
Contents lists available at ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 29 (2014) 725–747
http://d
0923-59

n Corr
journal homepage: www.elsevier.com/locate/image
C-DIIVINE: No-reference image quality assessment based
on local magnitude and phase statistics of natural scenes

Yi Zhang a,n, Anush K. Moorthy b, Damon M. Chandler a, Alan C. Bovik b

a School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
b Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
a r t i c l e i n f o

Article history:
Received 26 September 2013
Received in revised form
15 January 2014
Accepted 14 May 2014
Available online 28 May 2014

Keywords:
Image quality assessment
Complex wavelet transform
Complex Gaussian scale mixture
Relative phase
x.doi.org/10.1016/j.image.2014.05.004
65/& 2014 Elsevier B.V. All rights reserved.

esponding author.
a b s t r a c t

It is widely known that the wavelet coefficients of natural scenes possess certain statistical
regularities which can be affected by the presence of distortions. The DIIVINE (Distortion
Identification-based Image Verity and Integrity Evaluation) algorithm is a successful
no-reference image quality assessment (NR IQA) algorithm, which estimates quality based
on changes in these regularities. However, DIIVINE operates based on real-valued wavelet
coefficients, whereas the visual appearance of an image can be strongly determined by
both the magnitude and phase information.

In this paper, we present a complex extension of the DIIVINE algorithm (called
C-DIIVINE), which blindly assesses image quality based on the complex Gaussian scale
mixture model corresponding to the complex version of the steerable pyramid wavelet
transform. Specifically, we applied three commonly used distribution models to fit the
statistics of the wavelet coefficients: (1) the complex generalized Gaussian distribution is
used to model the wavelet coefficient magnitudes, (2) the generalized Gaussian distribu-
tion is used to model the coefficients' relative magnitudes, and (3) the wrapped Cauchy
distribution is used to model the coefficients' relative phases. All these distributions have
characteristic shapes that are consistent across different natural images but change
significantly in the presence of distortions. We also employ the complex wavelet
structural similarity index to measure degradation of the correlations across image scales,
which serves as an important indicator of the subbands' energy distribution and the loss
of alignment of local spectral components contributing to image structure. Experimental
results show that these complex extensions allow C-DIIVINE to yield a substantial
improvement in predictive performance as compared to its predecessor, and highly
competitive performance relative to other recent no-reference algorithms.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

A crucial task for any system that processes images for
human viewing is the ability to assess the quality of each
image in a manner that is consistent with human judg-
ments of quality. To address this need, numerous algo-
rithms for image quality assessment (IQA) have been
developed and refined over the past several decades using a
wide variety of image-modeling techniques. IQA algorithms
have been successfully used in applications such as image and
video coding (e.g., [1–4]); unequal error protection (e.g., [5]);
image synthesis (e.g., [6,7]); and in numerous other areas
(e.g., [8–11]).

The vast majority of IQA algorithms are so-called full-
reference algorithms, which take as input both a distorted
image and a reference image, and yield as output an
estimate of the quality difference between the two images.
The simplest approach to full-reference (FR) IQA is to
measure local pixelwise differences, then collapse these
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1 In this paper, we consider natural images to be photographic
images containing subject matter that may occur during normal photopic
or scotopic viewing conditions.
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local measurements into a scalar which represents the
overall quality difference; e.g., the mean-squared error
(MSE) or peak signal-to-noise ratio (PSNR). More sophis-
ticated FR IQA methods have employed a wide variety of
approaches ranging from estimating quality differences
based on weighted MSE/PSNR variants (often measured in
different domains; e.g., [12]), to estimating quality differ-
ences based on models of the human visual system (e.g.,
[13–19,3,20–22,4,23–26]), and estimating quality based on
various feature-extraction-based or information-theoretic-
based approaches (e.g., [27–33]).

FR IQA provides a useful and effective way to evaluate
quality differences; however, in many cases, the reference
image or even partial information about the reference
image is not available (partial information may be used
for reduced-reference IQA; see, e.g., [34–36]). Although
humans can often effortlessly judge the quality of a
distorted image in the absence of a reference image, the
no-reference QA task has proven to be quite challenging
from a modeling perspective. No-reference IQA models
attempt to perform this task, i.e., to estimate the quality of
a distorted image without a corresponding reference
image. The advantages of a no-reference (NR) approach
are numerous: in an IP streaming application, for example,
only the compressed (distorted) image is received, and
thus quality judgments must be made without access to
the reference. Similarly, in digital photography, it is often
desirable to determine the quality of the captured image
relative to the original scene; this scenario requires a NR
approach because the original scene cannot be provided to
the IQA method.

The vast majority of NR IQA algorithms attempt to
detect specific types of distortion such as blurring, block-
ing, ringing, or various forms of noise (e.g., [37–42]).
For example, algorithms for sharpness/blurriness estima-
tion have been shown to perform well in NR IQA of
blurred images. The vast majority of sharpness/blurriness
estimators operate under the assumption that the app-
earance of edges is affected by blur, and accordingly
these methods estimate sharpness/blurriness by using
various edge-appearance models (e.g., [43–45]). Other
methods have used spectral information to estimate
sharpness (e.g., [46,47]), whereas more recent hybrid
approaches employ a combination of edge-based and
transform-based methods. NR IQA algorithms have also
been designed specifically for JPEG or JPEG2000 com-
pression artifacts (e.g., [37–39]). Such JPEG-specific
algorithms generally employ detectors for blocking and
blurring, which are often combined with measures of
visual masking to estimate the visibility of each of these
artifacts, and thereby estimate quality. Similar NR IQA
algorithms have been designed specifically for JPEG2000
ringing, blurring, and aliasing artifacts (e.g., [40,37–39]).
Some NR algorithms have employed combinations of these
aforementioned measures, supplemented with noise mea-
sures and/or other measures for degradations of other visual
features (e.g., [41,48,42]).

Other NR IQA algorithms take a more distortion-
agnostic approach. For example, a training/learning-based
approach has been recently developed which extracts
Gabor-filter-based features from local image patches and
then learns the mapping from the quantized feature space
to image quality by using a visual-codebook-based method
[49,50]. Other approaches estimate image quality based on
the extent to which the statistical properties of the
distorted image deviate from those of natural images.1

Natural scenes have been studied extensively over the last
two decades and these studies have revealed that such
images have a large number of statistical regularities (e.g.,
[51–53]). Distortions can lead to deviations in these
statistical regularities, and thus it is possible to estimate
quality by quantifying these deviations. For example, in
[54], the authors developed a NR IQA algorithm which
estimates quality by using the Renyi entropy to measure
deviations in anisotropy along various orientations. In [55],
the authors developed a NR IQA algorithm (BLIINDS)
which estimates quality based on deviations in DCT
statistics (e.g., changes in the characteristic shape/symme-
try of DCT coefficient histograms). Most recently, a spatial-
domain-based NR IQA model was proposed in [56], which
uses scene statistics of locally normalized luminance
coefficients to quantify possible losses of ‘naturalness’ in
the image due to the presence of distortion, leading to a
holistic measure of quality.

One particular NR IQA algorithm, DIIVINE (Distortion
Identification-based Image Verity and INtegrity Evalua-
tion) [57], — the algorithm which the method proposed in
this paper extends — employs a two-stage framework for
estimating quality based on natural-scene statistics. DII-
VINE estimates quality by using statistical features which
are generally consistent across reference images, but
which change in the presence of distortion. In this way,
it is possible to compute the extent to which the statistical
features in the distorted image deviate from these
expected natural statistical features, and then to use these
deviations as proxy measures of quality degradations.

In [57], a steerable pyramid decomposition is first
applied to obtain a multi-scale, multi-orientation repre-
sentation of the distorted image [58]. The real-valued
coefficients are then processed through a divisive normal-
ization operation. As demonstrated in [57], the histograms
of these normalized coefficients exhibit Gaussian-like
profiles which are generally consistent across natural
images. The coefficients were also shown to exhibit strong
correlations between spatially co-located/neighboring
coefficients from different scales and orientations. From
the distorted image, 88 statistical features are measured in
[57]. These 88 statistical features are then used to estimate
quality via the following two stages: The first stage per-
forms distortion identification. In this stage, the statistical
features extracted from the distorted image are fed to
a classifier to estimate the probability that the image
is afflicted by one of the multiple distortion types.
The second stage performs distortion-specific quality
assessment. In this stage, the same statistical features are
used to estimate the distortion-specific quality of the
image. Specifically, a regression model for each distortion
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type is used to map the statistical features to quality
estimates based on the probabilities estimated in the first
stage. DIIVINE has been shown to perform remarkably well
in estimating quality. It is one of the best-performing NR
IQA methods available, its ideas have given rise to a related
pixel-based NR IQA method [56], and it has been shown to
be competitive with top-performing FR IQA algorithms.

In this paper, we present an extended version of the
DIIVINE algorithm which operates based on the local
magnitude and phase statistics of complex wavelet image
coefficients. Over the last three decades, considerable
insights into the properties of visual systems have been
gained by considering the statistics of natural scenes (e.g.,
[51,59,60,52,53,61]). These approaches have demonstrated
that many basic properties of the early visual system (both
selectivity and tiling of visual neurons) and properties of
visual perception can be linked to the statistics of natural
scenes. Natural scenes exhibit a characteristic magnitude
spectrum which generally follows a f �α trend, where f
denotes radial spatial frequency [51]. Estimates of the para-
meter α for any given scene population typically vary from
0.7 to 1.5 with averages in the range of approximately 1.1
[59,62]. Natural scenes also posses a coherent phase struc-
ture which has been shown to be the primary contributor to
an image's phenomenal appearance. Oppenheim and Lim
[63] first demonstrated this fact by synthesizing an image
from the magnitude spectrum of one image and phase
spectrum of another; the resulting image appeared much
more similar to the image whose phase structure was used.
Thomson, Foster, and Summers [64] have demonstrated that
randomization or quantization of this phase structure
severely impacts the semblance of an image. Bex and
Makous [65] have shown that randomizing a natural image's
phase structure at a particular spatial scale decreases detec-
tion and contrast-matching performance by the same
amount as removing the spatial scale altogether. In addition,
Geisler et al. [66] have demonstrated that human perfor-
mance in detecting contours can be predicted via a
model based on the edge co-occurrence statistics of natural
images.

