric

aussian weighting function sampled out to 1.5 standard deviations



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
Fig. 2. Architecture of the multi-domain CRED-Net.
𝑦

and rescaled to unit volume; 𝐼𝑘,𝑙(𝑖, 𝑗) = 𝐼(𝑖 + 𝑘, 𝑗 + 𝑙) denotes the local
image pixel value; 𝐾 and 𝐿 represent the normalization window sizes.
As in [62], we also define 𝐾 = 𝐿 = 5. Let 𝑄𝐹𝑖 (𝑖 = 1, 2,… , 𝑁) denote
the estimated QF value of each patch, and 𝑁 denote the total number
of all the selected patches. Then, the QF value of the overall image is
computed by

𝑄𝐹 = Round
(

1
𝑁

𝑁
∑

𝑖=1
𝑄𝐹𝑖

)

, (3)

where Round(⋅) denotes a rounding function.

2.2. QF-specific compression artifact reduction

The second stage of G-CAR is to perform the QF-specific com-
pression artifact reduction. To this end, we propose an end-to-end
multi-domain CRED-Net whose overall architecture is shown in Fig. 2.
As shown in Fig. 2, a compressed image is mapped to an artifact free
image via a DCT-domain auto-encoder, a DWT-domain auto-encoder, a
CRED-Net, and a skipped summation connection which transforms the
connectivity of the input and output to allow the residual learning. The
DCT-domain auto-encoder attempts to recover the DCT coefficients of
the ground truth, while the DWT-domain auto-encoder aims to restore
the high-frequency details. The CRED-Net combines the two branches
as well as the input compressed image to generate the residuals. Note
that both the DCT and DWT domain auto-encoders share the same
network structure; the only difference is the dimensions of the input
and output. Also note that an additional CRED-Net is employed for fur-
ther rectification when the estimated QF neither equals any predefined
values nor falls into any predefined ranges (as shown in Fig. 1). We
provide details of each component as follows.

2.2.1. DCT/DWT-domain auto-encoder
The architecture of the auto-encoder network is shown in Fig. 3, and

the same structure is applied for both the DCT and DWT coefficients.
As shown, the proposed auto-encoder contains one convolutional layer
as the encoder, one convolutional layer as the decoder, and three
dilated convolution layers in the middle for feature extraction in a
larger receptive field. Both the encoder and decoder layers contain
convolutions with 3 × 3 filters using one-pixel stride and one-pixel
padding. The three dilated convolution layers also contain convolutions
with 3 × 3 filters using one-pixel stride, but with different padding and
dilation factors. Each convolutional layer is followed by a parametric
rectified linear unit (PReLU) layer, and the number of convolutional
filters for all layers in the auto-encoder is 64.

A dilated convolution applies the same filter at different ranges
using different dilation factors, and has the advantage of supporting
exponentially expanding receptive fields without losing resolution or
coverage. For example, combining 𝑛 discrete 3 × 3 filters can reach a
(2𝑛+1 − 1) × (2𝑛+1 − 1) receptive field size if the dilation factors are set
to be 1, 2, 4, ⋯ , 2𝑛−1, respectively. After being first presented in [67],
dilated convolution has been widely used in many vision tasks such
as image segmentation (e.g., [68–70]), super-resolution (e.g., [71–73]),
denoising (e.g., [74–76]), and object detection (e.g., [77–79]), etc. In
this work, we set the dilation factors as 2, 4, and 8 for the three dilated
convolution layers, respectively, to capture more compression artifact
information of the compressed image.
4

For the DCT branch, a compressed image is first divided into a set
of overlapping 8 × 8 blocks, and the DCT coefficients of each block
are processed by the DCT-domain auto-encoder. As claimed in [38],
extracting overlapping blocks at arbitrary positions that misalign with
DCT coding block boundaries is very important in destroying the arti-
ficial block structures of JPEG compression method and thus effective
in removing the notorious DCT blocking artifacts. To apply the DCT
on overlapping blocks, in this work, a sliding window is moved across
the image (or image patch) horizontally and vertically with one pixel
stride, and image regions outside the window are cut off. As illustrated
in Fig. 4, starting from the top-left pixel of the image, the window
moves 64 times in an 8 × 8 squared manner, which results into 64
cropped images. Note that the height and width of the window should
be integer multiples of eight to accommodate the 8 × 8 DCT, and also
be large enough to cover most of the image. In this work, given an
image of 𝑊 ×𝐻 pixel size, the window size is set to be (⌊𝑊 ∕8⌋ ⋅ 8 − 8)×
(⌊𝐻∕8⌋ ⋅ 8 − 8), where ⌊⋅⌋ denotes the round-down operation. Then,
the DCT is applied to each cropped image and the associated 64 DCT
coefficient maps are concatenated and fed into the auto-encoder.

Following [57,58], a DCT Rectify Unit (DRU) is employed to con-
strain the DCT coefficient values by referring to the JPEG-specific
priors. Specifically, let 𝑥(𝑢, 𝑣) denote the DCT coefficient of a com-
pressed image, and 𝑦(𝑢, 𝑣) denote the corresponding DCT auto-encoder
output, where 𝑢 and 𝑣 are indices in the DCT domain. Then, the rectified
DCT coefficient 𝑦̃(𝑢, 𝑣) can be estimated by

̃(𝑢, 𝑣) =

⎧

⎪

⎨

⎪

⎩

𝑦(𝑢, 𝑣) −𝑄(𝑢, 𝑣)∕2, 𝑦 < 𝑥(𝑢, 𝑣) −𝑄(𝑢, 𝑣)∕2
𝑦(𝑢, 𝑣) +𝑄(𝑢, 𝑣)∕2, 𝑦 > 𝑥(𝑢, 𝑣) +𝑄(𝑢, 𝑣)∕2

𝑦(𝑢, 𝑣), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

where 𝑄 is the quantization table. Finally, the rectified output of
the DCT auto-encoder is transformed back to the pixel domain by an
inverse DCT (IDCT).

For the DWT branch, four filters (f𝐿𝐿, f𝐿𝐻 , f𝐻𝐿, f𝐻𝐻 ) corresponding
to the Daubechies 3 (db3) wavelet are convolved with the compressed
image and the convolution results are then downsampled to obtain
the four subband images. The wavelet subband coefficients are then
concatenated and fed into the DWT-domain auto-encoder for high-
level feature extraction. By concatenating the four wavelet subbands,
the high-frequency components corresponding to the three different
orientations are fused with the low-pass filtered image while still
keeping the spatial consistency among them. Finally, a 2D inverse DWT
(IDWT) is performed on the four feature maps output by the auto-
encoder to produce the wavelet domain estimation, which is of the
same dimension as the input image.

The DCT-domain and DWT-domain branches run in parallel. To
better combine their capabilities as well as to exploit the pixel-domain
redundancies, the output feature maps of the two branches and the
original input image are concatenated. Note that given a 𝑊 ×𝐻 input
image, the DCT branch outputs (⌊𝑊 ∕8⌋ ⋅ 8 − 8) × (⌊𝐻∕8⌋ ⋅ 8 − 8) × 64
feature maps. Thus, the IDWT output and the original input have to be
cropped to the same width and height as the IDCT output before con-
catenation. In this paper, we simply crop the top-left (⌊𝑊 ∕8⌋ ⋅ 8 − 8) ×
(⌊𝐻∕8⌋ ⋅ 8 − 8) pixels of the IDWT output and the original input image,
and the concatenated 66-channel tensor are then fed into the CRED-Net
for further processing.



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
Fig. 3. Architecture of the auto-encoder network. Note that ‘‘sx’’ denotes stride = x, and ‘‘px’’ denotes padding = x.
Fig. 4. Illustration of applying DCT on overlapped image blocks.
2.2.2. CRED-Net
The network architecture of CRED-Net is shown in Fig. 5 which

consists of two subnetworks; each subnetwork contains convolutional
and deconvolutional layers in the encoder and decoder with shortcut
connections. The PReLU layer comes after each convolutional layer to
introduce nonlinearity to the network, and a 2 × 2 average pooling
operation with stride 2 is applied after PReLU for downsampling.
Fractionally-strided convolutions (or namely ‘‘deconvolution’’) are ap-
plied to the feature maps in every downsampled layer in the encoder,
and the upsampled output is processed by two successive convolutional
layers after being added by the high-resolution features from the scale-
by-scale contracting path. For feature maps in a specific downsampled
layer in the encoder, the deconvolution operation repeats the same
number of times as that of downsampling. Thus, the decoder outputs
feature maps containing multi-scale information in the encoder. These
5

feature maps are concatenated and fed into a subsequent network as
the input, and in this way the two subnetworks are cascaded.

