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A B S T R A C T

Previous research on reduced reference (RR) image quality assessment (IQA) suggested that appropriate RR
features should provide efficient summaries of reference images and be sensitive to a variety of image
distortions. The multi-scale local sharpness maps are effective RR features because they can capture smooth,
edge, and textured areas of the reference image, and they are affected differently by different distortion types.
Motivated by this observation, in this paper, we propose an efficient RR IQA algorithm using local sharpness.
Our method, called S4RR, employs four sharpness maps (two FISH maps and two local standard deviation maps)
to assess image quality via two main stages. The first stage soft-classifies the distorted image into eight distortion
families based on an analysis of the different scatter-plot shapes of the sharpness map values of distorted image
vs. reference image. The second st age performs distortion-family-specific quality assessment based on
measuring the local sharpness variations between reference and distorted images by using seven types of local
statistics and six distance measures. Finally, the soft-classification probabilities computed from the first stage are
combined with the distortion-family-specific quality scores to yield a class-weighted average, which serves as the
final S4RR quality index. Experiment results tested on various databases show that with less than 5% RR
information, the proposed S4RR algorithm achieves better/competitive performance as compared to other state-
of-the-art FR/RR IQA algorithms.

1. Introduction

The ability to assess image quality in a manner that is consistent
with human subjective ratings of quality is an important task for many
image processing systems. Over the last several decades, algorithms for
image quality assessment (IQA) have been intensively researched and
developed. An IQA algorithm can be classified into three main
categories: (1) full-reference (FR), in which the algorithm's inputs are
the reference and distorted images; no-reference (NR), in which the
algorithm needs only the distorted image; and (3) reduced-reference
(RR), in which partial information about the reference image is made
available and compared to the input distorted image. IQA research has
recently been shifting more towards the NR/RR categories, due to the
often impractical requirement of providing the full reference image,
particularly in streaming applications. Although NR IQA algorithms
have yet to outperform state-of-the-art FR IQA algorithms, modern RR
IQA algorithms have begun to approach the performance of FR IQA.

Research on RR IQA has primarily focused on finding appropriate
RR features that can summarize the reference image while being
sensitive to a variety of image distortions. Although it is challenging

to determine the type and amount of information to use for RR features,
many effective RR algorithms have been developed. These approaches
can be roughly classified as those which: (1) use changes in natural-
scene-statistics (NSS) [1–3]; (2) calculate differences in transform
domain coefficients [4–8]; (3) calculate differences in other features
[9–11]; or (4) those which create reduced versions of FR algorithms
[12–16].

Despite the difference of the NSS models, image transforms, and the
RR features employed, previous approaches to RR IQA have generally
been limited in two ways: they are either limited by the number of
distortion types on which they can operate (typically up to four
common distortion types such as additive white Gaussian noise,
Gaussian blur, JPEG, and JPEG2000), or limited in their ability to
achieve high quality estimate performance because of the small number
of features/scalars used as the reduced information. These distortion-
specific RR [9–11] and some other NR algorithms [17,18] have
attempted to be generic by combining techniques for analyzing more
distortion types. However, they have not been tested on a wide variety
of distortion types, such as the numerous distortion types in the
TID2008 [19] and TID2013 [20] databases.
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Some other RR algorithms employ from a few to a hundred scalars
for the reduced information, and yet can achieve performances only at
the level of MSE/PSNR. More recently, Soundararajan et al. [16], and
Liu et al. [21] provided two RR algorithms, RRED and SPCRM,
respectively. These algorithms have been reported to achieve better
performance by increasing the amount of reduced information. When
utilizing 2.8% and 3.1% (in terms of scalar numbers) reduced informa-
tion (for RRED and SPCRM, respectively), these algorithms are nearly
as good as current state-of-the-art FR algorithms such as MS-SSIM [22],
VIF [23], MAD [24], or FSIM [25] on many large image databases
(TID2008 [19], LIVE [26], CSIQ [27]). However, we believe that with
appropriate features, RR algorithms can be even better than FR
algorithms, particularly considering that humans often do not require
full information about the reference image to assess the quality of a
distorted image. Therefore, we seek an RR approach that can (1)
operate on a wider range of distortion types; (2) be competitive and/or
outperform state-of-the-art FR/RR IQA algorithms; and (3) require
equal/less amount of reduced information.

In this paper, we present a new RR IQA algorithm that estimates
quality based on an analysis of the local sharpness differences between
the reference and distorted images. Previous work on image sharpness
has focused on developing a sharpness index, a single value that
quantifies the overall sharpness of an image (e.g., [28–33] etc.) Some
algorithms also generate sharpness maps that quantifies the perceived
sharpness of different local areas within an image, and these maps have
been used for NR IQA of Gaussian blurred images [32,33] and
JPEG2000 compressed images [34]. In our work, the sharpness features
are employed for RR IQA of images that contain more general distortion
types.