Yet, although the phase spectrum of full-sized images
has long been argued to be much more perceptually
important than the magnitude spectrum, the individual
contributions of magnitude and phase have been shown to
vary according to scale. Morgan et al. [67] demonstrated
that for larger image patches, the perceived image struc-
ture is well described by the phase spectrum, whereas for
small image patches, the magnitude spectrum dominates.
More recently, Field and Chandler [68] argued that the
scale-dependent importance of magnitude vs. phase is due
to the sparse structure of images and the nature of the
information in small patches. Specifically, most small
image patches contain blank regions, single edges, or bits
of texture. The power spectra for these small patches can be
quite informative regarding which of these classes are present.
However, larger image patches will typically contain a sig-
nificant number of edges as well as textures and blank
regions. For these larger patches, the phase spectrum is
determined by the relative combination and positions of these
features, and thus the phase spectrum will begin to play a
larger role in determining the image's appearance.
Here, we present a complex extension of DIIVINE, called
C-DIIVINE, which extends its predecessor by estimating
quality based on changes in local magnitude and phase
statistics. To demonstrate the importance of phase statistics
in predicting image quality, Fig. 1(a) shows two JPEG-
compressed images from the TID database [69], which have
different visual qualities. When a real-valued steerable
pyramid wavelet decomposition is employed, the two
images have almost the same subband coefficient histograms
after divisive normalization. When using a complex version
of the wavelet decomposition, the magnitude of the
complex-valued subband coefficients still has similar distri-
butions (see Fig. 1(b)). However, their phase information can
be distinguishable. For some subbands (e.g., 901 orientation
subband), the phase distributions are the same, but for
others (e.g., 301 and 1501 orientation subbands), they can
be significantly different. Therefore, the proposed C-DIIVINE
algorithm, which analyzes both the magnitude and the
phase statistics, can predict the quality of these two images
quite well, whereas DIIVINE cannot.

Numerous studies have shown that the neurons in
primary visual cortex (V1) are organized in micro-
columns of similar frequency and orientation, and approxi-
mately, divided into several central frequencies (on a log-
scale) and multiple orientations (between 01 and 1801).
Thus, the primary visual area V1 functions like filters/filter
banks, and its response has been widely modeled by Gabor
filters with specific central frequencies and orientations
[70–74]. Here, to mimic the responses of V1 area,
C-DIIVINE first applies a complex steerable pyramid decom-
position to the distorted image to obtain a complex-valued
multi-scale, multi-orientation representation. As in DIIVINE,
the coefficients are then processed through a divisive
normalization operation, and the normalized complex
coefficients are modeled by using a complex Gaussian scale
mixture [75]. C-DIIVINE then measures separate magni-
tude- and phase-specific versions of a subset of the statis-
tical features used in DIIVINE, including the use of a
complex version of SSIM (CW-SSIM) [76] to measure
correlations across scales. These obtained statistical features
are finally fed into combined frameworks to estimate the
image's quality.

The main contributions of this work are as follows: (1)
C-DIIVINE analyzes distorted images by using a complex
version of the steerable pyramid wavelet transform, and the
obtained complex wavelet coefficients are utilized to blindly
assess image quality based on a complex Gaussian scale
mixture (CGSM). We show in this work that distortions affect
both the magnitude and phase statistics of the wavelet
coefficients. (2) By using the CGSM, we propose to model
the complex wavelet coefficient statistics in three ways: (a)
the coefficient magnitudes are characterized by the complex
generalized Gaussian distribution; (b) the coefficient relative
magnitudes are characterized by the generalized Gaussian
distribution; and (c) the coefficient relative phases are
characterized by the wrapped Cauchy distribution. We also
employ the CW-SSIM index to measure the coefficient
correlation between different wavelet scales. (3) Based on
(2), three types of quality-aware statistical features are
extracted: magnitude-based features, phase-based features,
and across-scale correlation features. These features are then
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Fig. 1. Two JPEG-compressed images have almost the same wavelet coefficient (magnitude) histograms, but different phase information. Notice that both
images are decomposed at two scales and six orientations. The histograms plotted correspond to the coarser scale. Similar results are observed at the finer scale.
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utilized to evaluate image quality based on a combined
framework which consists of the one-stage framework used
in [56] and the two-stage framework used in [57]. (4) We
demonstrate in this work that these aforementioned
extensions allow C-DIIVINE not only to yield a substantial
improvement in NR IQA performance as compared to its
predecessor, but also to challenge some state-of-the-art IQA
algorithms.
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This paper is organized as follows: Section 2 provides
details of the C-DIIVINE algorithm, including an introduc-
tion to the complex Gaussian scale mixture model, and
details of the magnitude and phase statistics employed. In
Section 3, we analyze and discuss the performance of
C-DIIVINE on various image-quality databases; this section
also includes a discussion of the individual contributions
of the magnitude-, phase-, and CW-SSIM-based features
to the overall performance. General conclusions are
presented in Section 4.
2. Algorithm

The first step in C-DIIVINE is to apply a complex
steerable pyramid decomposition to the distorted image
to obtain complex-valued subband coefficients fromwhich
the statistical features are measured. Next, three types of
features are measured: (1) magnitude-based features, (2)
phase-based features, and (3) across-scale correlation
features. Finally, these features are trained by using sup-
port vector machine (SVM) learning to estimate image
quality. Fig. 2 shows a block diagram of the algorithm.
In this section, we provide details of each of the steps.
2.1. Complex steerable pyramid coefficient magnitudes and
phases

As shown in Fig. 2, the input (distorted) image is
first decomposed via a wavelet-based decomposition.
The original DIIVINE algorithm employed a steerable
pyramid decomposition to obtain real-valued coefficients
from which the statistical features were measured. In
C-DIIVINE, a complex steerable pyramid is employed to
obtain complex-valued coefficients from which the mag-
nitude- and phase-based statistical features are measured.

Let I denote the input (distorted) grayscale image,2 and let
fZs;og denote a set of complex steerable pyramid subbands
indexed by scale s and orientation o. We apply the complex
steerable pyramid decomposition using three scales sA ½1;3�
and six orientations oA ½01;301;601;901;1201;1501�, resulting
in a total of 18 subbands. (The same six orientations and only
two scales are used in [57].)
2 Color images are converted to grayscale via the pointwise trans-
formation I¼ 0:2989� Rþ0:5870� Gþ0:1140� B, where R, G, and B
denote, respectively, the red, green, and blue color components of the
image. Other grayscale transformations such as just using the G plane or
using RþGþB yield similar predictive performances.
Let zs;oðx; yÞ denote a complex-valued coefficient located
at spatial position (x,y) in subband Zs;o. The magnitude and
phase of zs;oðx; yÞ, denoted by jzs;oðx; yÞj and ∠zs;oðx; yÞ,
respectively, are given by

jzs;oðx; yÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rfzs;oðx; yÞg2þIfzs;oðx; yÞg2

q
ð1Þ

∠zs;o x; yð Þ ¼ tan �1 Ifzs;oðx; yÞg
Rfzs;oðx; yÞg

� �
ð2Þ

where Rfzs;oðx; yÞg and Ifzs;oðx; yÞg denote the real and
imaginary components of zs;oðx; yÞ, respectively.

The relative magnitude among four neighboring
complex-valued coefficients z1;1, z1;2, z2;1, and z2;2, denoted
by ψ , is given by ψ ¼ jz1;1jþjz2;2j�jz1;2j�jz2;1j. The relative
phase between two complex-valued coefficients z1 and z2,
denoted by ϕ, is given by ϕ¼ ∠z1�∠z2. Therefore, for each
coefficient zs;oðx; yÞ, we measure the relative magnitude
which is given by

ψ s;oðx; yÞ ¼ jẑs;oðx; yÞjþjẑs;oðxþ1; yþ1Þj
�jẑs;oðxþ1; yÞj�jẑs;oðx; yþ1Þj; ð3Þ

where ẑs;oðx; yÞ is the divisively normalized version of
zs;oðx; yÞ (see Section 2.2). We also measure the relative
phase between horizontal and vertical spatial neighbors,
resulting in a horizontal relative phase ϕhorz

s;o ðx; yÞ and a
vertical relative phase ϕvert

s;o ðx; yÞ, which are given by

ϕhorz
s;o ðx; yÞ ¼∠zs;oðx; yÞ�∠zs;oðxþ1; yÞ ð4Þ

ϕvert
s;o ðx; yÞ ¼∠zs;oðx; yÞ�∠zs;oðx; yþ1Þ: ð5Þ

The relative phases computed by Eqs. (4) and (5) for
each coefficient fall in the range ½�2π;2π�, whereas the
distribution we use to model the relative phase statistics
requires �πrϕrπ (see Eq. (12)). Thus, we map the
relative phase as follows:

ϕ̂
horz=vert
s;o ¼

ϕhorz=vert
s;o ; �πrϕhorz=vert

s;o rπ

ϕhorz=vert
s;o þ2π; �2πrϕhorz=vert

s;o o�π:

ϕhorz=vert
s;o �2π; πoϕhorz=vert

s;o r2π

8>>><
>>>:

ð6Þ

2.2. Divisive normalization

Divisive normalization was proposed in the literature of
neural physiology to account for the nonlinear behavior of
certain cortical cells and the contrast-gain-control mechanism
observed in early visual processing (see [77,53,4]). For
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example, it has been shown in [78] that an additional local
gain-control divisive normalization process allows for a more
complete explanation of the striate cell responses when
interpreted by the conventional linear/energy model, which
assumes that the simple cells in the striate cortex act like half-
wave-rectified linear operators, and the complex cells act like
energy mechanisms, constructed from linear subunits.
In computational vision science, a long-standing view of the
purpose of early visual sensory processing is the increased
statistical independence between neuronal responses. The
divisive normalization process has been shown to successfully
reduce the statistical dependencies between subbands, pro-
ducing approximately Gaussian marginal distributions for the
wavelet coefficients [79], and this technique has been expli-
citly used for RR IQA in [80].