Apart from the first and last layers that contain convolutions with
9 × 9 and 5 × 5 filters, respectively, all other layers contain convolu-
tions with 3 × 3 filters using one-pixel stride and one-pixel padding
to keep the dimension consistent with the previous feature maps.
Consequently, the two subnetworks in CRED-Net can be formulated in
the same way as follows. Let 𝑥𝑖,𝑗 denote the output of each double-
convolution operation in the first subnetwork, where 𝑖 indexes the
downsampling layer along the encoder and 𝑗 indexes the upsampling
layer along the decoder, as shown in Fig. 5. The stack of feature maps
represented by 𝑥𝑖,𝑗 is computed as

𝑥𝑖,𝑗 =

{

𝐹
(

𝑥𝑖−1,𝑗
)

, 𝑗 = 0
( 𝑖,0 𝑖+1,𝑗−1 ) (5)
𝐹 𝑥 + 𝑈 (𝑥 ) , 𝑗 > 0



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.

w
b
t
s

𝑦

w
v
w
p
d
d
l
p
w
i
w
i
p
r

N
d
e
U
v
U
s
t
f
s
s
v
b
r
c
R

2

r
e
w
e

Fig. 5. An architecture of the CRED-Net.
[
b
i
s
p
d
A
c
e
t

o
n
a
l
p
w
l
p
t
t
m
B
r
v

w
i
t

here 𝐹 (⋅) denotes the two 3 × 3 convolution operations each followed
y PReLU; and 𝑈 (⋅) denotes the 2 × 2 deconvolution operation using
wo-pixel stride and zero padding. The input feature maps of the second
ubnetwork (denoted by 𝑦0,0) can be computed by

0,0 = 𝐹
(

[

𝑥0,𝑗
]3
𝑗=1

)

(6)

here [⋅] denotes the concatenation operation. The output of the con-
olutional layers in the second subnetwork can be computed the same
ay as in Eq. (5). Accordingly, given a 144 × 144 × 1 training image
atch, after the patch is processed by the aforementioned DCT/DWT-
omain auto-encoder, the input of CRED-Net is 136 × 136 × 66, and the
imension of each layer output in CRED-Net is illustrated in Fig. 5. The
ast layer uses convolution with 5 × 5 filters with two-pixel refection
adding, and thus the output is 128 × 128 × 1. Note that although
e analyze CRED-Net by assuming an input of 144 × 144 × 1 pixels,

mages of any size can be processed by the network as long as the
idth and height of the input are an integral multiple of eight. Thus,

n the testing stage, images are cropped with the rightmost and bottom
ixels abandoned (instead of being resized) in order to meet the shape
equirement as well as to preserve the original compression artifacts.

Although the shape of each subnetwork in CRED-Net is similar to U-
et [66], CRED-Net modifies U-Net in three aspects to achieve better
eblocking performance: (1) Instead of fusing feature maps from the
ncoder and decoder via concatenation/stacking generally adopted in
-Net, we use residual connections which can help avoid the gradient
anishing problem during training when the network goes deep. (2)
nlike U-Net whose decoder has only one branch of output, each

ubnetwork in CRED-Net has three branches before concatenation in
he decoder, where different branches represent information collected
rom different layers in the encoder corresponding to different image
cales. As claimed in [80], image restoration is a low-level task which is
upposed to require both a relatively shallow network for detail preser-
ation and a deep network to describe the complicated relationship
etween the input and output. The proposed CRED-Net meets both
equirements by adopting a multi-scale U-Net structure and a residual
onnection strategy; (3) PReLU is applied in the network instead of
eLU to avoid the dead ReLU problem in some extreme situations.

.2.3. Compression artifact reduction
As mentioned in Section 1, most existing deblocking algorithms

equire the encoding parameter of a compressed image to operate
ffectively. To release this dependence, we employ the strategy in [55]
hich (1) predicts the encoding parameter first by utilizing a QF
stimator, and then (2) selects the appropriate model to perform the
6

deblocking task. To this end, we train multi-domain CRED-Nets corre-
sponding to seven predefined QF values (5, 10, 20, 30, 40, 60, and 80).
As shown in Fig. 6 in Section 3.3, the restoration performance of using
any individual multi-domain CRED-Net will drop when input images
are compressed with QF values different from the seven predefined
values. Also, such a performance drop is significant when the QF value
is small (e.g., QF = 5), but insignificant when the QF value is large
(e.g., QF = 40). This is due to the fact that for smaller QF, even a minor
QF variation (e.g., 5 ± 1) can cause a major change in the compression
artifact intensity, while this is not the case for larger QF values.

To build a generalized compression artifact reduction framework
that can effectively deal with any JPEG-compressed image, we propose
to additionally train the rectified network (R-Net) whose main task is
to perform fine rectification such that the performance drop observed
in Fig. 6 can be compensated. Specifically, we train eight rectified
networks corresponding to the eight QF ranges: [1, 4], [6, 7], [8, 9],
11, 14], [15, 19], [21, 24], [25, 29], and [86, 95]. These ranges were chosen
ased on QF values of the cross points of the neighboring curves
n Fig. 6. When the estimated QF falls into the range [30, 85], we
imply employ a single multi-domain CRED-Net trained on the nearest
redefined QF value to give the result directly, because the performance
rop is acceptable as compared with the increased model complexity.
ccordingly, the models selected for dealing with different Y-channel
ompressed images are listed in Table 2, in which QF𝑒𝑠𝑡 denotes the
stimated QF value of the image, and the QF value in bracket indicates
he compression level of images on which the network was trained.

The rectified network shares almost the same architecture as that
f CRED-Net with the following differences: (1) the dimension of the
etwork input is 128 × 128 × 2 instead of 136 × 136 × 66, and
ccordingly there is a four-pixel padding in the first 9 × 9 convolution
ayer to keep the dimensions consistent; (2) the number of average
ooling operations in the encoder has been increased to four to deal
ith the more difficult restoration task caused by various compression

evels. The training data of the network consists of distorted image
atches which are concatenated as one 128 × 128 × 2 tensor and
he corresponding reference patch set as the target. The two-channel
ensor contains one channel from the output of the corresponding
ulti-domain CRED-Net and the other channel from the original input.
y exploring both the original input and the intermediate deblocking
esult, the rectified network is able to produce decent rectifications for
arious levels of compression.

To enable our model to work for color images, we also train net-
orks to perform restoration tasks on Cb and Cr channels. As shown

n Fig. 1, the proposed CbCr-Net consists of a residual CRED-Net which
akes all the three channels (Y, Cb, and Cr) as input, and outputs a



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.

Y
i
S
[
t
e
t
o
t
p

2

i
w
T
I
d
l

𝑙

Table 2
Models selected for dealing with Y channel images of different compression levels.