The proposed algorithm, which we called S4RR, employs four
sharpness maps for feature extraction: (1) the luminance-based Fast
wavelet-based Image SHarpness (FISH) map, (2) the downsampled local

lightness distance based (LLD-based) FISH map, (3) the original-scale
local standard deviation (LSD) map, and (4) the downsampled-scale
LSD map. We argue that changes in these sharpness maps can
effectively capture the perceived distortions as long as such changes
are quantified in a manner that adapts to different distortion families.
What makes this approach a good candidate for RR IQA is the fact that
sharpness maps can provide efficient summaries of the reference images
and are sensitive to a variety of image distortions. This notion is
demonstrated in Figs. 1 and 2. As shown in Fig. 1, the reference image
and four distorted images are shown in Row (a) with four common
distortion types: additive Gaussian noise, Gaussian blur, JPEG compres-
sion, and JPEG2000 compression. Rows (b)-(e) show the four sharpness
maps for each of the five images, respectively. Fig. 2 shows the
luminance-based FISH maps for the four distortion types at three
different levels of distortion. Observe that different distortion types
and levels produce different sharpness maps. Therefore, it is possible to
estimate the quality degradation by measuring the deviations in these
distorted sharpness maps from the reference sharpness maps.

Based on the four sharpness maps, S4RR operates via two main
stages. The first stage performs distortion identification. Unlike many of
the previous NR IQA works (e.g., [17,35,18], etc.) that treat individual
distortions as separate classes, we propose in this paper the concept of
distortion families and each distortion family consists of one or more
distortion types that display considerable similarity regarding to certain
properties (for example, different types of the noise-corrupted images
can be clustered into one distortion family, as they are all distorted by
the noise). Consequently, in this stage, 30 classification features are
extracted from the two FISH maps (luminance-based and LLD-based)
and are fed into a classifier, which estimates the probability that the
image is afflicted by one of the multiple distortion families. To be more
specific, we build eight distortion families from the 24 distortion types
in the TID2013 database [20] based on the scatter plots of the sharpness

Fig. 1. One reference image (“I15.bmp”) and its four distorted versions (row a) from the TID2013 database [20] used to demonstrate that sharpness maps are sensitive to different
distortion types. Rows b, c, d, and e show the four sharpness maps respectively.
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values of distorted maps vs. reference map (see Section 3.2.1 for
details). Apparently, this process can greatly reduce the inherent
distortion identification errors (due to the imperfectness of the ex-
tracted classification features) as compared to the 24 cases, which is
also the main reason for the proposed distortion family concept.

The second stage of S4RR performs distortion-family-specific qual-
ity assessment (QA). By assuming that distortion types of the same
distortion family share common characteristics in sharpness maps, in
this stage, a specific regression model for each distortion family is used
to map the extracted sharpness-difference-based features to quality
estimates. In this work, the three sharpness maps (the luminance-based
FISH map and two LSD maps) are employed to extract the RR features.
We propose four types of local statistics and six distance measures, and
consequently 46 regression features are extracted to quantify both
sharpness value changes and sharpness map structure changes (see
Section 3.3 for details). Finally, the distortion family probabilities
estimated in the first stage and the distortion-family-specific quality
scores estimated in the second stage are combined to yield an overall
quality score of the image.

The main contributions of this work are as follows. First, we propose
an RR IQA algorithm that estimates image quality based on sharpness-
map analysis. We demonstrate in our work that sharpness maps can
serve as efficient image-quality-related features that are sensitive to
different distortion types and levels. Second, to enable our algorithm to
work on a wider range of distortion types, various approaches/
strategies are proposed for each of the two stages. For the distortion
identification stage, we propose the concept of distortion families and
classify the 24 distortion types in TID2013 into eight distortion families
by analyzing their different scatter-plot shapes. For the distortion-
family-specific quality assessment stage, we propose four types of local
statistics and six distance measures to quantify the sharpness map
differences between reference and distorted images. Third, the two-
stage framework and the distortion family concept proposed in our
paper might provide a useful way to investigate other features/feature
maps under FR/RR conditions, as long as these features/feature maps
can efficiently capture the reference information, change differently for
different distortion types/families, and be sensitive to different distor-
tion intensities. Compared to the similar two-stage framework em-
ployed by most NR IQA algorithms (e.g., [17,35,18]), which treat
individual distortion type as one class, the proposed distortion family
concept is obviously more suitable to the wider-range-distortion case,
because the former one usually generates more distortion identification
errors.

This paper is organized as follows. Section 2 reviews existing

approaches for RR IQA. In Section 3, we describe details of the
proposed S4RR algorithm. In Section 4, we analyze and discuss the
performance of S4RR on various image quality databases. General
conclusions are presented in Section 5.

2. Previous work

Although it still remains challenging to decide what kind of reduced
information and how much of that information should be used for an
RR IQA algorithm, a notable amount of research progress has been
made [9,1,36,37,4,5,2,6,10,7,3,16,12,8,11,38,15,13,14,39,21]. It is
difficult to classify RR IQA algorithms into separate classes. However,
there are a few noticeable trends used to calculate the reduced
information and to estimate image quality. Some RR IQA methods
employ NSS models to extract RR features [1–3]. Some other ap-
proaches extract the statistics of images in various transform domains
[4–8]. Other works focus on developing RR algorithms which employ
more than one strategy for as many distortion types as possible [9–11].
More recently, some researchers attempt to find the relationships
between current FR models and RR algorithms [12–16]. In this section,
we provide a brief review of current RR methods based on these main
trends.