We applied the same technique to the complex wavelet
coefficients (following [57]). As demonstrated in [75], the
real and imaginary parts of the neighboring complex
subband coefficients can have the same scalar multiplier
if either one follows the Gaussian scale mixture, and by
dividing an estimated scalar multiplier (i.e., divisive nor-
malization), the wavelet coefficient magnitudes can be
characterized by a complex generalized Gaussian distribu-
tion (see Fig. 5). We show that distortions affect the
histogram shapes of these normalized magnitudes,
whereas the natural images maintain almost the same
magnitude histogram profiles.

The divisively normalized version of each coefficient,
denoted by ẑs;o, is obtained via

ẑs;o x; yð Þ ¼ zs;oðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NP

TC�1
Pall

P
q ; ð7Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞPTC�1

Pall
P

q
is a real-valued scalar representing

the combined response of the normalization pool (neigh-
boring coefficients). Note that, because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞPTC�1

Pall
P

q
is a

real-valued scalar, both Rfzs;oðx; yÞg and Ifzs;oðx; yÞg are
divided by this same value. Accordingly, the magnitude
jzs;oðx; yÞj is affected by the divisive normalization, whereas
the phase ∠zs;oðx; yÞ (and thus the relative phase) is not.

The vector P in Eq. (7) is a 15-element vector consisting
of the magnitudes of neighboring coefficients in space,
scale, and orientation. Specifically, P contains nine coeffi-
cient magnitudes from a 3 � 3 spatial neighborhood
around zs;oðx; yÞ, one coefficient magnitude from the cor-
responding spatial location in the parent band, and five
coefficient magnitudes from other orientations at the same
spatial location and scale. This is the same neighborhood
employed in [57], here using the coefficient magnitudes
rather than the real values. The quantity CPall

¼ EfPallP
T
allg is

the covariance matrix of the vector Pall; this latter vector is
composed of the magnitudes of all of the coefficients.

2.3. Statistical models of magnitude and phase

As mentioned in Section 1, the key idea employed by
DIIVINE is to use statistical features which are generally
consistent across reference images, but which change in
the presence of distortion. In this way, it is possible to
measure deviations in these expected (natural) statistical
features as proxy measures of quality degradations.
In [57], it was shown that the real-valued subband
coefficients of natural images (i.e., undistorted, reference
images), following divisive normalization, exhibit consis-
tent Gaussian-like histograms (marginal probability den-
sities). For distorted images, the marginal densities of the
real-valued subband coefficients were markedly and con-
sistently more Laplacian-like. Thus, in [57], features corre-
sponding to the shapes of the marginal densities of the
subband coefficients were used to estimate quality.

Here, we extend this idea to the complex domain by
examining changes in the marginal densities of the mag-
nitudes, relative magnitudes, and relative phases of the
complex-valued subband coefficients. Fig. 3 shows five
images from the LIVE image database [81] which we will
use to demonstrate consistency in the shapes of the
marginal densities of the magnitudes and phases. In
Sections 2.4 and 2.5, we will use four of them and their
five distorted versions (a subset is shown in Fig. 4) as
examples to illustrate behavior of the features used in the
C-DIIVINE algorithm. Fig. 5(a) and (b) shows, for each
reference image, the histograms of the magnitudes of the
coefficients (before and after divisive normalization) from
all orientations at the finest scale, i.e., fjz1;ojg and fjẑ1;ojg,
8o. Fig. 6 shows the histograms of (a) relative magnitude,
and (b) horizontal relative phase of the coefficients from
the finest scale of three different orientations, i.e., fψ1;301;

ψ1;901;ψ1;1501g and fϕ̂horz
1;301; ϕ̂

horz
1;901; ϕ̂

horz
1;1501g.

As demonstrated in Figs. 5(a), (b) and Fig. 6, the
histograms of the coefficients' magnitudes and phases
generally exhibit consistent profiles that are largely inde-
pendent of the particular reference image used to obtain
the coefficients. Comparing the two magnitude histograms
in Fig. 5(a) vs. (b), the divisive normalization yields profiles
which, as we will demonstrate shortly, can be modeled by
using the magnitude probability densities derived from a
complex Gaussian scale mixture model.

To illustrate that the subband coefficients of distorted
images yield marginal distributions which deviate from these
characteristic profiles, Fig. 7 shows five distorted versions of
one of the reference images (sailing 2). The corresponding
histograms of the coefficients' magnitudes, relative magni-
tudes, and relative phases are shown in Figs. 5(c) and 8,
respectively. For the magnitudes, the distortions tend to affect
both the widths and the rates-of-decay of the profiles. For the
relative magnitudes and relative phases, the distortions tend
to affect the peakedness of the profiles. As we will discuss in
the following subsections, these natural and distorted magni-
tude and relative phase histograms can be modeled by using a
complex Gaussian scale mixture.
2.3.1. Complex Gaussian scale mixture
To exploit the advantages of complex wavelet trans-

form and the usefulness of the magnitude and phase
statistics in the IQA framework, an appropriate model that
can handle complex random variables is required. Accord-
ingly, the complex Gaussian scale mixture (CGSM),
recently developed by Rakvongthai et al. [75], is an
extension of Gaussian scale mixture (GSM) to efficiently
model the complex wavelet coefficients, the latter of
which has been used to model the marginal and joint



Fig. 3. Five reference images from the LIVE database [81] used to demonstrate the histogram consistency of the subband magnitudes, relative magnitudes,
and relative phases across image content. Top row: Images monarch, ocean. Bottom row: Images plane, sailing 2, and sailing 3. Among them, four images
(monarch, ocean, plane, and sailing 3) and their five distorted versions (a subset is shown in Fig. 4) will be used in Sections 2.4 and 2.5 as examples to
illustrate feature behavior in the C-DIIVINE algorithm.

Fig. 4. A subset of the distorted versions of images in Fig. 3. Top row: Fast-fading, Gaussian blur, and JPEG2000 compression. Bottom row: JPEG compression
and white noise.
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statistics of the wavelet coefficients of natural images
(e.g., [82]).

The GSM is used for real-valued random vector modeling.
A real-valued random vector X with dimension N
can be characterized by a GSM if it can be expressed
as X¼

ffiffiffi
S

p
~X, where ~X is a zero-mean Gaussian random vector

with covariance matrix C ~X . The multiplier S is an independent
positive scalar random variable. If S has unit mean, then the
probability density function (pdf) of X can be given as

f X xð Þ ¼
Z 1

0

exp �1
2
xT ðsC ~X Þ�1x

� �
ð2πÞN=2 ffiffiffiffiffiffiffiffi

sC ~X

p f S sð Þ ds: ð8Þ

Now consider a complex-valued random vector Z with
dimension N. This vector can be expressed as a CGSM if
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Fig. 5. Histograms of subband magnitudes for each of the five reference images in Fig. 3 and five distorted versions of image sailing 2 in Fig. 7. These
magnitude histograms were generated by using all coefficients from all six subbands at the finest scale, without divisive normalization (a), and with
divisive normalization (b), (c). Notice that the histograms exhibit consistent profiles that are largely independent of the particular reference image from
which the magnitudes were computed, but vary significantly in the presence of distortions.
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Fig. 6. Histograms of subband relative magnitude (a) and relative phase (b) for each of the five reference images in Fig. 3. These histograms were generated
by using subbands of the indicated orientations at the finest scale. Notice that the histograms exhibit consistent profiles that are largely independent of the
particular reference image from which the relative magnitudes and relative phases were computed. Also notice that the location of the relative phase
histogram peak varies according to the subband's orientation.
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Z¼RfZgþ jIfZg ¼
ffiffiffi
S

p
~Z, where ~Z ¼Rf ~Z gþ jIf ~Zg is a zero-

mean complex Gaussian random vector, and where the
multiplier S is an independent positive scalar randomvariable.
If S has unit mean, then the pdf of Z can be given as

f Z zð Þ ¼
Z 1

0

1
πN jsC ~Z j

exp �zHðsC ~Z Þ�1z
� �

f S sð Þ ds: ð9Þ

where C ~Z ¼ Ef ~Z ~Z
Hg is the complex covariance matrix. The

vector Z is called a CGSM because of its behavior as a complex
Gaussian conditioned on S. Here, we see again the significance
of divisive normalization: the definition of CGSM (Z¼

ffiffiffi
S

p
~Z)
theoretically requires a normalization process (divided by
ffiffiffi
S

p
)

to make the output ( ~Z) to be a zero-mean complex Gaussian
random vector, which can be characterized by the complex
generalized Gaussian distribution.