Compressed image Model selected

QF𝑒𝑠𝑡 ∈ [1, 4] Multi-domain CRED-Net (QF = 5) + R-Net (QF ∈ [1, 4])
QF𝑒𝑠𝑡 = 5 Multi-domain CRED-Net (QF = 5)
QF𝑒𝑠𝑡 ∈ [6, 7] Multi-domain CRED-Net (QF = 5) + R-Net (QF ∈ [6, 7])
QF𝑒𝑠𝑡 ∈ [8, 9] Multi-domain CRED-Net (QF = 10) + R-Net (QF ∈ [8, 9])
QF𝑒𝑠𝑡 = 10 Multi-domain CRED-Net (QF = 10)
QF𝑒𝑠𝑡 ∈ [11, 14] Multi-domain CRED-Net (QF = 10) + R-Net (QF ∈ [11, 14])
QF𝑒𝑠𝑡 ∈ [15, 19] Multi-domain CRED-Net (QF = 20) + R-Net (QF ∈ [15, 19])
QF𝑒𝑠𝑡 = 20 Multi-domain CRED-Net (QF = 20)
QF𝑒𝑠𝑡 ∈ [21, 24] Multi-domain CRED-Net (QF = 20) + R-Net (QF ∈ [21, 24])
QF𝑒𝑠𝑡 ∈ [25, 29] Multi-domain CRED-Net (QF = 30) + R-Net (QF ∈ [25, 29])
QF𝑒𝑠𝑡 ∈ [30, 34] Multi-domain CRED-Net (QF = 30)
QF𝑒𝑠𝑡 ∈ [35, 49] Multi-domain CRED-Net (QF = 40)
QF𝑒𝑠𝑡 ∈ [50, 69] Multi-domain CRED-Net (QF = 60)
QF𝑒𝑠𝑡 ∈ [70, 85] Multi-domain CRED-Net (QF = 80)
QF𝑒𝑠𝑡 ∈ [86, 95] Multi-domain CRED-Net (QF = 80) + R-Net (QF ∈ [86, 95])

two-channel feature map representing the restored Cb and Cr channels
via a 3 × 3 convolution operation. The purpose of incorporating the

channel as input is to make use of the structure/texture information
n luminance to help guide the restoration of the color components.
pecifically, we train eight CbCr-Nets corresponding to eight QF ranges:
1, 5], [6, 10], [11, 20], [21, 30], [31, 40], [41, 55], [56, 75], and [76, 95], and
he optimal CbCr-Net is chosen based on the range into which the
stimated QF value falls. Different from that being used for recovering
he Y channel image, the CRED-Net used for the Cb and Cr channels
utput 64 (instead of 128) feature maps in each convolution layer
o save model complexity, as the Cb and Cr components are less
erceptible.

.2.4. Loss function
As mentioned previously, the goal of compression artifact reduction

s to recover from a compressed image I𝐶 an artifact free image I𝑅
hich is as similar as possible to the original uncompressed image I.
hus, the network is learned to minimize the difference between I𝑅 and
, which can be computed as a loss function. By referring to the previous
eblocking models, we adopt both pixel-wise mean square error (MSE)
oss and structural similarity (SSIM) [62] loss in our work.

The pixel-wise MSE loss is defined as

𝑀𝑆𝐸 = 1
𝑊𝐻

𝑊
∑

𝑖=1

𝐻
∑

𝑗=1

[

𝐼(𝑖, 𝑗) − 𝐼𝑅(𝑖, 𝑗)
]2 , (7)

where 𝐼(𝑖, 𝑗) and 𝐼𝑅(𝑖, 𝑗) denote the pixel values of spatial location (𝑖, 𝑗)
in I and I𝑅, respectively; 𝑊 and 𝐻 represent image width and height.

The pixel-wise MSE loss is effective in recovering the lower-
frequency component of an image, and thus is prone to cause blur in
restoration. To combat this issue, we additionally use SSIM loss defined
as

𝑙𝑆𝑆𝐼𝑀 = 1 − SSIM
(

I, I𝑅
)

, (8)

where SSIM
(

I, I𝑅
)

denotes the average value of SSIM
(

I, I𝑅
)

which is
computed by

SSIM(I, I𝑅) =

(

2𝜇I𝜇I𝑅 + 𝐶1

)(

2𝜎I𝜎I𝑅 + 𝐶2

)

(

𝜇2
I + 𝜇2

I𝑅
+ 𝐶1

)(

𝜎2I + 𝜎2I𝑅
+ 𝐶2

) , (9)

where 𝜇I∕I𝑅 and 𝜎I∕I𝑅 denote, respectively, the local mean and local
standard deviation of I∕I𝑅; 𝐶1 and 𝐶2 are two constants which take the
same values as in [62]. It has been demonstrated that SSIM achieves
better quality assessment performance than MSE, meaning that it is
more consistent with human visual perception of image similarity.

The overall loss function is a linear combination of the aforemen-
tioned two losses:
7

𝐿 = 𝑙𝑀𝑆𝐸 + 𝜆 ⋅ 𝑙𝑆𝑆𝐼𝑀 , (10)
where 𝜆 = 0.005 is a parameter used to adjust the weights of different
losses. We use the loss function defined in Eq. (10) to train the seven
multi-domain CRED-Nets and the eight rectified networks for the Y
channel image restoration. Also, we use pixel-wise MSE loss to train
the eight CbCr-Nets for the Cb and Cr channels restoration.

3. Experiments

In this section, we conduct experiments to demonstrate the effec-
tiveness of the proposed G-CAR framework in reducing JPEG compres-
sion artifacts. We also compare the performance of G-CAR with other
state-of-the-art deblocking/soft-decoding approaches.

3.1. Implementation details

3.1.1. Training data
The training data consists of 55,000 images selected from the MS-

COCO database [81], and 400 images collected from the Berkeley
segmentation database (BSD) [82]. Specifically, for training the QF
estimator, 45,000 pristine images were selected from the training set
of MS-COCO, and the Y channel of each image was compressed using
a random QF value which falls into the range [1, 95]. Note that we do
not consider images whose QF values are greater than 95 in this work,
as they contain distortions that are hardly perceived by human eyes.
Then, we extracted non-overlapping 144 × 144 patches from each of
the compressed Y channel images as the training data.

For training multi-domain CRED-Net, the same 45,000 MS-COCO
images, as well as 400 BSD images (200 from the training set and 200
from the validation set of BSD) were used. The same standard MATLAB
JPEG encoder was applied to the Y channel of the pristine image to
generate its JPEG-compressed version. As a result, for each of the seven
predefined QF values, 45,400 compressed images were generated. Non-
overlapping 144 × 144 patches were extracted from both the pristine
images and their corresponding compressed versions, and were used as
the training data.

For training the rectified network, 10,400 pristine images were
collected (10,000 images from the testing set of MS-COCO and an extra
400 from BSD) and their JPEG-compressed Y channels with varied QF
values were fed into the corresponding multi-domain CRED-Net. Then,
for each of the eight QF ranges, non-overlapping 128 × 128 patches
were extracted from the corresponding network output, which along
with their original compressed inputs and ground-truth, were used as
the training data.

For training CbCr-Net, the same 10,000 images were selected from
the testing set of MS-COCO, and the same standard MATLAB JPEG
encoder was applied to the Y, Cb, and Cr channels with varied QF
values to generate their JPEG-compressed versions. Consequently, for
each of the eight predefined QF ranges, 10,000 compressed images
with random QF values within the specific range were generated.
Then, non-overlapping 128 × 128 × 3 patches and their corresponding
ground-truths were extracted and used as the training data.

3.1.2. Parameter settings and network training
Experiments were conducted by using the PyTorch framework on a

workstation with a 12-core Intel Xeon 2.67 GHz CPU and an NVIDIA
GeForce GTX1080Ti GPU. The network parameters were initialized via
the He initializer [83] with values sampled from the uniform distri-
bution. The leaky slopes were initialized to 0.1 for PReLU. We used
the Adam algorithm [84] with an initial learning rate of 2 × 10−4 and
set the exponential decay rates for the first/second moment estimate
to 0.9 and 0.999, respectively. As for the other hyper-parameters of
Adam, the default settings were adopted. The learning rate was scaled
down by a factor of 0.75 after every 16,000 iterations for training
the multi-domain CRED-Net, rectified network, and CbCr-Net with a
batch size of 16, and linearly decreased to zero in 200 epochs for
training the QF estimator with a batch size of 64. As a hard-to-easy



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
transfer, we first trained our model on image patches generated with
the smallest QF value/range. Then the model corresponding to a larger
QF value/range was trained based on the model corresponding to the
previous smaller QF value/range. The same strategy was applied to
train all networks except the QF estimator. It takes about two days
to train the QF estimator, two weeks to train the seven multi-domain
CRED-Nets, one week to train the eight rectified networks, and two
days to train the eight CbCr-Nets. Consequently, the whole G-CAR
framework takes about 25 days for training.