2.1. Methods based on natural-scene statistics

Natural-scene statistics have been used for RR IQA algorithms due
to their ability to provide compact descriptions of the reference and
distorted images. For example, in [1], Wang et al. proposed an RR IQA
algorithm in the wavelet domain by using the Kullback-Leibler distance
between the marginal probability distributions of wavelet coefficients
of the reference and distorted images. In [2], Li et al. employed a
Gaussian-scale-mixture-based statistical model of wavelet coefficients
to estimate image quality. In [3], Ma et al. developed an RR algorithm
based on a generalized Gaussian distribution model applied to DCT
coefficients.

2.2. Methods based on other transform domain differences

Estimating quality based on the differences between reference and
distorted grouplet, curvelet, and contourlet transform coefficients is
also a common RR approach. For example, in [4], Maalouf et al.
calculated information regarding textures and gradients of the images
via a grouplet transform, and employed CSF filtering and thresholding
to estimate quality. In [5], Gao et al. performed a multiscale geometric

Fig. 2. Luminance-based FISH maps for the 12 distorted versions of the reference image “I15.bmp” used to demonstrated that sharpness maps are sensitive to different distortion levels.
Four distortion types (AGN, GBLUR, JPEG, and JP2K) and three distortion levels in the TID2013 database [20] are shown here.
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analysis using curvelets, bandlets, wavelets, and contourlets for RR
IQA. In [6], Tao et al. employed the city-block distance to measure the
differences in “visual sensitive” coefficients in the contourlet domain. In
[7], Xue et al. developed an RR IQA algorithm based on Weibull
distribution of wavelet coefficients. In [8], Lin et al. used the directional
information of the image obtained in the complex wavelet domain to
estimate image quality. In [40], Golestaneh et al. proposed an RR IQA
algorithm based on the divisive normalization transform (DNT) of
locally weighted gradient magnitudes. The RR features are then
obtained by computing and averaging the entropy of each DNT
subband.

2.3. Methods based on distortion-specific features

Distortion-specific features, such as blocking, blurring, ringing,
intensity masking, and lost blocks measures, have proved useful for
RR IQA. For example, in [9], Gunawan et al. computed blocking or
blurring features based on local harmonic amplitude information
computed from edge-detected images. The two separate measurements
were then combined to estimate image quality. In [10], Engelke et al.
calculated five measures for four artifacts in wireless imaging: blocking,
blur, ringing, and intensity masking and lost blocks. A combination of
these five measures was shown to be quite effective for RR IQA on the
Wireless Imaging Quality database [10]. In [11], Bordevic et al.
calculated four RR quality features, structural information, contrast
quality, histogram information, and a no-reference JPEG measure, to
estimate quality. The proposed RR algorithm employed a neural
network statistical estimator to refine these features, and was shown
to be effective on three distortion types, Gaussian blur, JPEG, and
JPEG2000 in the TID2008 database [19].

2.4. Methods based on current FR algorithms

Another approach to RR IQA has been to develop reduced versions
of full-reference IQA algorithms. For example, in [12], Rehman et al.
developed the RR-SSIM algorithm, which is a reduced-information
version of SSIM [41]. From the same SSIM idea, Bhateja et al. [13,14]
measured the structural dissimilarity to estimate quality. Visual in-
formation fidelity [23] has also inspired RR algorithms [15,16]. For
example, in [16], Soundararajan et al. developed a framework for RR
IQA based on information-theoretical measures of differences between
the reference and distorted images by using the entropy of wavelet
coefficients. When the RR information (the number of scalars required)
was around 2.8% of the image size, the algorithm was reported to
perform nearly as good as the best-performing FR IQA algorithms.

2.5. Summary of existing methods

In summary, current methods have approached the RR IQA problem
by using changes in NSS, differences in transform domain coefficients,
differences in distortion-specific features, or by creating reduced
versions of FR algorithms. However, these algorithms have been tested
only on a limited number of distortion types and have generally yielded
predictive performances below that of state-of-the-art FR IQA algo-

rithms. Some RR algorithms employed from a few to a hundred scalars
for the reduced information, and could achieve performances only as
good as MSE/PSNR. Only Soundararajan et al. [16] and Liu et al. [21]
provided RR algorithms (RRED and SPCRM), which are nearly as good
as current state-of-the-art FR algorithms when utilizing 2.8% and 3.1%
reduced information, respectively.

In the following section, we describe our approach to RR IQA, the
S4RR algorithm, which estimates quality based on differences in local
image sharpness between the reference and distorted images. As we will
demonstrate, with approximately 4.88% reduced information (in terms
of the number of bits), S4RR can be competitive with or outperform
state-of-the-art FR/RR IQA algorithms.