2.3.2. Marginal density of magnitude
As shown by Rakvongthai et al. [75], when N¼1 in

Eq. (9) (i.e., both RfZg and IfZg are characterized by GSM
model), Z is a complex random variable which can be
characterized by a complex generalized Gaussian distribu-
tion. When Z is expressed in radial form as Z ¼ jZjej∠Z , the



Fig. 7. Distorted versions of image sailing 2. From left to right: Fast-fading, Gaussian blur, JPEG2000 compression, JPEG compression, and white noise.
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Fig. 8. Histograms of subband relative magnitude (a) and relative phase (b) for each of the five distorted versions of image sailing 2 in Fig. 7. The distortions
tend to affect the peakedness of the characteristic profile observed for the reference images.
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pdf of the magnitude jZj is given by [75]

f jZj jzjð Þ ¼ β

α2Γð2=βÞjzjexp �ðjzj=αÞβ� � ð10Þ

where α¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γð1=γÞ=Γð2=γÞ

p
is a scale parameter, and

where β¼ 2γ is a shape parameter. The parameters s40
and γ40 are the parameters of the complex generalized
Gaussian distribution from which f jZjðjzjÞ is derived (see
[75] for a derivation).

Fig. 9 shows how the parameters α and β affect the pdfs
generated by Eq. (10). When β is fixed, the parameter α
(the scale parameter) controls both the width and the
location of the peak. When α is fixed, the parameter β
(the shape parameter) controls the rate at which the pdf
decays from its peak. By properly selecting these para-
meters, it is possible to provide decent fits of Eq. (10) to
the distorted image's magnitude histograms shown pre-
viously in Fig. 5(c).

2.3.3. Marginal density of relative magnitude
Distortions affect not only the coefficient magnitude

distribution as a whole, but also the relationship among
neighboring pixels. Therefore, we also model the marginal
density of the relative magnitude, which was previously
defined in Eq. (3). The pdf of the relative magnitude,
denoted by random variable Ψ , can be modeled by a
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Fig. 10. Probability density functions of the generalized Gaussian distribution in Eq. (11). Proper selection of the parameters γ and s allows this distribution
to be fitted to the histograms shown previously in Fig. 8 (a).
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zero-mean generalized Gaussian distribution given by

f Ψ ψð Þ ¼ γ

2βΓð1=γÞexp �ðjψ j=βÞγ� � ð11Þ

where β¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=γÞ=Γð3=γÞ

p
. The parameter γ controls the

general shape of the distribution and s controls the
variance. We estimate the two parameters (γ and s) of
the generalized Gaussian distribution model by using the
moment-matching-based approach proposed in [83].

Fig. 10 shows the resulting pdfs obtained from Eq. (11)
for various values of γ and s. Proper selection of these
parameters can provide decent fits of Eq. (11) to the
distorted image's relative magnitude histograms shown
previously in Fig. 8(a).

2.3.4. Marginal density of relative phase
In [75], the authors also provided an expression for the

pdf of the relative phase which was derived by using N¼2 in
Eq. (9). Others have modeled the pdf of the relative phase by
using a von Mises distribution [84]. Additional details on the
pdf of the relative phase can be found in [85].
Here, to facilitate the parameter-fitting procedure
(see [86]), we model the pdf of the relative phase, denoted
by random variable Φ, using the following two-parameter
wrapped Cauchy distribution:

f Φ ϕð Þ ¼ 1�η2

2πð1þη2�2η cos ðϕ�μÞÞ; �πrϕrπ; ð12Þ

where η¼ e� γ is a scale parameter (0oηr1) and μ is a
location parameter.

Fig. 11 shows the resulting pdfs obtained from Eq. (12)
for various values of η and μ. The parameter η controls the
peakedness. The parameter μ is the mean (location of the
peak). Again, by properly selecting these parameters, it is
possible to fit Eq. (12) to the distorted image's relative
phase histograms shown previously in Fig. 8(b).

2.4. Magnitude- and phase-based features

The statistical models of magnitude and phase described
in the previous sections are used to compute the magni-
tude- and phase-based features that will ultimately be used
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for quality assessment. As mentioned in Section 1, these
features are computed at multiple scales and orientations to
mimic the cortical decomposition in the human visual
system. Also, note that these magnitude- and phase-based
features are extracted only from the first and second scale
of the wavelet subbands, since most distortion types have a
pronounced effect on the higher-frequency components,
resulting in considerable magnitude and phase distortions
in the high-frequency band. The third scale wavelet sub-
bands can indeed represent distortions to some extent.
However, due to its relatively smaller coefficient number,
such representations can be imprecise compared to the
other two scales, and may even decrease the performance
when employed.

Therefore, given an image decomposed by the complex
wavelet transform at three scales and six orientations,
resulting in a set of 18 subbands fZs;og, we generate 12
vectors containing the coefficient magnitudes, six vectors
containing the relative magnitudes, 12 vectors containing
the horizontal relative phases, and 12 vectors containing
the vertical relative phases for future analysis. The magni-
tude- and phase-based features are then measured as
follows.

2.4.1. Magnitude-based features
Let jZs;oj and Ψs;o denote the vectors of magnitude and

relative magnitude, respectively, generated by applying
divisive normalization to and computing the magnitude/
relative magnitude of each coefficient in subband Zs;o.
Then, we fit the histogram of each vector jZs;oj and Ψs;o

at the finest scale with their corresponding pdf
representatives.

Specifically, we fit jZs;oj with Eq. (10) to determine the
best-fitting parameters αs;o and βs;o. For the fitting proce-
dure, we employ the maximum-likelihood estimation
algorithm proposed in [87]. We fit Ψs;o with Eq. (11) to
determine the best-fitting parameters γs;o and ss;o. For the
fitting procedure, we employ the moment-matching-
based approach proposed in [83]. Because there are six
magnitude and relative magnitude vectors at the finest
scale, we obtain six values of αs;o, βs;o, γs;o, and ss;o
respectively, where s¼ 1 and oA ½01;301;601;901;
1201;1501�.

We also generate two additional vectors of magnitudes,
where each is assembled by grouping all six vectors
corresponding to the same scale into a single vector:

jZsj ¼ ½jZs;01j; jZs;301j; jZs;601j; jZs;901j; jZs;1201j; jZs;1501j�;
where sA ½1;2�. In this case, we captured part of the
information in the lower-frequency bands to fully char-
acterize an image. For both vectors (jZ1j and jZ2j), we apply
the same histogram-fitting procedure to determine the
best-fitting parameters αs and βs, sA ½1;2�.

Thus, the four resulting magnitude-based feature vec-
tors, vα, vβ , vγ , and vs, contain the following 28 elements:

vα ¼ ½α1;01; α1;301;α1;601; α1;901; α1;1201; α1;1501; α1; α2�;
vβ ¼ ½β1;01; β1;301; β1;601; β1;901; β1;1201; β1;1501; β1; β2�;
vγ ¼ ½γ1;01; γ1;301; γ1;601; γ1;901; γ1;1201; γ1;1501�;
vs ¼ ½s1;01; s1;301;s1;601; s1;901; s1;1201; s1;1501�:
Following [57], we use the logarithm of the scale para-
meter (here lnðαÞ; in [57] lnðs2Þ) rather than the actual
scale parameter.

Fig. 12 shows plots of the magnitude-based features for
four reference images (shown in Fig. 3) and their distorted
versions (shown in Fig. 4), in which the horizontal axis
represents the feature index and the vertical axis repre-
sents the corresponding feature values. Notice that clus-
tering of features across distortions is independent of
image content.

2.4.2. Phase-based features
Let Φhorz

s;o and Φvert
s;o denote vectors of horizontal and

vertical relative phases generated by applying a mapping
procedure to the original relative phases computed by
Eq. (4) and (5) respectively, of each coefficient in subband
Zs;o, where sA ½1;2� and oA ½01;301;601;901;1201;1501�.
Then, for each of the vectors Φhorz

s;o and Φvert
s;o , we fit their

histograms with Eq. (12) to determine the best-fitting
parameters ηhorzs;o and ηverts;o . For the fitting procedure, we



0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4
monarch

M
ag

ni
tu

de
-b

as
ed

 fe
at

ur
es

feature index
0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

3
ocean

M
ag

ni
tu

de
-b

as
ed

 fe
at

ur
es

feature index

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3
sailing3

M
ag

ni
tu

de
-b

as
ed

 fe
at

ur
es

feature index
0 5 10 15 20 25 30

-5

-4

-3

-2

-1

0

1

2

3
plane

M
ag

ni
tu

de
-b

as
ed

 fe
at

ur
es

feature index

Fig. 12. Plots of the magnitude-based features for four reference images and their distorted versions from the LIVE database [81]. For each figure: reference
image (□), fast fading (▵), blur (○), JPEG2000 (�), JPEG (⋄), and white noise (n).
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employ the technique described in [86]. (The parameter μ
in Eq. (12) is determined largely by the orientation of the
subband and therefore contributes negligibly toward the
distortion identification and quality assessment processes;
consequently, we do not store the parameter μ.)

We therefore obtain a single phase-based feature
vector, vη, which contains the following 24 elements:

vη ¼ ½ηhorz1;01 ; η
horz
1;301; η

horz
1;601; η

horz
1;901; η

horz
1;1201; η

horz
1;1501;

ηhorz2;01 ; η
horz
2;301; η

horz
2;601; η

horz
2;901; η

horz
2;1201; η

horz
2;1501;

ηvert1;01; η
vert
1;301; η

vert
1;601; η

vert
1;901; η

vert
1;1201; η

vert
1;1501;

ηvert2;01; η
vert
2;301; η

vert
2;601; η

vert
2;901; η

vert
2;1201; η

vert
2;1501�:

Fig. 13 shows plots of the phase-based features for four
reference images (shown in Fig. 3) and their distorted
versions (shown in Fig. 4). The axes of each plot have
similar meanings to those of Fig. 12. For the reference
images, the values of η tend to be around 0.75. Again,
distortion-specific clustering independent of content is
observed.

2.5. Across-scale correlation feature

Another feature employed in DIIVINE, which we also
use in C-DIIVINE, is a measure of the across-scale
correlations. As argued in [26], degradation of these
across-scale correlations can lead to marked reductions
in visual quality due to disruptions of the visual system's
preference for integrating edges in a coarse-to-fine-scale
fashion.