3.2. Algorithms and performance measures

We compared the proposed G-CAR framework with several state-of-
the-art deblocking algorithms: the local-edge-regeneration-based
method proposed by Golestaneh et al. [85], the dual-domain soft decod-
ing (D2SD) algorithm [38], the trainable nonlinear reaction diffusion
(TNRD) model [48], and five CNN-based methods (ARCNN [43], Fast
ARCNN [86], DnCNN [44], DMCNN [57], and MWCNN [59]).

Three criteria were used to measure the performance of each de-
blocking algorithm: (1) peak signal-to-noise ratio (PSNR), (2) PSNR-
B [87], and (3) SSIM [62]. The PSNR index estimates image quality
in terms of noise, while PSNR-B modifies PSNR by additionally taking
into account blocking. The SSIM index operates based on similarity
measurements of three elements: luminance, contrast, and structure.
It has been demonstrated in [87] that PSNR-B and SSIM correlate
well with subjective quality, and perform much better than PSNR
when blocking artifacts are present. Each of these measures was com-
puted between the original (pristine, uncompressed) image and its
corresponding deblocked image.

3.3. Overall quantitative results

To quantitatively evaluate the performance of G-CAR, we used
as testing data JPEG-distorted grayscale images generated by JPEG-
compressing-decompressing pristine images in five public benchmark
datasets: LIVE1 [88], CSIQ [89], BSD100 (100 images in the validation
set of BSD [82]), Classic5 (baboon, barbara, boats, lena, and peppers), and
Urban100 [90]. Specifically, for the restoration performance test with
known compression quality factors, we compressed the pristine images
in all five datasets by using the standard MATLAB JPEG encoder at
seven QF values: 5, 10, 20, 30, 40, 60, and 80. Note that some of these
QF values (e.g., 10 and 20, etc.) are taken into account by most of the
existing deblocking algorithms. To test the algorithm performance on
images with unknown compression quality factors, we used the JPEG-
compressed images whose QF values are less than 90 in the SD-IVL
database [91]. To specifically test the performance of G-CAR on images
with a wide range of compression quality factors, we used the pristine
images in the LIVE1 and BSD100 datasets, and compressed each of
them via the same method at QF values ranging from 1 to 95 (with
a step size of 1).

3.3.1. Restoration performance
Tables 3 and 4 show the three performance measures of G-CAR

and other deblocking algorithms tested on the aforementioned dataset
images compressed with known and unknown QF values, respectively.
Also included in the two tables are the PSNR, PSNR-B, and SSIM values
of the original JPEG-compressed images for reference. Results of the
best-performing deblocking algorithms are bolded in Table 3. Note
that D2SD was originally designed to work on square images, and
thus its testing results on LIVE1, BSD100, Urban100, and SD-IVL are
unavailable. Also note that ARCNN, FastARCNN, and MWCNN were
originally trained on images with QF equals 10, 20, 30, and 40 only,
and thus their results on other unknown QF values are not presented.
The same principle is applied to TNRD and DMCNN, which were
originally trained on images with QF ∈ {10, 20, 30} and QF ∈ {10, 20},
respectively. Among all algorithms considered, only DnCNN and G-CAR
8

were tested on SD-IVL, as both methods take into account all possible
QF values.

As can be seen from Tables 3 and 4, the proposed G-CAR framework
consistently provides either the best or second-best PSNR, PSNR-B, and
SSIM as compared with other deblocking algorithms. Specifically, for
the unknown QF case, G-CAR shows better results than DnCNN. For
the known QF case, G-CAR achieves the best performance in terms of
all three performance measures when tested on images with QF equals
5, 10, 60, and 80. On images with other QF values (20, 30, and 40), G-
CAR achieves the best performance in terms of PSNR-B and SSIM, and
competitive results with respect to the best method in terms of PSNR.
This finding holds across all of the tested datasets.

To demonstrate the effectiveness of our model over the wide range
of QF values, we show improvement curves of the averaged PSNR and
SSIM tested on LIVE1 and BSD100 in Fig. 6 (PSNR-B curves display
similar trends as PSNR). As can be observed, the performance gain
of each individual multi-domain CRED-Net drops when images with
different compression levels are presented, while the G-CAR framework
can achieve almost equally high performance over a wide range of QF
values.

3.3.2. 𝑄𝐹 Estimation performance
As we mentioned, the G-CAR framework was tested on JPEG-

compressed images generated by compressing the pristine images in
LIVE1 and BSD100 using QF values ranging from 1 to 95. Here, we
investigate the performance of the QF estimator by examining how
accurately these 95 QF values, each of which corresponds to 129
compressed images, can be predicted. Fig. 7 shows the mean (denoted
by ‘‘×’’) and maximum-minimum prediction error bars for each of the
95 QF values. Observe that our QF estimator can predict QF values of
most images quite accurately with the maximal prediction error being
±2. Note that the mean prediction error for QF = 2 is relatively larger
than the others. This is due to fact that there is only a very minor
difference between images compressed with QF = 1 and QF = 2, which
confuses the estimator. Also note that the estimator does not perform
quite as well when QF is larger than 90. This is due to the fact that
sufficiently large QF values will give rise to very minor compression
artifacts which confuses the estimator. Despite these potential errors,
the overall performance of G-CAR is not apparently affected, because
our framework relies on QF ranges, not exact QF values, to operate
effectively, owning to the employed rectified network.

3.4. Representative qualitative results

In this section, we provide visual comparisons of different deblock-
ing algorithms applied on both synthetic and real-world compressed
images. For the synthetic compressed case, we selected two represen-
tative pristine images from the LIVE1 and Classic5 datasets, and the
images were compressed with QF values of 10 and 20, respectively.
Figs. 8 and 9 show the input JPEG-distorted images as well as the
resulting deblocking results from G-CAR and the aforementioned algo-
rithms. Also included in the two figures are the ground-truth grayscale
images for reference. As can be observed, G-CAR tends to yield better
results than ARCNN, TNRD, and DnCNN. Compared with MWCNN and
DMCNN, G-CAR seems to do a better job in dealing with regions that
contain striped lines, which might be attributed to the multi-domain
and multi-scale analysis adopted in our method.

For the real-world compressed case, the input images were JPEG
images downloaded from the Internet. Fig. 10 shows three webpage
images, and the corresponding deblocking results obtained from the G-
CAR framework. As shown in Fig. 10(a), (c), and (e), there are some
minor yet annoying compression artifacts around the edge and texture
areas, and our approach can alleviate these artifacts to make the images
look more pleasant. Although we are able to show only a limited set of
demonstrative images, overall, G-CAR shows either highly competitive
or superior deblocking performance as compared to existing methods.



Journal of Visual Communication and Image Representation 83 (2022) 103425

9

Y. Zhang et al.

Fig. 6. Averaged PSNR and SSIM gains obtained by applying G-CAR and individual multi-domain CRED-Net on JPEG-compressed images generated from the pristine images in
the LIVE1 [88] (a) and BSD100 [82] (b) databases. For each figure, the x-axis is the QF of the input and 𝑦-axis represents the corresponding performance gain where QF = 𝑁 (𝑁
= 5, 10, 20, 30, 40, 60, 80) denotes the multi-domain CRED-Net specifically trained on compressed images with QF = 𝑁 .

Fig. 7. Mean QF prediction errors and maximum-minimum error bars tested on LIVE1 and BSD100 dataset images compressed with a wide range of QF values. Note that the
symbol ‘‘×’’ on each bar represents the mean QF prediction error computed over 129 images; the top and bottom sides of each bar represent the maximal and minimal QF
prediction errors, respectively.

Fig. 8. Visual comparison of various deblocking methods applied on image bikes from the LIVE1 dataset [88] compressed with QF equals 10. The corresponding PSNR-B and SSIM
values are presented at the bottom of each restored image.



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
Table 3
Quantitative results of the proposed G-CAR framework vs. competing methods on various images datasets measured in terms of three objective quality assessment measures averaged
over the images in each dataset.