3. Algorithm

The proposed S4RR algorithm is based on the assumption that
distortions affect both the individual sharpness values (which corre-
spond to specific local areas of an image) and the local structure of an
image's sharpness map. In this way, it is possible to measure the
differences between reference and distorted sharpness maps as proxy
estimates of quality degradation. With this idea and motivated by some
of the previous NR IQA algorithms (e.g., DIIVINE [17], C-DIIVINE [35],
and DESIQUE [18]), S4RR operates via two main stages: (1) distortion
identification, and (2) distortion-family-specific quality assessment.

In the first stage, S4RR extracts 15 features from each of the two
FISH maps to perform soft classification. To accurately quantify the
quality degradation, in the second stage, S4RR extracts in total 46
features from the three sharpness maps (one luminance-based FISH map
and two LSD maps) based on four types of local statistics and six
distance measures. Both stages employ the support vector machine
(SVM) to perform classification and regression. Finally, the soft-
classification probabilities and the distortion-family-specific quality
estimations are combined to yield a class-weighted average score which
serves as the final S4RR quality degradation index.

A block diagram of the S4RR algorithm is shown in Fig. 3. In the
following subsections, we discuss details for each stage.

3.1. Reduced-reference information

In this section, we describe the method to collect the reduced-
reference information from various sharpness maps. We analyze the
amount of RR information in terms of bit number based on sharpness
algorithm, block size, and block overlap. The “RR information” refers to
the amount of side information about the reference image that is
needed for the QA process (e.g., side information sent by the encoder in
a streaming QA setting). In our work, this side information is the four
sharpness maps from the reference images.

Also, it is important to note that the amount of RR information used
in our algorithm depends on the image size. As we have mentioned in
Section 1, recent approaches to RR IQA have demonstrated competitive
performance with even FR IQA methods by using RR information that
also varies with image size (e.g, [16,21]). Although our algorithm and
these previous variable RR-information-sized algorithms most often
require more side information than previous fixed-sized approaches,

Fig. 3. Block diagram of the S4RR algorithm. Note that in the distortion identification stage, we only consider seven distortion families with probabilities although the 24 distortion types
in the TID2013 database [20] are actually clustered into eight distortion families. See text for details.
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the amount of RR information is still only a small fraction of the full
reference image information.

3.1.1. FISH sharpness map
The FISH sharpness map is a block-based version of the Fast

wavelet-based Image SHarpness algorithm [33]. A three-level discrete
wavelet transform (DWT) is employed in FISH. The sharpness index for
each block of size 16×16 is then given by a combination of the log-
energies of blocks of size 8×8, 4×4, and 2×2, respectively, for the
subbands from the three DWT levels. FISH employs 50% overlap (i.e., 4,
2, and 1 pixels of overlap for each DWT level) between neighboring
blocks to generate the sharpness map. Therefore, the FISH sharpness
map is 1/64th the size of the input image.

In this work, we compute FISH sharpness maps of the original image
and the image's local lightness distance (LLD) feature (same as that
computed in [42]), denoted by “Luminance-based FISH map” and “LLD-
based FISH map,” respectively. In [42], we demonstrated that LLD can
be a useful feature for predicting stereoscopic image quality. Here, we
use the LLD FISH map only for its efficacy in distortion identification.
Thus, the original LLD FISH map is filtered and downsampled (by 2 in
each direction) to further reduce the RR information. Consequently, the
amount of reduced information for the two FISH sharpness maps is
1/64 + 1/256 = 1.95% of the original image size.

3.1.2. LSD map
The local standard deviation (LSD) has been employed previously in

noise estimation [43], contrast enhancement [44], texture analysis
[45], and quality assessment of JPEG-compressed images [46]. Here,
we argue that LSD is also a good candidate for local sharpness/quality
estimate. The first LSD map is formed by calculating the standard
deviation of each block of size 12×12 (with 4 pixels of overlap between
neighboring blocks) of the original image. Then, the same procedure is
applied to the filtered and downsampled-by-2 version of the image1 to
obtain the second LSD map. Therefore, the amount of reduced
information for the two scales is 1/8 + 1/2 /8 = 1.95%2 2 2 of the original
image size.

3.1.3. Quantization
Based on the aforementioned points, we extract a total of four

sharpness maps from the reference image: (1) Luminance-based FISH
map, (2) downsampled LLD-based FISH map, (3) original scale LSD
map, and (4) downsampled scale LSD map. These four sharpness maps
are then quantized to 10 bits for each pixel value. Thus, in terms of the
number of bits, the amount of reduced information is
(10/8) × (1.95 %+ 1.95%) = 4.88% of the original image. As we will
demonstrate next, features extracted from these sharpness maps can
be effective for both distortion identification and quality assessment.