In the original DIIVINE algorithm, a windowed struc-
tural correlation (a component of SSIM [27]) was used to
measure the across-scale correlations between each sub-
band and the high-pass residual (HPR) band obtained from
the steerable pyramid decomposition. In C-DIIVINE, the
wavelet subbands contain complex-valued coefficients,
which allow the use of a complex-valued structural
correlation measure. Specifically, we employ the complex
wavelet structural similarity index (CW-SSIM) [76].

The CW-SSIM index, denoted by ρ, between two bands
Z1 and Z2 is given by

ρ Z1;Z2ð Þ ¼ 2∑N
i ¼ 1jz1ðiÞjjz2ðiÞjþK

∑N
i ¼ 1jz1ðiÞj2þ∑N

i ¼ 1jz2ðiÞj2þK

 !

� 2j∑N
i ¼ 1z1ðiÞz2ðiÞnjþK

2∑N
i ¼ 1jz1ðiÞz2ðiÞnjþK

 !
; ð13Þ

where z1ðiÞ and z2ðiÞ are elements of Z1 and Z2,
respectively.
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Fig. 13. Plots of the phase-based features for four reference images (shown in Fig. 3) and their distorted versions (shown in Fig. 4) from the LIVE database
[81]. For each figure: Reference image (□), fast fading (▵), blur (○), JPEG2000 (�), JPEG (⋄), white noise (n).
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Eq. (13) consists of the product of two components. As
reported in [76], the first component is completely deter-
mined by the magnitudes of the coefficients; it is equivalent
to the SSIM index [27] applied to the magnitudes of the
coefficients. The second component is completely deter-
mined by the consistency of the relative phases between
Z1 and Z2; it achieves the maximum value of 1 when the
phase difference between z1ðiÞ and z2ðiÞ is constant for all i.

We apply Eq. (13) to measure CW-SSIM between the HPR
band and the first- and second-scale subbands. Again, such a
choice is made due to the better distortion representations
by the higher-frequency wavelet subbands. In addition, we
measure CW-SSIM between pairs of subbands with the same
orientation (18 pairs). Note that adding this type of features
is largely based on the experiments, and is mainly to achieve
better performance balance across different databases. The
resulting across-scale-correlation-based feature vector, vρ,
contains the following 30 elements:

vρ ¼ ½ρðZ1;01;Z2;01Þ; ρðZ1;301;Z2;301Þ; ρðZ1;601;Z2;601Þ;
ρðZ1;901;Z2;901Þ; ρðZ1;1201;Z2;1201Þ; ρðZ1;1501;Z2;1501Þ;
ρðZ1;01;Z3;01Þ; ρðZ1;301;Z3;301Þ; ρðZ1;601;Z3;601Þ;
ρðZ1;901;Z3;901Þ; ρðZ1;1201;Z3;1201Þ; ρðZ1;1501;Z3;1501Þ;
ρðZ2;01;Z3;01Þ; ρðZ2;301;Z3;301Þ; ρðZ2;601;Z3;601Þ;
ρðZ2;901;Z3;901Þ; ρðZ2;1201;Z3;1201Þ; ρðZ2;1501;Z3;1501Þ;
ρðZHPR;Z1;01Þ; ρðZHPR;Z1;301Þ; ρðZHPR;Z1;601Þ;
ρðZHPR;Z1;901Þ; ρðZHPR;Z1;1201Þ; ρðZHPR;Z1;1501Þ;
ρðZHPR;Z2;01Þ; ρðZHPR;Z2;301Þ; ρðZHPR;Z2;601Þ;
ρðZHPR;Z2;901Þ; ρðZHPR;Z2;1201Þ; ρðZHPR;Z2;1501Þ�:

Fig. 14 shows plots of the across-scale-correlation-
based features for four reference images and their dis-
torted versions. Again, observe that features extracted in
this step are efficient in clustering images with different
distortion types, independent of image content.

2.6. Combined-frameworks-based QA

Given the six feature vectors vα, vβ , vγ , vs, vη, and vρ,
which contain 82 features in total, C-DIIVINE employs
combined frameworks to measure image quality: (1) the
one-stage framework used in BRISQUE, and (2) the two-
stage framework used in DIIVINE.

As in [56], the one-stage framework employs a Support
Vector Regression (SVR) to train a regression model, which
directly maps the feature vector to an associated quality score,
denoted as C-DIIVINE-I. For the two-stage framework,
C-DIIVINE features are used to perform (1) distortion
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Fig. 14. Plots of the across-scale-correlation-based features for four reference images (shown in Fig. 3) and their distorted versions (shown in Fig. 4) from
the LIVE database [81]. For each figure: Reference image (□), fast fading (▵), blur (○), JPEG2000 (�), and JPEG (⋄), white noise (n).
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identification, and (2) distortion-specific quality assessment.
As in [57], the distortion identification stage employs Support
Vector Classification (SVC) to measure the probability that the
distortion in the distorted image falls into one of n distortion
classes, and the distortion-specific quality assessment stage
employs Support Vector Regression (SVR) to obtain n regres-
sion modules, each of which maps the feature vectors to an
associated quality score. Note that because each module is
trained specifically for each distortion, these regression mod-
ules function as distortion-specific quality estimators.

Let p denote the n-dimensional vector of probabilities,
and let q denote the n-dimensional vector of estimated
qualities obtained from the n regression modules. The
two-stage framework estimated quality, denoted by C-
DIIVINE-II, is computed as follows:

C-DIIVINE-II¼ ∑
n

i ¼ 1
pðiÞqðiÞ; ð14Þ

where p(i) and q(i) denote elements of p and q, respectively.
The advantages and disadvantages for both frameworks

are observable. For the two-stage framework, the distortion
identification stage can never be completely correct (due to
the imperfectness of the extracted features and the complex-
ity of various distortions), and thus it can always produce
identification errors. The strategy of using a probability-
weighted combination rule can help to compensate for these
limitations. However, because of the identification error, it
cannot achieve as high a performance as the one-stage
framework on the cross-validation test (see Section 3.3). In
comparison, the one-stage framework can help to avoid this
potential error, but test results on the CSIQ and Toyama
databases (see Section 3.4) show that this framework seems
to be unreliable when the test images possess statistical
properties not completely observed in the training database.
Perhaps this is due to different ranges of feature values
among the different databases.

Thus, to take advantages of both frameworks, the final
estimate of quality combines the minimum and average
values of the two frameworks' outputs. This approach,
denoted by C-DIIVINE, is computed as follows:

C-DIIVINE¼ 1
2 min C-DIIVINE-I;C-DIIVINE-IIð Þ½
þavg C-DIIVINE-I;C-DIIVINE-IIð Þ�
¼ 1

2 C-DIIVINE-IþC-DIIVINE-IIð Þ
�1

4 jC-DIIVINE-I�C-DIIVINE-IIj: ð15Þ
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Eq. (15) is supported by the following observations. First,
the minimum operation assumes that the qualities of test
images that were not ‘seen’ in the training database, may
be predicted to have very different qualities. Since
C-DIIVINE was trained on the LIVE database with subjec-
tive ratings of degradation expressed in terms of difference
mean opinion scores (DMOS) which are positive, the
predicted DMOS value exceed the normal range if the
feature values extracted from a distorted image go beyond
the range of the training database. Thus, the minimum
operation acts to limit the predictions, making them more
reliable. Second, the average of the two outputs is
employed as the simplest linearly weighted prediction
that combines the two outputs.

Note that both the SVC and SVR require training, and in
our implementation, C-DIIVINE was trained on LIVE using
the difference mean opinion scores (DMOS) (see Section 3.3).
Thus, smaller values of C-DIIVINE denote predictions of
better image quality. As we demonstrate next, training these
stages on images from one database can yield excellent
predictive performance on similarly distorted images from
other databases.

3. Results and analysis

In this section, we analyze C-DIIVINE's ability to esti-
mate quality. For this task, we evaluate the predictive
performance of C-DIIVINE on various image quality data-
bases. We also compare the performance of C-DIIVINE to
other FR and NR IQA algorithms.

3.1. Image-Quality databases

We applied C-DIIVINE to four publicly available data-
bases of subjective image quality: (1) the LIVE database
[81]; (2) the Toyama database [88]; (3) the TID database
[69]; and (4) the CSIQ database [89].

The LIVE database [81], from The University of Texas at
Austin, USA, contains 29 original images, between 26 and
29 distorted versions of each original image, and subjec-
tive ratings of degradation for each distorted image.
The database contains five types of distortions: Gaussian
blurring (BLUR), additive white noise (WN), JPEG compres-
sion, JPEG2000 compression (JP2K), and simulated packet-
loss of transmitted JPEG2000-compressed images, which
is also known as fast fading (FF). The subjective ratings
were collected using a double-stimulus scaling paradigm.
LIVE contains a total of 779 distorted images and asso-
ciated DMOS values.

The Toyama database [88], from the University of
Toyama, Japan, contains 14 original images and 12 dis-
torted versions of each original, and subjective ratings of
quality for each distorted image (mean opinion scores,
MOS values). The database contains two types of distor-
tions: JPEG and JPEG2000 compressed images. The sub-
jective ratings were collected using a single-stimulus
scaling paradigm. Toyama contains a total of 168 distorted
images and associated MOS values.

The TID database [69], from the Tampere University
of Technology, Finland, contains 25 original images, 68
distorted versions of each original image, and subjective
ratings of quality for each distorted image (MOS values).
Seventeen types of distortions are present in the database,
including JPEG and JPEG2000 compression, and Gaussian
blurring (see [69] for a full list). The subjective ratings
were collecting using a double-stimulus scaling paradigm.
TID contains a total of 1700 distorted images and asso-
ciated MOS values. However, no corresponding standard
deviations are provided with these means, which
precludes any outlier analysis (see Section 3.2).