QF Method LIVE1 [88] BSD100 [82] Classic5 CSIQ [89] Urban100 [90]

PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM

5 JPEG 25.291 23.079 0.671 25.254 22.893 0.643 25.365 23.002 0.658 25.186 22.754 0.681 23.984 21.737 0.696
Golestaneh [85] 25.402 25.201 0.702 23.399 23.129 0.664 25.755 25.407 0.699 25.443 25.077 0.708 23.761 23.566 0.718
D2SD [38] – – – – – – 26.801 26.466 0.709 26.284 25.996 0.725 – – –
ARCNN [43] – – – – – – – – – – – – – – –
FastARCNN [86] – – – – – – – – – – – – – – –
TNRD [48] – – – – – – – – – – – – – – –
DnCNN [44] 26.715 26.590 0.722 26.555 26.389 0.688 27.079 26.978 0.721 26.676 26.520 0.739 25.904 25.791 0.767
MWCNN [59] – – – – – – – – – – – – – – –
DMCNN [57] – – – – – – – – – – – – – – –
G-CAR 27.335 27.311 0.744 26.956 26.933 0.706 27.702 27.695 0.744 27.351 27.347 0.762 27.089 27.046 0.805

10 JPEG 27.770 25.333 0.773 27.576 24.968 0.748 27.821 25.209 0.760 28.012 25.276 0.796 26.331 23.940 0.789
Golestaneh [85] 27.240 27.157 0.784 24.296 24.137 0.749 26.169 26.023 0.777 27.725 27.487 0.808 25.223 25.157 0.794
D2SD [38] – – – – – – 29.203 28.871 0.796 29.058 28.786 0.823 – – –
ARCNN [43] 28.958 28.684 0.808 28.739 28.382 0.778 29.034 28.757 0.793 29.228 28.911 0.829 28.061 27.806 0.837
FastARCNN [86] 28.927 28.481 0.809 28.745 28.234 0.780 29.034 28.509 0.795 29.215 28.655 0.831 28.040 27.511 0.839
TNRD [48] 29.145 28.876 0.811 28.790 28.462 0.780 29.282 29.038 0.799 29.456 29.144 0.834 28.405 28.079 0.846
DnCNN [44] 29.195 28.901 0.812 28.839 28.440 0.783 29.405 29.130 0.803 29.532 29.184 0.836 28.538 28.291 0.849
MWCNN [59] 29.694 29.321 0.825 29.172 28.693 0.792 30.008 29.591 0.819 29.906 29.472 0.843 29.781 29.347 0.873
DMCNN [57] 29.736 29.433 0.826 29.179 28.779 0.792 29.998 29.675 0.819 29.924 29.553 0.845 29.760 29.442 0.873
G-CAR 29.753 29.707 0.829 29.184 29.146 0.796 30.012 29.985 0.821 30.007 29.996 0.847 29.845 29.781 0.876

20 JPEG 30.072 27.566 0.851 29.725 26.972 0.832 30.123 27.501 0.834 30.530 27.683 0.868 28.572 26.188 0.858
Golestaneh [85] 28.510 28.507 0.852 25.460 25.433 0.822 27.117 27.090 0.837 29.576 29.537 0.871 27.068 27.063 0.856
D2SD [38] – – – – – – 31.459 31.154 0.855 31.509 31.236 0.885 – – –
ARCNN [43] 31.288 30.762 0.873 30.822 30.100 0.850 31.154 30.594 0.852 31.552 30.964 0.887 30.289 29.829 0.890
FastARCNN [86] 30.967 30.235 0.873 30.793 29.896 0.851 31.145 30.228 0.853 31.511 30.548 0.890 30.300 29.427 0.891
TNRD [48] 31.463 31.034 0.877 30.929 30.355 0.853 31.468 31.054 0.858 31.949 31.446 0.893 30.827 30.333 0.899
DnCNN [44] 31.589 31.070 0.880 31.046 30.293 0.857 31.631 31.192 0.861 32.100 31.501 0.896 31.011 30.606 0.902
MWCNN [59] 32.043 31.510 0.889 31.356 30.549 0.863 32.158 31.524 0.870 32.476 31.847 0.900 32.246 31.609 0.917
DMCNN [57] 32.081 31.502 0.888 31.323 30.519 0.863 32.124 31.497 0.869 32.442 31.752 0.901 32.055 31.338 0.915
G-CAR 32.070 31.998 0.890 31.353 31.282 0.866 32.172 32.108 0.871 32.503 32.487 0.902 32.265 32.151 0.919

30 JPEG 31.407 28.923 0.885 30.982 28.224 0.869 31.484 28.939 0.867 31.967 29.138 0.898 30.001 27.691 0.890
Golestaneh [85] 29.900 29.900 0.885 26.245 26.243 0.858 28.849 28.849 0.867 31.286 31.285 0.900 29.058 29.058 0.890
D2SD [38] – – – – – – 32.786 32.409 0.881 32.956 32.669 0.911 – – –
ARCNN [43] 32.674 32.140 0.904 32.142 31.424 0.886 32.506 31.976 0.881 33.149 32.601 0.915 31.936 31.494 0.917
FastARCNN [86] 31.896 30.987 0.900 31.895 30.728 0.882 32.246 31.122 0.878 32.746 31.466 0.914 31.476 30.302 0.913
TNRD [48] 32.836 32.280 0.906 32.223 31.485 0.887 32.777 32.236 0.884 33.409 32.761 0.918 32.350 31.737 0.922
DnCNN [44] 32.980 32.337 0.909 32.359 31.433 0.891 32.908 32.380 0.886 33.577 32.878 0.920 32.474 31.974 0.925
MWCNN [59] 33.455 32.808 0.915 32.674 31.678 0.895 33.434 32.620 0.893 33.986 33.263 0.925 33.728 32.921 0.936
DMCNN [57] – – – – – – – – – – – – – – –
G-CAR 33.475 33.346 0.916 32.669 32.565 0.897 33.391 33.215 0.893 33.986 33.951 0.925 33.733 33.558 0.937

40 JPEG 32.355 29.957 0.904 31.878 29.131 0.890 32.428 29.921 0.885 32.958 30.183 0.915 31.065 28.891 0.908
Golestaneh [85] 30.522 30.522 0.902 26.292 26.292 0.875 29.051 29.051 0.882 31.796 31.796 0.915 29.722 29.722 0.906
D2SD [38] – – – – – – 33.653 33.208 0.896 33.948 33.648 0.926 – – –
ARCNN [43] 33.613 33.112 0.920 32.996 32.241 0.904 33.324 32.793 0.895 33.958 33.405 0.928 32.799 32.422 0.930
FastARCNN [86] 32.944 32.080 0.920 32.835 31.648 0.906 33.150 32.075 0.897 33.664 32.500 0.930 32.586 31.670 0.930
TNRD [48] – – – – – – – – – – – – – – –
DnCNN [44] 33.957 33.284 0.925 33.272 32.238 0.909 33.770 33.231 0.900 34.566 33.839 0.934 33.495 32.975 0.938
MWCNN [59] 34.450 33.782 0.930 33.602 32.464 0.913 34.266 33.354 0.906 35.001 34.202 0.938 34.766 33.889 0.947
DMCNN [57] – – – – – – – – – – – – – – –
G-CAR 34.457 34.299 0.931 33.594 33.454 0.914 34.223 33.966 0.907 34.989 34.951 0.938 34.746 34.511 0.947

60 JPEG 33.984 31.793 0.929 33.428 30.833 0.919 33.962 31.566 0.910 34.610 32.022 0.937 32.913 30.967 0.933
Golestaneh [85] 30.825 30.825 0.923 26.831 26.831 0.898 28.585 28.585 0.901 32.567 32.567 0.933 30.580 30.580 0.926
D2SD [38] – – – – – – 35.010 34.424 0.917 35.598 35.257 0.945 – – –
ARCNN [43] – – – – – – – – – – – – – – –
FastARCNN [86] – – – – – – – – – – – – – – –
TNRD [48] – – – – – – – – – – – – – – –
DnCNN [44] 35.569 34.851 0.945 34.834 33.709 0.934 35.109 34.533 0.920 36.180 35.433 0.951 35.052 34.488 0.953
MWCNN [59] – – – – – – – – – – – – – – –
DMCNN [57] – – – – – – – – – – – – – – –
G-CAR 36.102 35.867 0.950 35.193 34.977 0.938 35.545 35.205 0.924 36.640 36.553 0.954 36.383 36.047 0.960