3.2. Sharpness features for classification

As discussed in Section 1 and demonstrated in Figs. 1 and 2,
sharpness maps are sensitive to a variety of distortion types and levels.
Although different distortion types can exhibit different visual impacts
on the images, some distortion types exhibit the same or similar
impacts. Thus, it is necessary to determine the distortion families from
the distorted image before using the sharpness maps to estimate quality.
In this section, we first describe the eight distortion families derived
from the TID2013 database [20]. Then, we provide details on extracting
various classification features from the reference- and distorted-image
sharpness maps to perform soft classification.

3.2.1. Distortion families
The TID2013 database contains 24 individual distortion types: (1)

additive Gaussian noise (AGN), (2) additive noise in color components
(ACN), (3) spatially correlated noise (SCN), (4) masked noise (MN), (5)
high frequency noise (HFN), (6) impulse noise (IN), (7) quantization
noise (QN), (8) Gaussian blur (GBLUR), (9) image denoising (ID), (10)
JPEG compression (JPEG), (11) JPEG2000 compression (JP2K), (12)
JPEG transmission errors (JPG_TE), (13) JPEG2000 transmission errors
(J2K_TE), (14) non eccentricity pattern noise (NEPN), (15) local block-
wise distortions (LBW), (16) mean shift (MS), (17) contrast change
(CTC), (18) change of color saturation (CCS), (19) multiplicative
Gaussian noise (MGN), (20) comfort noise (CN), (21) lossy compression
of noisy image (LCN), (22) color quantization with dither (CQ), (23)
chromatic aberrations (CA), and (24) sparse sampling (SS). To group
these 24 distortion types into different distortion families, we use the
scatter plots of the sharpness map values of distorted image vs.
reference image. Some examples 2 are shown in Fig. 4.

As shown in Fig. 4(a), the scatter plot of the sharpness map values of
a reference image versus itself fits perfectly to the line y=x. However,
when images are distorted, their sharpness maps will be changed, and
such changes are reflected in the scatter-plot shapes. Fig. 4(b) shows the
luminance-based FISH maps for the 24 distorted versions of the
reference image, each of which represents one distortion type in the
TID2013 database. Also shown in Fig. 1(b) are the 24 corresponding
scatter plots of the distorted sharpness map values vs. the correspond-
ing reference values. Note that for each scatter plot in Fig. 4(b), the
horizontal axis represents the reference map values and the vertical axis
represents the corresponding distorted map values. From Fig. 4(b),
observe that different distortion types display different scatter-plot
shapes. However, also observe that some distortion types interestingly
share considerable similarities.

To model the different shapes of these scatter plots, we fit each of
them by using a three-parameter second-order polynomial curve, which
is given by

y λ x λ x λ= · + · + ,1
2

2 3 (1)

where λi i( = 1, 2, 3) are the curve parameters. After polynomial fitting,
we calculate the sum of the root square error which is used as the forth
parameter (denoted by Err) for analysis. To be more generic, we obtain
these four parameters from all the 24 different natural-scene images in
the TID2013 database [20], and each image content is chosen at its
most distorted version for clearer observation. Note that scatter plots of
both the contrast reduction and contrast enhancement images which
belong to the same 17th distortion in the database are fitted (denoted by
17A and 17B, respectively). Consequently, we fit 25 scatter plots for
each image content, which results into a total of 2400 values (24 image
content × 25 scatter plots × 4 parameters). The mean and standard
deviation (denoted by μ and σ, respectively) of the four parameters for
each distortion type in the TID2013 database are shown in Table 1. Also
shown in Table 1 are the number of distorted images (or scatter plots)
from which these statistical numbers are calculated. Based on these
obtained parameters along with the scatter plots, we classify the 24
distortion types in TID2013 into eight distortion families. The corre-
sponding mappings are shown in Tables 1, 2, and summarized as
follows:

• Id 1: The first distortion family, which we called “noise-based
distortion,” contains seven distortion types, all of which introduce
certain levels or types of noise corruptions. Thus, their correspond-
ing scatter plots show significant increases in the images’ sharpness
values (i.e., the scatter plots are far above the line y=x). From
Table 1, we observe that this distortion family usually has a small
value of λ2 and a large value of λ3. Because their scatter plots are

1 In this paper, we used bicubic interpolation to downsample the images; the output
pixel value is a weighted average of pixels in the nearest 4×4 neighborhood. 2 Here, we use the luminance-based FISH map for example.
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usually narrow, the fitting error (Err) is also relatively small.
• Id 2: The second distortion family is called “blur-based distortion”
because all five distortion types assigned to this group generally
bring some kind of the blur effect to an image. Consequently, the
image's sharpness values decrease significantly compared to the

reference sharpness values (i.e., the scatter plots are far below the
line y=x). Again, we observe small values of λ2 and Err, but what is
different from the first family is the also small value of λ3.