The CSIQ database [89], from Oklahoma State Univer-
sity, USA, consists of 30 original images, between 24 and
30 distorted versions of each original, and subjective
ratings of degradation for each distorted image (DMOS
values). Six types of distortion are used in CSIQ: JPEG
compression, JPEG2000 compression, global contrast
decrements, additive pink Gaussian noise, additive white
Gaussian noise, and Gaussian blurring. The subjective
ratings were collected using a multiple-stimulus scaling
paradigm. CSIQ contains a total of 866 distorted images
and associated DMOS values.
3.2. Algorithms and performance measures

We compared C-DIIVINE with various FR and NR
quality assessment methods for which code is publicly
available. The three NR methods compared were BLIINDS-
II [90], DIIVINE [57], and BRISQUE [56]), all of which
operate based on natural-scene statistics and were trained
on LIVE. For the cross-validation test on LIVE, we included
results of three popular FR IQA algorithms (PSNR [91],
SSIM [27], and MS-SSIM [28]) whose results are accessible
in the corresponding papers. We also included C-DIIVINE
results of using only the one-stage and two-stage frame-
works denoted by C-DIIVINE-I and C-DIIVINE-II, respec-
tively, for comparison. For the cross-database test, two FR
IQA algorithms, VIF [29] and MAD [92], were used for
comparison.

Three criteria were used to measure the prediction
monotonicity and prediction accuracy of each algorithm:
(1) the Spearman Rank-Order Correlation Coefficient
(SROCC), (2) the Pearson Linear Correlation Coefficient
(CC), and (3) the Root Mean Square Error (RMSE) after
non-linear regression. As recommended in [93], the SROCC
serves as a measure of prediction monotonicity, while the
CC and RMSE serve as measures of prediction accuracy.
Two additional criteria were used to measure the predic-
tion consistency of each algorithm: (1) outlier ratio (OR),
and (2) outlier distance (OD) [92].

A QA algorithm might yield predictions of quality that
are nonlinearly related to the actual MOS/DMOS values.
Such a nonlinear relationship can lead to a seemingly poor
prediction accuracy/consistency when evaluated in terms
of CC, RMSE, OR, and OD. As recommended in [93],
we accounted for this fact by applying the following
four-parameter logistic transform to each algorithm's
raw predicted scores before computing the CC, RMSE,
OR, and OD:

f xð Þ ¼ τ1�τ2

1þexp �x�τ3
jτ4j

� �þτ2; ð16Þ
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where x denotes the raw predicted score, and where τ1, τ2, τ3,
and τ4 are free parameters selected to provide the best fit of
the predicted scores to the MOS/DMOS values. Note that the
SROCC relies only on the rank-ordering and is thus unaffected
by the logistic transform due to the fact that f(x) is a
monotonic function of x that does not change the rank-order.
3.3. Training and cross-validation performance on LIVE

As mentioned in Section 2.6, C-DIIVINE employs com-
bined frameworks to predict image quality and each
framework requires training. In this paper, we trained
C-DIIVINE on the LIVE database by using the realigned
DMOS values recommended in [94]. The use of the LIVE
database for training facilitates a fairer comparison with
other FR and NR algorithms; all of these algorithms have
either been trained on LIVE (for NR IQA) or have been
extensively tested on LIVE (for FR IQA). As in [57], we used
the libSVM package [95] to implement the training pro-
cess. The parameters of the radial basis function kernel
used for both the classification and regression were also
optimized by the training process.
Table 1
Median SROCC and CC values across 1000 train-test combinations on the
LIVE database. Italicized entries denote NR IQA algorithms; others are FR
IQA algorithms.

JP2K JPEG WN BLUR FF ALL

SROCC
PSNR 0.8646 0.8831 0.9410 0.7515 0.8736 0.8636
SSIM 0.9389 0.9466 0.9635 0.9046 0.9393 0.9129
MS-SSIM 0.9627 0.9785 0.9773 0.9542 0.9386 0.9535
BLIINDS-II 0.9323 0.9331 0.9463 0.8912 0.8519 0.9124
DIIVINE 0.9123 0.9208 0.9818 0.9373 0.8694 0.9250
BRISQUE 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395
C-DIIVINE-I 0.9343 0.9398 0.9702 0.9275 0.9072 0.9416
C-DIIVINE-II 0.9102 0.9434 0.9778 0.9310 0.9021 0.9376
C-DIIVINE 0.9302 0.9444 0.9760 0.9386 0.9110 0.9444

CC
PSNR 0.8762 0.9029 0.9173 0.7801 0.8795 0.8592
SSIM 0.9405 0.9462 0.9824 0.9004 0.9514 0.9065
MS-SSIM 0.9746 0.9793 0.9883 0.9645 0.9488 0.9511
BLIINDS-II 0.9386 0.9426 0.9635 0.8994 0.8789 0.9164
DIIVINE 0.9233 0.9348 0.9866 0.9370 0.8916 0.9270
BRISQUE 0.9229 0.9735 0.9851 0.9506 0.9030 0.9424
C-DIIVINE-I 0.9471 0.9598 0.9803 0.9329 0.9364 0.9468
C-DIIVINE-II 0.9240 0.9553 0.9858 0.9355 0.9237 0.9409
C-DIIVINE 0.9429 0.9593 0.9844 0.9412 0.9345 0.9474

Table 2
Results of the one-sided t-test performed between SROCC values generated by d
statistically superior, equivalent, or inferior to the algorithm in the column.

PSNR SSIM MS-SSIM BLIINDS-II DIIVIN

PSNR 0 �1 �1 �1 �1
SSIM 1 0 �1 1 �1
MS-SSIM 1 1 0 1 1
BLIINDS-II 1 �1 �1 0 �1
DIIVINE 1 1 �1 1 0
BRISQUE 1 1 �1 1 1
C-DIIVINE-I 1 1 �1 1 1
C-DIIVINE-II 1 1 �1 1 1
C-DIIVINE 1 1 �1 1 1
We performed two types of training on the LIVE
database: (1) training on an 80% subset of the database
for cross-validation and (2) training on the entire database
to test performance on other databases (see Sections 3.4.2
and 3.4.3). For cross-validation, we randomly selected 80/
20% training/testing splits of images from the LIVE data-
base and repeated the train-test procedure 1000 times.
We compared with three NR and three FR methods in
terms of median SROCC and CC computed over 1000 trials
and the values are shown in Table 1. In order to evaluate
statistical significance, we also performed a one-sided t-
test with a 95% confidence level between SROCC values
generated by these algorithms across the 1000 train-test
trials. The results are shown in Table 2, in which “1”, “0”,
“�1” indicate that the mean correlation of the row
(algorithm) is statistically superior, equivalent, or inferior
to the mean correlation of the column (algorithm).

To demonstrate that C-DIIVINE features can be used for
different distortion identification, Table 3 shows the med-
ian and mean classification accuracy of the classifier for
each of the distortions in the LIVE database, as well as
across all distortions. To show the performance consis-
tency of each of the algorithms considered here, Fig. 15
plots the mean and standard deviation of SROCC values
across these 1000 trials for each algorithm.

According to the cross-validation test results, C-DIIVINE
performs statistically the best among all NR IQA algo-
rithms considered here. Not only does it improve upon its
predecessor DIIVINE, but also outperforms BLIINDS-II and
BRISQUE. Also observed are a slight dip in performance of
C-DIIVINE-I, and even more of a dip for C-DIIVINE-II, as
compared to C-DIIVINE. Such observations demonstrate
that (1) the two-stage framework often produce more
prediction errors than does the one-stage framework;
and (2) the combined frameworks actually work better
than using either of the two individual frameworks alone.
Compared with FR IQA methods, C-DIIVINE is more con-
sistent than PSNR and SSIM, but still remains inferior to
MS-SSIM, indicating that there is room for further
ifferent measures. “1”, “0”, “�1” indicates that the algorithm in the row is

E BRISQUE C-DIIVINE-I C-DIIVINE-II C-DIIVINE

�1 �1 �1 �1
�1 �1 �1 �1
1 1 1 1

�1 �1 �1 �1
�1 �1 �1 �1
0 0 1 �1
0 0 1 �1

�1 �1 0 �1
1 1 1 0

Table 3
Mean and median classification accuracy across 1000 train-test trials.

Classification accuracy (%) JP2K JPEG WN BLUR FF ALL

Median 88.9 91.7 100.0 93.3 73.3 89.4
Mean 88.8 90.6 99.5 91.3 72.9 88.7
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across the 1000 train-test trials on the LIVE database.
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improvement. In the following sections, we will show
more results of these NR IQA algorithms in assessing
image quality on other databases. We will also further
discuss the roles of the one- and two-stage frameworks in
the IQA task.

3.4. Performance on other databases

In order to demonstrate that the performance of
C-DIIVINE is not bounded by the database on which it is
trained, we evaluated the performance of C-DIIVINE on
subsets of the CSIQ, TID, and Toyama databases correspond-
ing to the individual distortion types of JPEG, JPEG2000,
Gaussian blurring, and additive Gaussian white noise
(the distortion types on which C-DIIVINE was trained). In
this case, we trained C-DIIVINE on the entire set of distorted
images in LIVE, which contains 779 images with five distor-
tion types (note that the fast fading distortion type was
trained, but was not tested, because it was not found in CSIQ,
TID, and Toyama). Before we evaluate and compare the
performance of C-DIIVINE with other NR IQA approaches,
we first investigate on the contributions of each individual
feature type employed in the proposed algorithm.