80 JPEG 36.873 35.258 0.958 36.287 33.625 0.953 36.443 34.432 0.938 37.459 35.373 0.961 36.687 35.409 0.964
Golestaneh [85] 31.214 31.214 0.946 26.394 26.394 0.918 27.722 27.722 0.920 33.389 33.389 0.952 31.525 31.525 0.951
D2SD [38] – – – – – – 37.191 36.364 0.942 38.329 37.775 0.966 – – –
ARCNN [43] – – – – – – – – – – – – – – –
FastARCNN [86] – – – – – – – – – – – – – – –
TNRD [48] – – – – – – – – – – – – – – –
DnCNN [44] 38.293 37.623 0.967 37.350 35.811 0.960 37.091 36.408 0.942 38.839 38.184 0.969 37.767 37.245 0.970
MWCNN [59] – – – – – – – – – – – – – – –
DMCNN [57] – – – – – – – – – – – – – – –
G-CAR 38.861 38.384 0.974 37.793 37.372 0.969 37.681 36.998 0.955 39.325 39.039 0.976 39.178 38.521 0.980
10



Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
Fig. 9. Visual comparison of various deblocking methods applied on image barbara from the Classic5 dataset compressed with QF equals 20. The corresponding PSNR-B and SSIM
values are presented at the bottom of each restored image.
Fig. 10. Visualization of three webpage images [(a),(c),(e)] and their corresponding deblocking results [(b),(d),(f)] obtained from the G-CAR framework.
Table 4
Quantitative results of the proposed G-CAR framework vs. competing method tested
on the SD-IVL database [91] measured in terms of three objective quality assessment
measures averaged over images.

PSNR PSNR-B SSIM

JPEG 38.129 35.220 0.949
DnCNN 39.933 38.899 0.964
G-CAR 40.045 39.960 0.967

4. Conclusion

In this paper, we presented a framework (G-CAR) for reducing
artifacts in images that have undergone JPEG compression. The pro-
posed framework consists of two stages: (1) estimation of the JPEG
quality factor (QF); and (2) QF-specific artifact reduction performed
via a cascaded residual encoder–decoder network in the pixel, DCT,
and DWT domains. By focusing on quality-relevant regions in the QF
estimation stage, G-CAR is able to quite accurately estimate the JPEG
quality factor to within approximately ±2 QF values. This estimated QF
value then allows the use of QF-specific artifact reduction, assisted by
trained rectified networks, when necessary. As we have demonstrated,
by using multiple domains, multiple scales, and a cascaded resid-
ual encoder–decoder network architecture, the proposed framework
is able to reduce JPEG artifacts at a level that rivals/surpasses the
current state-of-the-art, while requiring no prior information about the
encoding parameters.

Despite the effectiveness of the proposed G-CAR framework, there
are a number of aspects that could benefit from future research. One
line of future work would involve exploiting new network architectures
that could more accurately perform the QF estimation and compression
11
artifact reduction, or better still, to deal with different compression-
level images without the assistance of the QF estimator. Other future
work would involving extending G-CAR to operate for videos. Although
G-CAR is effective for images, compressed videos are more widely used.
Finally, more advanced frameworks that can restore images containing
other distortion types (e.g., JPEG2000 compression, noise, and blur,
etc.) could be developed. For example, the compression ratio (CR)
of a JPEG2000 image can be first predicted by a CR estimator and
then corresponding CR-specific network models could be employed
to perform the deringing/deblurring task. Thus, our current work is
limited to JPEG image restoration, and we envision improved artifact
reduction systems that could handle multiple distortion types in future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China (NSFC) (Grant No. 61901355, 62071375) and the China
Postdoctoral Science Foundation (Grant No. 2018M640991).

References

[1] G.K. Wallace, The JPEG still picture compression standard, IEEE Trans. Consumer
Electron. 38 (1) (1992) xviii–xxxiv.

[2] A. Skodras, C. Christopoulos, T. Ebrahimi, The jpeg 2000 still image compression
standard, IEEE Signal Process. Mag. 18 (5) (2001) 36–58.

[3] P. Jain, V. Tyagi, A survey of edge-preserving image denoising methods, Inform.
Syst. Front. 18 (1) (2016) 159–170.

http://refhub.elsevier.com/S1047-3203(21)00287-X/sb1
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb1
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb1
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb2
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb2
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb2
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb3
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb3
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb3


Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
[4] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, M.-H. Yang, A comparative study
for single image blind deblurring, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 1701–1709.

[5] Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, T.S. Huang, D3: Deep dual-domain
based fast restoration of JPEG-compressed images, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 2764–2772.

[6] T.P. O’Rourke, R.L. Stevenson, Improved image decompression for reduced
transform coding artifacts, IEEE Trans. Circuits Syst. Video Technol. 5 (6) (1995)
490–499.

[7] T. Meier, K.N. Ngan, G. Crebbin, Reduction of blocking artifacts in image and
video coding, IEEE Trans. Circuits Syst. Video Technol. 9 (3) (1999) 490–500.

[8] L. Ma, D. Zhao, W. Gao, Learning-based image restoration for compressed images,
Signal Process., Image Commun. 27 (1) (2012) 54–65.

[9] X. Zhang, R. Xiong, X. Fan, S. Ma, W. Gao, Compression artifact reduction
by overlapped-block transform coefficient estimation with block similarity, IEEE
Trans. Image Proces. 22 (12) (2013) 4613–4626.

[10] H.C. Reeve, J.S. Lim, Reduction of blocking effects in image coding, Opt. Eng.
23 (1) (1984) 230134.

[11] S.D. Kim, J. Yi, H.M. Kim, J.B. Ra, A deblocking filter with two separate modes
in block-based video coding, IEEE Trans. Circuits Syst. Video Technol. 9 (1)
(1999) 156–160.

[12] H.W. Park, Y.L. Lee, A postprocessing method for reducing quantization effects
in low bit-rate moving picture coding, IEEE Trans. Circuits Syst, Video Technol.
9 (1) (1999) 161–171.

[13] G. Zhai, W. Zhang, X. Yang, W. Lin, Y. Xu, Efficient image deblocking based on
postfiltering in shifted windows, IEEE Trans. Circuits Syst. Video Technol. 18 (1)
(2008) 122–126.

[14] B. Ramamurthi, A. Gersho, Nonlinear space-variant postprocessing of block coded
images, IEEE Trans. Acoust. Speech Signal Proces. 34 (5) (1986) 1258–1268.

[15] C. Wang, J. Zhou, S. Liu, Adaptive non-local means filter for image deblocking,
Signal Process., Image Commun. 28 (5) (2013) 522–530.

[16] N.C. Francisco, N.M. Rodrigues, E.A. Da Silva, S.M. De Faria, A generic post-
deblocking filter for block based image compression algorithms, Signal Process.,
Image Commun. 27 (9) (2012) 985–997.

[17] S. Minami, A. Zakhor, An optimization approach for removing blocking effects in
transform coding, IEEE Trans. Circuits Syst. Video Technol. 5 (2) (1995) 74–82.

[18] Y. Luo, R.K. Ward, Removing the blocking artifacts of block-based DCT
compressed images, IEEE Trans. Image Proces. 12 (7) (2003) 838–842.

[19] T. Chen, H.R. Wu, B. Qiu, Adaptive postfiltering of transform coefficients for the
reduction of blocking artifacts, IEEE Trans. Circuits Syst. Video Technol. 11 (5)
(2001) 594–602.

[20] S. Liu, A.C. Bovik, Efficient DCT-domain blind measurement and reduction of
blocking artifacts, IEEE Trans. Circuits Syst. Video Technol. 12 (12) (2002)
1139–1149.

[21] G.A. Triantafyllidis, D. Tzovaras, M.G. Strintzis, Blocking artifact detection and
reduction in compressed data, IEEE Trans. Circuits Syst. Video Technol. 12 (10)
(2002) 877–890.

[22] A. Nosratinia, Enhancement of JPEG-compressed images by re-application of
JPEG, J. VLSI Signal Proces. Syst. Signal Image Video Technol. 27 (1–2) (2001)
69–79.

[23] R. Samadani, A. Sundararajan, A. Said, Deringing and deblocking DCT compres-
sion artifacts with efficient shifted transforms, in: 2004 International Conference
on Image Processing, 2004. ICIP’04, Vol. 3, IEEE, 2004, pp. 1799–1802.