• Id 3, 4: The third distortion family produces only a slight effect on
the image's local sharpness values, while the fourth distortion family

Fig. 4. Scatter plots of the sharpness map values of one reference image (I01.bmp in TID2013) versus its 24 distorted versions. Shown in (a) is a reference image, its luminance-based FISH
map, and a scatter plot of the map values vs. itself. Shown in (b) are the luminance-based FISH maps and the scatter plots of the map values of 24 distorted images vs. the reference image.
Each distorted image contains one of the 24 distortion types (denoted by the number 1, 2,…, 24, respectively). For each scatter plot in (b), the horizontal axis represents the reference map
values and the vertical axis represents the corresponding distorted map values. Also included in (b) are the corresponding distortion family number (denoted by “Id”) for each distortion
type. Notice that different distortions may display different scatter-plot shapes, but scatter plots of some distortion types can share great shape similarity. See text for details.
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gives rise to much broader gains and losses. Therefore, we call these
families “spatially localized distortion” and “spatially correlated
broadband distortion,” respectively. Observe from Fig. 4 that these
two groups display either very narrow or very wide scatter-plot
shapes. Specifically, because the third distortion family has a scatter
plot that falls almost on the region of the line y=x, it has a nearly
zero value of λ1, a large value of λ2, and small values of λ3 and Err.
In comparison, the forth distortion family has a very wide scatter-
plot shape, and thus it has very random values of λ1, λ2, and λ3 (this
can be seen from their corresponding σ values), and because of such
randomness, this distortion family gives rise to the largest fitting
error (Err) among all the distortions considered here.

• Id 5, 6: The fifth and sixth distortion families are derived from a
single distortion type in the original TID2013 database [20]. We
have these two splits (contrast reduction and contrast enhancement)
because each displays different scatter plot positions as compared to
the line y=x, although both plots are highly correlated (see Fig. 5).
Unlike many other distortions, the contrast change does not
introduce any noticeable artifacts (e.g., ringing, blurring, and
blocking artifacts), because of which the sharpness map structure

of the original image is well maintained in its contrast-change
versions. Referring to Table 1, we see small values of λ1, λ3, and Err,
and large values of λ2 for both distortion families.

• Id 7, 8: The last two distortion families, masked noise and change of
color saturation, are exactly the same as the original distortion types
in TID2013. Note from Fig. 4 that both types display different
scatter-plot shapes from the others. Specifically, for the masked-
noise-corrupted image, usually less noise exists in its smooth areas,
while the edge or textured areas often have more noise corruption
(due to the different noise-masking capabilities). Thus, we observe
from Fig. 4 that the scatter plot of such distortion displays a middle-
bulged curve shape, which indicates that there are more sharpness
increases on the image's textured areas and less on the smooth/edge
areas. Apparently, this significantly differs from the first noise-based
distortion family although they all have additive noise. As for the
polynomial fitting, we see larger values of λ2 and Err, and a smaller
value of λ3, as compared to Id 1. Also, the color-saturation-change
images display scatter plots that almost coincide with the line y=x;
hence, the polynomial fitting for this distortion produces nearly zero
values of λ1, λ3, and Err, and λ2 is close to 1. Note that changes of
color saturation do not introduce any visible distortions when
images are viewed in gray scales. Thus, we do not consider this
distortion type (CCS) in our algorithm.

Despite the aforementioned eight distortion families, we do ac-
knowledge that for some distortion types (e.g., LCN in Id 1, J2K_TE and
LBW in Id 3), it is difficult to group them into any one of those
distortion families, because their scatter-plot shapes and fitting para-
meters lie near the boundaries of different distortion types/families.
This is possible when different distortion types share certain properties
or when images are relatively less distorted, both of which can make it
difficult or even impossible for a strict definition (hard classification) of
different distortion families. However, because we use a soft classifica-
tion to achieve the probability-weighted quality estimate (see Eq. (24)),
the proposed distortion families can thus be non-strictly defined for
some special cases, as long as such definitions or classifications do not
significantly affect the algorithm performance.

Table 1
The mean and standard deviation of the four polynomial fitting parameters for the 24 distortion types in the TID2013 database.