3.4.1. Contributions of individual statistical features
To analyze the contributions of each of the three

feature types (magnitude distribution parameters, phase
distribution parameter, and cross-scale correlations)
toward the overall performance, we created six abridged
versions of C-DIIVINE in which each version used only one/
two of the three feature types. Specifically, the following
abridged versions were created:
�
 Magnitude Distribution Feature only (M);

�
 Phase Distribution Feature only (P);

�
 Scale Correlation only (SC);

�
 Magnitude Distribution FeatureþPhase Distribution

Feature (MþP);
�
 Magnitude Distribution FeatureþScale Correlation
(MþSC);
�
 Phase Distribution FeatureþScale Correlation (PþSC).
Each of these versions was trained on the full LIVE
database via the same technique used for training
C-DIIVINE as described previously in Section 3.3. The
testing was performed on the aforementioned subsets of
images from CSIQ, TID, and Toyama. The results of this
analysis are shown in Table 4 in terms of SROCC and CC.
For reference, also shown in Table 4 are the SROCC and CC
values of the full C-DIIVINE algorithm.

In general, for the CSIQ database, the best performance
is obtained by using all three feature types. For the TID
database, the magnitude and phase distribution features
seem to be very important, for the overall performance of
using both feature types (MþP) yields almost equivalent
performance as that use all three of them (MþPþSC).
More specifically, the phase-based statistic seems to be
more sensitive to JPEG and blur distortions, whereas
the magnitude-based statistic is more sensitive to the
JPEG2000 and Gaussian white noise distortions. For the
Toyama database, the largest contribution also arises from
the combination of magnitude and phase.

With regard to the performance when all of the distor-
tion types are evaluated together as a set (the row labeled
“All” in Table 4), the best performance is achieved when
using all three feature types. Overall, when looking at the
entire database, the phase distribution feature seems to
contribute the most, which also demonstrates the impor-
tance of phase information to image quality. Also, these
results confirm that different distortion types manifest by
modifying different subband statistics. Some distortions
primarily affect the coefficient magnitudes, some primarily
affect the coefficient phases and some primarily affect the
across-scale correlation. Thus, all three feature types are
required to properly estimate quality when all of the
distortion types are evaluated together.
3.4.2. Overall performance
The overall testing results are shown in Table 5 in terms

of SROCC, CC, RMSE, OR, and OD. Also included are
C-DIIVINE-I and C-DIIVINE-II for comparison. Italicized
entries denote NR algorithms. The results of the best-
performing FR algorithm in each case are bolded, and
results of the best-performing NR algorithm are italicized
and bolded.

As shown in Table 5, C-DIIVINE performs quite well
on the IQA task as compared with other NR methods.
It improves upon DIIVINE and is superior to BLIINDS-II.
Further, it even challenges BRISQUE, a spatial domain IQA
algorithm, and some FR IQA methods. Specifically, in terms
of prediction monotonicity (SROCC) and prediction accu-
racy (CC and RMSE), C-DIIVINE outperforms the other
three NR IQA algorithms on all databases. In terms of
prediction consistency (OR and OD), C-DIIVINE also per-
forms better than DIIVINE and demonstrates across-the-
board competitive predictive performance among the four
NR IQA methods.



Table 4
SROCC and CC for abridged versions of C-DIIVINE using only one/two of the three feature types. M¼Magnitude Distribution Feature only. SC¼Scale
Correlation only. P¼Phase Distribution Feature only. MþP¼Magnitude Distribution FeatureþPhase Distribution Feature (no across-scale correlation).
MþSC¼Magnitude Distribution FeatureþScale Correlation (no phase). PþSC¼Phase Distribution FeatureþScale Correlation (no magnitude). For
reference, the SROCC and CC values of the full C-DIIVINE algorithm are also included (denoted by MþPþSC).

M P SC MþP PþSC MþSC MþPþSC

CSIQ
CC

JPEG2000 0.902 0.847 0.889 0.891 0.903 0.905 0.920
JPEG 0.934 0.893 0.772 0.947 0.926 0.933 0.961
BLUR 0.889 0.761 0.680 0.911 0.799 0.918 0.932
WN 0.846 0.639 0.723 0.897 0.788 0.880 0.907
All 0.900 0.813 0.783 0.914 0.868 0.914 0.935

SROCC
JPEG2000 0.873 0.818 0.859 0.860 0.877 0.882 0.893
JPEG 0.894 0.841 0.761 0.899 0.879 0.899 0.916
BLUR 0.860 0.782 0.712 0.886 0.823 0.903 0.907
WN 0.831 0.627 0.715 0.884 0.780 0.878 0.897
All 0.867 0.792 0.769 0.886 0.859 0.897 0.910

TID
CC

JPEG2000 0.904 0.825 0.874 0.923 0.910 0.910 0.936
JPEG 0.913 0.931 0.824 0.914 0.932 0.905 0.953
BLUR 0.846 0.924 0.865 0.894 0.901 0.894 0.891
WN 0.704 0.621 0.584 0.827 0.619 0.813 0.795
All 0.730 0.872 0.834 0.921 0.894 0.901 0.925

SROCC
JPEG2000 0.900 0.825 0.880 0.919 0.913 0.907 0.937
JPEG 0.893 0.900 0.823 0.875 0.902 0.883 0.924
BLUR 0.849 0.928 0.877 0.898 0.914 0.899 0.900
WN 0.717 0.601 0.578 0.842 0.633 0.825 0.809
All 0.792 0.879 0.834 0.919 0.891 0.904 0.921

Toyama
CC

JPEG2000 0.875 0.879 0.751 0.903 0.828 0.785 0.870
JPEG 0.905 0.900 0.701 0.869 0.841 0.752 0.884
All 0.887 0.889 0.679 0.886 0.830 0.814 0.876

SROCC
JPEG2000 0.880 0.876 0.723 0.903 0.797 0.786 0.874
JPEG 0.887 0.887 0.698 0.869 0.832 0.828 0.882
All 0.883 0.884 0.709 0.885 0.810 0.815 0.877
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Compared with C-DIIVINE-I and C-DIIVINE-II, we see
that the proposed combined frameworks achieves a per-
formance balance across the different databases. It can be
clearly observed that the one-stage framework (C-DII-
VINE-I) performs quite well when training on LIVE and
testing on TID. This might be attributed to the considerable
similarity between the two databases. In fact, the cross-
validation test results shown in Section 3.3 also demon-
strate that the one-stage framework can be a very good
choice for decision-making when the training data and
testing data share some common properties, considering
that the two-stage framework often produces classification
errors in its identification stage. However, it is also
noteworthy that C-DIIVINE-I performs slightly worse than
C-DIIVINE-II when testing on CSIQ and Toyama, which
demonstrates that the two-stage framework is perhaps
more robust. Therefore, combining the two frameworks is
a simple, yet effective technique for achieving a reasonable
balance in IQA performance across different databases.

The last rows of the SROCC, CC, and RMSE results in
Table 5 show the average SROCC, CC, and RMSE, where the
averages are weighted by the number of distorted images
tested in each database. On an average, C-DIIVINE and
BRISQUE demonstrate the best NR QA performance. Note
that OD is dependent on the dynamic range of the
database, and therefore cannot be compared across data-
bases, only within.

Fig. 16 shows scatter-plots of logistic-transformed
C-DIIVINE quality predictions vs. subjective ratings (MOS
or DMOS) on different databases. Although for each
database, there are some images whose quality scores
are predicted far from their true MOS/DMOS values, over-
all, the proposed C-DIIVINE algorithm can predict quality
well across the range of MOS/DMOS.

3.4.3. Performance on individual distortion types
In order to demonstrate that C-DIIVINE can achieve

fairly good quality evaluation across different distortion
types as long as it has been trained on those distortion types,
we also report the performance of C-DIIVINE on subsets of the
three previously mentioned databases corresponding to four
individual distortion types: JPEG, JPEG2000, Gaussian blurring,



Table 5
Overall performances of C-DIIVINE and other algorithms on the Toyama, TID, and CSIQ databases. Italicized entries denote NR algorithms. Results of the
best-performing FR algorithm are bolded, and results of the best-performing NR algorithm are italicized and bolded.

MS-SSIM VIF MAD DIIVINE BLIINDS-II BRISQUE C-DIIVINE-I C-DIIVINE-II C-DIIVINE

CC
CSIQ 0.950 0.967 0.974 0.854 0.901 0.924 0.914 0:935 0:935
TID 0.912 0.950 0.947 0.877 0.864 0.907 0:931 0.907 0.925
Toyama 0.893 0.914 0.941 0.634 0.754 0.850 0.851 0.870 0:876
Average 0.929 0.954 0.960 0.830 0.867 0.907 0.910 0.916 0:923

SROCC
CSIQ 0.953 0.959 0.967 0.828 0.873 0.900 0.879 0:913 0.910
TID 0.897 0.940 0.935 0.891 0.840 0.898 0:922 0.905 0.921
Toyama 0.887 0.909 0.936 0.642 0.724 0.848 0.851 0.871 0:877
Average 0.924 0.945 0.952 0.822 0.840 0.892 0.889 0.904 0:909

RMSE
CSIQ 0.089 0.072 0.064 0.147 0.123 0.108 0.115 0:100 0:100
TID 0.650 0.495 0.509 0.760 0.798 0.668 0:577 0.668 0.602
Toyama 0.564 0.507 0.425 0.968 0.864 0.660 0.656 0.616 0:604
Average 0.345 0.277 0.265 0.468 0.456 0.375 0.348 0.365 0:341

OR
CSIQ 0.220 0.187 0.157 0.365 0.320 0.262 0.297 0:242 0.247
TID 0.734 0.630 0.622 0.706 0.766 0.693 0:641 0.672 0.651
Toyama 0.066 0.030 0.024 0.214 0.155 0.066 0.083 0.071 0:065
Average 0.369 0.312 0.293 0.457 0.444 0.377 0.380 0:360 0:355

OD
CSIQ 6.473 5.013 3.243 24.561 16.318 12.697 14.498 11.810 11:600
TID 120.957 78.159 79.194 137.472 162.692 121.259 96:667 113.943 99.832
Toyama 3.172 1.397 1.673 16.517 12.685 4:158 5.786 5.380 5.418
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and additive Gaussian white noise. The same logistic trans-
form was used and the performance for each distortion type
was evaluated based on extracting the corresponding trans-
formed scores previously computed when all four distortion
types were considered. Table 6 shows the results in terms of
SROCC, CC, and RMSE values. Also included are results of three
other NR and FR IQA algorithms for comparison. From the
table, we see that C-DIIVINE provides better predictions on
most distortion types in comparison to BLIINDS-II, DIIVINE,
and BRISQUE.When looking at the performance of C-DIIVINE-I
and C-DIIVINE-II, we conclude again that the proposed
combined framework actually takes advantages of both indi-
vidual frameworks, and achieves a performance balance
across different databases on most distortion types.