[24] H. Chen, X. He, L. Qing, S. Xiong, T.Q. Nguyen, DPW-SDNet: Dual pixel-wavelet
domain deep CNNs for soft decoding of JPEG-compressed images, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 711–720.

[25] D. Sun, W.-K. Cham, Postprocessing of low bit-rate block DCT coded images
based on a fields of experts prior, IEEE Trans. Image Proces. 16 (11) (2007)
2743–2751.

[26] T. Li, X. He, L. Qing, Q. Teng, H. Chen, An iterative framework of cascaded
deblocking and superresolution for compressed images, IEEE Trans. Multimedia
20 (6) (2017) 1305–1320.

[27] J. Ren, J. Liu, M. Li, W. Bai, Z. Guo, Image blocking artifacts reduction via patch
clustering and low-rank minimization, in: 2013 Data Compression Conference,
IEEE, 2013, p. 516.

[28] M. Yin, J. Gao, Y. Sun, S. Cai, Blocky artifact removal with low-rank matrix
recovery, in: 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2014, pp. 1996–2000.

[29] Y. Yang, N.P. Galatsanos, Removal of compression artifacts using projections
onto convex sets and line process modeling, IEEE Trans. Image Proces. 6 (10)
(1997) 1345–1357.

[30] X. Zhang, W. Lin, R. Xiong, X. Liu, S. Ma, W. Gao, Low-rank decomposition-based
restoration of compressed images via adaptive noise estimation, IEEE Trans.
Image Proces. 25 (9) (2016) 4158–4171.

[31] X. Zhang, R. Xiong, S. Ma, W. Gao, Reducing blocking artifacts in compressed
images via transform-domain non-local coefficients estimation, in: 2012 IEEE
International Conference on Multimedia and Expo, IEEE, 2012, pp. 836–841.

[32] C. Jung, L. Jiao, H. Qi, T. Sun, Image deblocking via sparse representation, Signal
Process., Image Commun. 27 (6) (2012) 663–677.
12
[33] H. Chang, M.K. Ng, T. Zeng, Reducing artifacts in JPEG decompression via a
learned dictionary, IEEE Trans. Signal Proces. 62 (3) (2013) 718–728.

[34] C.-H. Yeh, L.-W. Kang, Y.-W. Chiou, C.-W. Lin, S.-J.F. Jiang, Self-learning-based
post-processing for image/video deblocking via sparse representation, J. Vis.
Commun. Image Represent. 25 (5) (2014) 891–903.

[35] J. Mu, X. Zhang, R. Xiong, S. Ma, W. Gao, Adaptive multi-dimension sparsity
based coefficient estimation for compression artifact reduction, in: 2016 IEEE
International Conference on Multimedia and Expo (ICME), IEEE, 2016, pp. 1–6.

[36] L. Wang, X. Zhou, C. Wang, B. Jiang, Post-processing for JPEG-coded image
deblocking via sparse representation and adaptive residual threshold., KSII Trans.
Internet Inform. Syst. 11 (3) (2017).

[37] X. Liu, X. Wu, J. Zhou, D. Zhao, Data-driven sparsity-based restoration of JPEG-
compressed images in dual transform-pixel domain, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 5171–5178.

[38] X. Liu, X. Wu, J. Zhou, D. Zhao, Data-driven soft decoding of compressed
images in dual transform-pixel domain, IEEE Trans. Image Proces. 25 (4) (2016)
1649–1659.

[39] J. Zhang, S. Ma, Y. Zhang, W. Gao, Image deblocking using group-based sparse
representation and quantization constraint prior, in: 2015 IEEE International
Conference on Image Processing (ICIP), IEEE, 2015, pp. 306–310.

[40] C. Zhao, J. Zhang, S. Ma, X. Fan, Y. Zhang, W. Gao, Reducing image compression
artifacts by structural sparse representation and quantization constraint prior,
IEEE Trans. Circuits Syst. Video Technol. 27 (10) (2016) 2057–2071.

[41] J. Zhang, R. Xiong, C. Zhao, Y. Zhang, S. Ma, W. Gao, CONCOLOR: Constrained
non-convex low-rank model for image deblocking, IEEE Trans. Image Proces. 25
(3) (2016) 1246–1259.

[42] X. Liu, G. Cheung, X. Wu, D. Zhao, Random walk graph Laplacian-based
smoothness prior for soft decoding of JPEG images, IEEE Trans. Image Proces.
26 (2) (2016) 509–524.

[43] C. Dong, Y. Deng, C. Change Loy, X. Tang, Compression artifacts reduction by a
deep convolutional network, in: Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 576–584.

[44] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser:
Residual learning of deep CNN for image denoising, IEEE Trans. Image Proces.
26 (7) (2017) 3142–3155.

[45] X. Mao, C. Shen, Y.-B. Yang, Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections, in: Advances In
Neural Information Processing Systems, 2016, pp. 2802–2810.

[46] L. Cavigelli, P. Hager, L. Benini, CAS-CNN: A deep convolutional neural net-
work for image compression artifact suppression, in: 2017 International Joint
Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 752–759.

[47] J. Guo, H. Chao, One-to-many network for visually pleasing compression artifacts
reduction, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3038–3047.

[48] Y. Chen, T. Pock, Trainable nonlinear reaction diffusion: A flexible framework
for fast and effective image restoration, IEEE Trans. Pattern Anal. Mach. Intell.
39 (6) (2016) 1256–1272.

[49] Y. Tai, J. Yang, X. Liu, C. Xu, Memnet: A persistent memory network for image
restoration, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 4539–4547.

[50] B. Zheng, R. Sun, X. Tian, Y. Chen, S-Net: a scalable convolutional neural
network for JPEG compression artifact reduction, J. Electron. Imaging 27 (4)
(2018) 043037.

[51] X. Fu, Z.-J. Zha, F. Wu, X. Ding, J. Paisley, JPEG artifacts reduction via deep
convolutional sparse coding, in: Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 2501–2510.

[52] S. Zini, S. Bianco, R. Schettini, Deep residual autoencoder for blind universal
JPEG restoration, IEEE Access 8 (2020) 63283–63294.

[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, in: Advances In Neural
Information Processing Systems, 2014, pp. 2672–2680.

[54] L. Galteri, L. Seidenari, M. Bertini, A. Del Bimbo, Deep generative adver-
sarial compression artifact removal, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4826–4835.

[55] L. Galteri, L. Seidenari, M. Bertini, A. Del Bimbo, Deep universal generative
adversarial compression artifact removal, IEEE Trans. Multimedia 21 (8) (2019)
2131–2145.

[56] Z. Zhao, Q. Sun, H. Yang, H. Qiao, Z. Wang, D.O. Wu, Compression artifacts
reduction by improved generative adversarial networks, EURASIP J. Image Video
Proces. 2019 (1) (2019) 1–7.

[57] X. Zhang, W. Yang, Y. Hu, J. Liu, DMCNN: Dual-domain multi-scale convolu-
tional neural network for compression artifacts removal, in: 2018 25th IEEE
International Conference on Image Processing (ICIP), IEEE, 2018, pp. 390–394.

[58] J. Guo, H. Chao, Building dual-domain representations for compression artifacts
reduction, in: European Conference on Computer Vision, Springer, 2016, pp.
628–644.