Distortion type # images Distortion family Id λ1 λ2 λ3 Err

μ σ μ σ μ σ μ σ

1. AGN 24 1 0.31 0.12 0.00 0.14 0.68 0.07 1.40 0.19
2. ACN 24 1 0.41 0.07 0.10 0.10 0.50 0.07 1.24 0.19
3. SCN 24 1 0.56 0.08 −0.06 0.10 0.51 0.07 1.27 0.18
4. MN 24 7 −0.88 0.47 1.69 0.41 0.11 0.09 3.48 1.17
5. HFN 24 1 0.18 0.15 0.04 0.16 0.80 0.06 1.45 0.15
6. IN 24 1 0.42 0.31 −0.15 0.33 0.73 0.09 2.89 0.57
7. QN 24 4 −0.67 0.94 1.68 1.01 −0.05 0.27 8.47 2.67
8. GBLUR 24 2 0.04 0.09 0.06 0.10 0.01 0.02 1.10 0.14
9. ID 24 2 0.25 0.21 −0.08 0.18 0.06 0.04 2.75 0.44
10. JPEG 24 4 0.24 0.59 0.51 0.64 0.02 0.14 6.90 1.27
11. JP2K 24 2 0.18 0.44 −0.13 0.38 0.04 0.08 1.17 1.20
12. JPG_TE 24 4 −0.19 0.43 0.86 0.50 0.15 0.15 5.67 1.96
13. J2K_TE 24 3 0.23 0.38 0.48 0.40 0.27 0.14 4.54 1.90
14. NEPN 24 3 −0.17 0.09 1.13 0.08 −0.01 0.01 2.35 0.46
15. LBW 24 3 −0.07 0.11 1.04 0.09 0.00 0.02 2.17 0.38
16. MS 24 3 0.01 0.23 1.02 0.25 −0.03 0.06 1.26 1.00
17A. CTC 24 5 −0.23 0.34 1.28 0.38 0.00 0.11 1.90 0.93
17B. CTC 24 6 0.24 0.06 0.63 0.07 −0.05 0.02 0.37 0.12
18. CCS 24 8 0.00 0.01 0.99 0.02 0.00 0.00 0.35 0.17
19. MGN 24 1 0.35 0.60 0.04 0.63 0.63 0.16 3.99 0.96
20. CN 24 3 −0.02 0.06 0.96 0.06 0.03 0.02 1.26 0.19
21. LCN 24 1 0.04 0.65 0.29 0.78 0.43 0.23 5.44 1.59
22. CQ 24 4 −0.48 1.39 1.15 1.55 0.24 0.41 10.72 3.60
23. CA 24 2 0.06 0.07 0.24 0.27 −0.01 0.03 0.92 0.38
24. SS 24 2 0.01 0.12 0.06 0.09 0.05 0.05 1.55 0.80

Table 2
Mappings between eight distortion families and 24 distortion types in the TID2013
database.

Id Distortion families Distortion types

1 Noise-based distortion AGN, ACN, SCN, HFN IN, MGN,
LCN

2 Blur-based distortion GBLUR, ID, JP2K, CA, SS
3 Spatially localized distortion J2K_TE, NEPN, LBWD, CN
4 Spatially correlated broadband

distortion
QN, JPEG, JPG_TE, CQ

5 Contrast reduction CTC
6 Contrast enhancement CTC
7 Masked Noise MN
8 Change of color saturation CCS
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3.2.2. Classification feature extraction
With these eight distortion families, we next extract classification

features for each of them based on the two FISH sharpness maps
(luminance-based and LLD-based). As shown in Fig. 5, the reference-
sharpness axis (x-axis) is divided into four intervals from left to right:
low-valued, mid-valued, high-valued, and very-high-valued, which
roughly correspond to the smooth areas, textured areas, and edge areas
of an image. These four intervals, combined with the y=x line, give rise
to eight regions on the scatter plot, which will be used for classification
feature extraction.

Let Sref and Sdst denote the FISH sharpness maps (luminance-based
or LLD-based) of the reference and distorted images, respectively. Then
the four regions on reference sharpness map (denoted by Lref , Mref , Href ,
and Vref , respectively) and four regions on distorted sharpness map
(denoted by Ldst, Mdst, Hdst, and Vdst, respectively) are given by

l l l l TL ( ) = S ( ), ∀ |S ( ) < /6ref dst ref dst ref/ / (2)

m m m T m TM ( ) = S ( ), ∀ | /6 ≤ S ( ) < /3ref dst ref dst ref/ / (3)

h h h T h TH ( ) = S ( ), ∀ | /3 ≤ S ( ) < /2ref dst ref dst ref/ / (4)

v v v T vV ( ) = S ( ), ∀ | /2 ≤ S ( )ref dst ref dst ref/ / (5)

where l, m, h, and v denote the indices of Sref corresponding to low, mid,
high, and very high values, and T denotes the maximum value of a
sharpness map.

Based on the reference and distorted sharpness maps, and the eight
regions on scatter plot, we extract 15 sharpness features ( f f−1 15) from
each FISH map (luminance-based FISH map or LLD-based FISH map).
Detailed information is given in Table 3, where l, m, h, and v have the
same meaning as in Eqs. (2)–(5). Therefore, a total of 30 features are
extracted from the two FISH maps, which are then fed into the SVM
model for soft classification. We demonstrate in Section 4 that these
proposed features are highly effective at distortion identification.

3.3. Sharpness features for regression

In this section, we describe details of how to extract the regression
features from the three sharpness maps (one luminance-based FISH map
and two LSD maps) to perform the distortion-family-specific QA task
(note that we do not use the downsampled LLD-based FISH map for
regression feature extraction). The main goal of this stage is to give a
quality estimate for each distortion family based on the differences
between the reference and distorted sharpness maps. As mentioned
previously, distortions will cause changes to both the individual
sharpness values and the local structure of an image's sharpness map.

Thus, the key point of the second stage in S4RR is to extract efficient
features that can describe such a change. To this end, we propose four
types of local statistics and six distance measures to quantify both the
sharpness value changes and sharpness map structure changes between
the reference and distorted sharpness maps. We provide details in the
following subsections.