3.4.4. Performance on reference images
We also evaluated the performance of C-DIIVINE on

reference images. For this evaluation, we tested C-DIIVINE
on undistorted versions of natural images contained in the
three aforementioned databases (note that only 24 undis-
torted natural images in the TID database was tested). Since
there are no valid human opinion scores for reference images
in the CSIQ and TID databases, and the true reference image
MOS values contained in the Toyama database are too close
to indicate any useful linear/non-linear relationships, we
employed here a different approach for evaluation. Specifi-
cally, we first predicted the original quality score for each
reference image using our algorithm, and then applied the
same logistic transform (the sigmoid function parameters
were estimated by using the distorted images in the same
database) defined in Eq. (16) to bring the predicted values on
the same scales as the true MOS/DMOS values for the
distorted images. Finally, for each database, we compared
these linearized estimated DMOS values to the corresponding
scatter plots in Fig. 16 to see if they are all located in a region
representing the highest quality. The results are shown in
Fig. 17.

By referring to both figures (Figs. 16 and 17), we see that
C-DIIVINE works well on most reference images. Specifically,
28 out of 30 reference images in the CSIQ database are given
quality scores below 0.2, which indicates that only two of
them were predicted a bit far away from their true DMOS
values. Note in Fig. 16 that the reference images in the CSIQ
database should have DMOS values close to zero. For the TID
database, qualities of all 24 reference images seem to be well
predicted. It also seems that only one reference image in the
Toyama database was improperly estimated. Note again in
Fig. 16 that the undistorted natural images in the TID and
Toyama databases should have MOS values around/above 5.5
and 4.5, respectively. All three results demonstrate that the
proposed C-DIIVINE algorithm performs well onmost of these
reference images.

3.5. Computational complexity

Having evaluated the performance of C-DIIVINE and other
NR algorithms on various databases, we now analyze their
computational complexity. Although C-DIIVINE extends its
predecessor DIIVINE to the complex domain, it is still
computationally efficient. To evaluate the computational
complexity of each of the three feature types, we measured
the relative percentage of time required to compute the
quality of a 512�512 image. We also compared the overall
computational complexity of C-DIIVINE with other NR IQA
algorithms (BLIINDS-II, DIIVINE, and BRISQUE) on an image
of resolution 512�640. Note that all of these tests were



Table 6
SROCC, CC and RMSE of C-DIIVINE and other quality assessment algorithms on different types of distortion on the CSIQ, TID and Toyama databases.
Italicized entries denote NR algorithms. Results of the best-performing FR algorithm are bolded, and results of the best-performing NR algorithm are
italicized and bolded.

MS-SSIM VIF MAD DIIVINE BLIINDS-II BRISQUE C-DIIVINE-I C-DIIVINE-II C-DIIVINE

CC
CSIQ

JPEG2000 0.977 0.978 0.983 0.893 0.912 0.896 0.913 0.916 0:920
JPEG 0.981 0.988 0.983 0.697 0.912 0.946 0.942 0:966 0.961
BLUR 0.959 0.974 0.976 0.898 0.897 0.928 0.912 0.928 0:932
WN 0.947 0.961 0.956 0.787 0.897 0:938 0.809 0.921 0.907

TID
JPEG2000 0.975 0.971 0.982 0.896 0.919 0.906 0:947 0.902 0.936
JPEG 0.966 0.973 0.961 0.899 0.889 0.950 0:956 0.943 0.953
BLUR 0.951 0.942 0.801 0.844 0.825 0.873 0:902 0.872 0.891
WN 0.810 0.907 0.819 0:828 0.714 0.810 0.791 0.779 0.795

Toyama
JPEG2000 0.949 0.962 0.961 0.603 0.686 0.869 0.851 0:871 0.870
JPEG 0.787 0.900 0.919 0.709 0.826 0.865 0.855 0.873 0:884

SROCC
CSIQ

JPEG2000 0.969 0.967 0.975 0.830 0.884 0.867 0.880 0.892 0:893
JPEG 0.962 0.970 0.962 0.704 0.881 0.909 0.890 0:921 0.916
BLUR 0.972 0.975 0.968 0.871 0.870 0.903 0.881 0:911 0:907
WN 0.947 0.957 0.954 0.797 0.886 0:925 0.799 0.911 0.897

TID
JPEG2000 0.973 0.970 0.975 0.907 0.911 0.904 0:947 0.906 0.937
JPEG 0.940 0.931 0.925 0.871 0.838 0.911 0.923 0.913 0:924
BLUR 0.963 0.958 0.847 0.859 0.826 0.874 0:908 0.887 0.900
WN 0.818 0.913 0.833 0:834 0.715 0.823 0.803 0.788 0.809

Toyama
JPEG2000 0.945 0.956 0.955 0.612 0.627 0.867 0.852 0:875 0.874
JPEG 0.835 0.907 0.917 0.702 0.820 0.857 0.855 0.865 0:882

RMSE
CSIQ

JPEG2000 0.067 0.066 0.058 0.130 0.142 0.140 0.129 0.127 0:124
JPEG 0.059 0.047 0.057 0.125 0.219 0.099 0.102 0:079 0.084
BLUR 0.081 0.065 0.062 0.127 0.126 0.107 0.117 0.107 0:104
WN 0.054 0.047 0.050 0.074 0.104 0:058 0.099 0.065 0.071

TID
JPEG2000 0.431 0.459 0.366 1.178 0.756 0.810 0:617 0.827 0.675
JPEG 0.435 0.388 0.468 0.741 0.774 0.528 0:497 0.561 0.513
BLUR 0.359 0.390 0.694 0.621 0.655 0.566 0:501 0.568 0.527
WN 0.359 0.258 0.351 0:343 0.429 0.359 0.375 0.383 0.371

Toyama
JPEG2000 0.398 0.344 0.348 1.007 0.983 0.625 0.662 0:620 0.622
JPEG 1.237 0.540 0.488 0.872 0.709 0.622 0.641 0.604 0:579
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Fig. 16. Scatter plots of objective scores predicted by the C-DIIVINE algorithm after logistic transform versus subjective scores on different image databases.
Note that the x-axis across all three figures represents the predicted value transformed via Eq. (16); the y-axis represents the true DMOS value for the CSIQ
database, true MOS value for the TID and Toyama databases.
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Fig. 17. Objective quality scores predicted by the C-DIIVINE algorithm after logistic transform on reference images. Note that the x-axis across all three
figures represents the index of reference images in each database; the y-axis represents the predicted value transformed via Eq. (16).

Table 7
Informal complexity analysis of C-DIIVINE. Tabulated values reflect the
percentage of the time devoted to each of the three feature types in
C-DIIVINE.

Feature type Percentage of time

Magnitude-based features 51.05
Phase-based features 38.03
Across-scale correlation features 10.92

Table 8
A comparison of the runtime require-
ments (seconds) for four NR IQA
algorithms on a 512�640 image.

Algorithm Time (s)

BLIINDS-II 50.67
DIIVINE 28.77
BRISQUE 0.13
C-DIIVINE 12.80
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performed by running unoptimized MATLAB code on a
modern desktop computer (AMD Phenom II X4 965 Proces-
sor at 3.39 GHz, 4.00 GB RAM, Windows 7 Pro 64-bit).
The results are shown in Tables 7 and 8, respectively.

As shown in Table 8, C-DIIVINE runs faster than DIIVINE
and BLIINDS-II. This is due to the fact that DIIVINE
computes the spatial correlation statistics of an image,
and BLIINDS-II extracts the DCT-based features from
non-overlapping image blocks, both of which occupy a
considerable chunk of the processing time. However,
C-DIIVINE runs slower than BRISQUE. This is mainly
because of the divisive normalization, a relatively time-
consuming process required for computing the magnitude-
based features.

4. Conclusion

We presented an extension of DIIVINE to the complex
domain that, for the first time, incorporates the CGSM
model to assess image quality without need of a reference
across a variety of distortion categories. The proposed
C-DIIVINE algorithm employs combined frameworks and
complex statistical features to assess image quality by
utilizing both magnitude and phase information of the
wavelet coefficients. Specifically, we use the complex
generalized Gaussian distribution to model the distribu-
tion of wavelet coefficient magnitude, the generalized
Gaussian distribution to model the distribution of relative
magnitude, and the wrapped Cauchy distribution to model
the distribution of relative phase. We also use the CW-
SSIM index to capture the correlation between different
image scales. Results show that C-DIIVINE performs well
on most distorted images from the LIVE, CSIQ, TID and
Toyama databases, predicting image qualities in a mean-
ingful agreement with the subjective human being assess-
ment. It achieves higher CC and SROCC compared with
DIIVINE and BLIINDS-II on most distortion types from the
testing databases, and even challenges BRISQUE and some
of the well-known FR IQA algorithms.
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