[59] P. Liu, H. Zhang, K. Zhang, L. Lin, W. Zuo, Multi-level wavelet-CNN for image
restoration, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2018, pp. 773–782.

http://refhub.elsevier.com/S1047-3203(21)00287-X/sb6
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb6
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb6
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb6
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb6
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb7
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb7
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb7
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb8
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb8
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb8
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb9
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb9
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb9
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb9
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb9
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb10
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb10
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb10
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb11
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb11
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb11
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb11
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb11
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb12
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb12
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb12
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb12
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb12
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb13
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb13
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb13
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb13
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb13
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb14
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb14
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb14
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb15
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb15
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb15
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb16
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb16
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb16
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb16
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb16
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb17
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb17
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb17
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb18
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb18
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb18
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb19
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb19
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb19
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb19
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb19
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb20
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb20
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb20
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb20
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb20
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb21
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb21
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb21
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb21
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb21
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb22
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb22
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb22
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb22
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb22
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb23
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb23
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb23
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb23
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb23
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb25
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb25
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb25
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb25
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb25
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb26
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb26
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb26
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb26
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb26
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb27
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb27
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb27
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb27
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb27
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb28
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb28
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb28
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb28
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb28
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb29
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb29
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb29
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb29
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb29
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb30
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb30
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb30
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb30
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb30
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb31
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb31
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb31
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb31
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb31
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb32
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb32
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb32
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb33
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb33
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb33
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb34
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb34
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb34
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb34
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb34
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb35
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb35
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb35
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb35
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb35
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb36
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb36
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb36
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb36
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb36
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb38
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb38
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb38
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb38
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb38
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb39
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb39
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb39
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb39
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb39
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb40
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb40
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb40
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb40
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb40
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb41
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb41
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb41
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb41
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb41
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb42
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb42
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb42
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb42
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb42
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb44
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb44
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb44
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb44
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb44
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb45
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb45
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb45
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb45
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb45
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb46
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb46
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb46
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb46
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb46
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb48
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb48
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb48
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb48
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb48
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb50
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb50
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb50
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb50
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb50
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb52
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb52
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb52
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb53
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb53
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb53
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb53
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb53
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb55
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb55
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb55
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb55
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb55
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb56
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb56
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb56
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb56
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb56
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb57
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb57
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb57
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb57
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb57
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb58
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb58
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb58
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb58
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb58


Journal of Visual Communication and Image Representation 83 (2022) 103425Y. Zhang et al.
[60] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with
deep convolutional generative adversarial networks, 2015, arXiv preprint arXiv:
1511.06434.

[61] P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with condi-
tional adversarial networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134.

[62] Z. Wang, A.C. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: From
error visibility to structural similarity, IEEE Trans. Image Proces. 13 (4) (2004)
600–612.

[63] A. Dosovitskiy, T. Brox, Generating images with perceptual similarity metrics
based on deep networks, in: Advances In Neural Information Processing Systems,
2016, pp. 658–666.

[64] J. Johnson, A. Alahi, L. Fei-Fei, Perceptual losses for real-time style transfer and
super-resolution, in: European Conference on Computer Vision, Springer, 2016,
pp. 694–711.

[65] P. Svoboda, M. Hradis, D. Barina, P. Zemcik, Compression artifacts removal using
convolutional neural networks, 2016, arXiv preprint arXiv:1605.00366.

[66] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, 2015, pp. 234–241.

[67] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, 2015,
arXiv preprint arXiv:1511.07122.

[68] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, T.S. Huang, Revisiting dilated
convolution: A simple approach for weakly-and semi-supervised semantic seg-
mentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 7268–7277.

[69] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, G. Cottrell, Understanding
convolution for semantic segmentation, in: 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV), IEEE, 2018, pp. 1451–1460.

[70] R. Hamaguchi, A. Fujita, K. Nemoto, T. Imaizumi, S. Hikosaka, Effective use
of dilated convolutions for segmenting small object instances in remote sensing
imagery, in: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), IEEE, 2018, pp. 1442–1450.

[71] W. Shi, F. Jiang, D. Zhao, Single image super-resolution with dilated convo-
lution based multi-scale information learning inception module, in: 2017 IEEE
International Conference on Image Processing (ICIP), IEEE, 2017, pp. 977–981.

[72] G. Lin, Q. Wu, L. Qiu, X. Huang, Image super-resolution using a dilated
convolutional neural network, Neurocomputing 275 (2018) 1219–1230.

[73] Z. Zhang, X. Wang, C. Jung, DCSR: Dilated convolutions for single image
super-resolution, IEEE Trans. Image Proces. 28 (4) (2018) 1625–1635.

[74] T. Wang, M. Sun, K. Hu, Dilated deep residual network for image denoising, in:
IEEE International Conference on Tools with Artificial Intelligence (ICTAI), IEEE,
2017, pp. 1272–1279.
13
[75] Y. Peng, L. Zhang, S. Liu, X. Wu, Y. Zhang, X. Wang, Dilated residual networks
with symmetric skip connection for image denoising, Neurocomputing 345
(2019) 67–76.

[76] C. Tian, Y. Xu, L. Fei, J. Wang, J. Wen, N. Luo, Enhanced CNN for image
denoising, CAAI Trans. Intell. Technol. 4 (1) (2019) 17–23.

[77] J. Li, Y. Wu, J. Zhao, L. Guan, C. Ye, T. Yang, Pedestrian detection with
dilated convolution, region proposal network and boosted decision trees, in:
2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017,
pp. 4052–4057.

[78] H. Song, W. Wang, S. Zhao, J. Shen, K.-M. Lam, Pyramid dilated deeper convlstm
for video salient object detection, in: Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 715–731.

[79] J. Zhang, C. Lu, J. Wang, L. Wang, X.-G. Yue, Concrete cracks detection based
on FCN with dilated convolution, Appl. Sci. 9 (13) (2019) 2686.

[80] Z. Jiang, Y. Chen, Y. Zhang, Y. Ge, F.-F. Yin, L. Ren, Augmentation of CBCT
reconstructed from under-sampled projections using deep learning, IEEE Trans.
Med. Imaging 38 (11) (2019) 2705–2715.

[81] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C.L.
Zitnick, Microsoft COCO: Common objects in context, 2014, pp. 740–755.

[82] D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics, in: IEEE International Conference on Computer
Vision (ICCV), Vol. 2, 2001, pp. 416–423.

[83] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1026–1034.

[84] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[85] S.A. Golestaneh, D.M. Chandler, Algorithm for JPEG artifact reduction via local
edge regeneration, J. Electron. Imaging 23 (1) (2014) 013018.

[86] K. Yu, C. Dong, C.C. Loy, X. Tang, Deep convolution networks for compression
artifacts reduction, 2016, arXiv preprint arXiv:1608.02778.

[87] C. Yim, A.C. Bovik, Quality assessment of deblocked images, IEEE Trans. Image
Proces. 20 (1) (2010) 88–98.

[88] H.R. Sheikh, M.F. Sabir, A.C. Bovik, A statistical evaluation of recent full
reference image quality assessment algorithms, IEEE Trans. Image Proces. 15
(11) (2006) 3440–3451.

[89] E.C. Larson, D.M. Chandler, Most apparent distortion: full-reference image quality
assessment and the role of strategy, J. Electron. Imaging 19 (1) (2010) 011006.

[90] J.-B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed
self-exemplars, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 5197–5206.

[91] S. Corchs, F. Gasparini, R. Schettini, No reference image quality classification
for JPEG-distorted images, Digit. Signal Process. 30 (2014) 86–100.

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb62
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb62
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb62
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb62
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb62
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb63
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb63
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb63
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb63
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb63
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb64
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb64
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb64
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb64
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb64
http://arxiv.org/abs/1605.00366
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb66
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb66
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb66
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb66
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb66
http://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb69
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb69
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb69
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb69
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb69
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb70
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb71
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb71
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb71
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb71
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb71
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb72
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb72
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb72
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb73
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb73
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb73
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb74
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb74
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb74
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb74
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb74
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb75
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb75
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb75
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb75
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb75
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb76
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb76
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb76
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb77
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb79
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb79
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb79
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb80
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb80
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb80
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb80
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb80
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb81
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb81
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb81
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb82
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb85
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb85
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb85
http://arxiv.org/abs/1608.02778
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb87
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb87
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb87
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb88
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb88
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb88
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb88
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb88
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb89
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb89
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb89
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb91
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb91
http://refhub.elsevier.com/S1047-3203(21)00287-X/sb91

	Multi-domain residual encoder–decoder networks for generalized compression artifact reduction
	Introduction
	Algorithm
	Compression quality factor estimation
	QF-specific compression artifact reduction
	DCT/DWT-domain auto-encoder
	CRED-Net
	Compression artifact reduction
	Loss function


	Experiments
	Implementation details
	Training data
	Parameter settings and network training

	Algorithms and performance measures
	Overall quantitative results
	Restoration performance
	QF Estimation performance

	Representative qualitative results

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