3.3.1. Local statistics
The local statistics aim at modeling the relationship between

neighboring pixel-pairs on a sharpness map, which to some extent
represent the map structure. Applying each local statistic to the original
sharpness map will produce another rescaled map, which we call
sharpness feature map.3 Thus, four types of sharpness feature maps
can be generated from each of the three original sharpness maps.

Let S denote one of the three original sharpness maps of an image,
and its elements are denoted by Si. For each 2×2 block (without
overlap), we compute the local maximum and local standard deviation
as

S = max{S , S , S , S },f 1 2 3 41 (6)

∑S = 1
3

(S − S) ,f i i=1

4 2
2 (7)

where Si i( = 1, 2, 3, 4) denotes one of the four sharpness values within
each 2×2 block, and S denotes their average value.

In addition, to measure the sharpness change within each block, we
propose another local statistic called top-variation. Specifically, given a
2×2 block, we first compute the six-element variation vector (denoted
by v) via

v = [|S − S |, |S − S |, |S − S |, |S − S |, |S − S |, |S − S |].1 2 1 3 1 4 2 3 2 4 3 4

The top-variation-based statistic is then given by

v vS = ( + )/2 ,f 1
2

2
2

3 (8)

where v1 and v2 denote the two largest elements of v. Note that the
above-mentioned three local statistics (S f1

- S f3
) are computed for 2×2

blocks. To extract more about the image's structure information, we
also consider the 3×3 block size. In this paper, we use the local
sharpness distance computed upon 3×3 blocks to measure the sharp-
ness change between one image area and its surrounding areas.
Specifically, the local sharpness distance is computed via

Fig. 5. A demonstration of different scatter plot positions as compared to the line y=x for contrast enhancement and contrast reduction images. These figures also serve as exemplary
demos for classification feature extraction.

3 Here, we use the term “sharpness feature map” to distinguish from the term
“sharpness map” that is originally computed based on FISH [33] and LSD from the image.
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S = S − Sf i B4 (9)

where SB denotes the average sharpness value of a 3×3 block centered
around Si.

Although all of these local statistics are employed to model the
sharpness change between the reference and distorted images, different
local statistics may focus on capturing slightly different distortions and/
or image descriptors. Specifically, S f1

mainly captures the individual
sharpness value change. This statistic is more sensitive to the Gaussian
blur distortion which decreases the sharpness values across all image
areas, because the local maximum of a sharpness map (especially in an
edge area) is often the first to be degraded by blurring. In comparison,
S f2

and S f4
mainly capture the sharpness map structure change. Both

statistics are more sensitive to distortions such as JPEG and JPEG2000
compressions, and the various noise corruptions, because all these
distortions will add additional artifacts (e.g., spots, aliasing, ringing,
and blocking artifacts) that ultimately change the image's sharpness
map structure. The top-variation statistic (S f3

) is motivated by the work
in [32] that the total variation of an image region in the spatial domain
can be effective local sharpness measurement especially when the
contrast is taken into account. Therefore, we employ the top-variation
statistic built upon the LSD map to mainly capture the contrast change
distortions. Despite the different emphasis of different local statistics in
representing distortions, we do find that for most distortion types, these
four local statistics weigh similarly in predicting image quality, and
they are all required for better QA performance when all distortion
types in all testing databases are considered.

We refer interested readers to the online supplement (http://vision.
eng.shizuoka.ac.jp/s4rr/) for an additional discussion and demonstra-
tion.

3.3.2. Distance measure
With the three original sharpness maps and four types of the

regenerated sharpness feature maps (denoted by S fi
, i = 1, 2, …, 4),

the other crucial issue is to measure the distance between a distorted
sharpness/sharpness feature map and the corresponding reference
sharpness/sharpness feature map (also referred as a “sharpness map
pair”). To solve this problem, we employ three difference maps and two
pooling strategies, which ultimately give rise to six distance measures.

Let Sref and Sdst denote the sharpness (feature) maps extracted from the
reference and distorted images, respectively. The three difference maps
(denoted by Di, i = 1, 2, 3) are given by

D S S= −ref dst
1 (10)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D S S

S S
= log 1 + 2

1 + ( ) + ( )

ref dst

ref dst2 2 2
(11)

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

μ μ σ

μ μ C σ σ C
D =

(2 )(2 )

+ + + +

S S S S

S S S S

3
2 2 2 2

ref dst ref dst

ref dst ref dst
(12)

where μ and σ are the mean and standard deviation calculated within
each 3×3 window; and C=0.001 is a small constant that prevents
division by zero. Note that D3 is computed the same way as is done in
SSIM [41]; the only differences are the sliding window size and
constant value.

In order to collapse each of these difference maps into scalars which
represent the map distance, two pooling strategies are used: (1) top 1%
value pooling, and (2) average pooling. Specifically, for the D1 map, two
scalars are computed by

∑f
T

iD(1) = 1 [ ( )] ,
i

T
D

1
=1 1

2
1

1

(13)

∑f
N

iD(2) = 1 [ ( )] ,
i

N
D

1
=1 1

2
1

1

(14)

where N1 denotes the total number of pixel values in the D1 map; T1
denotes the number of values in the set of the 1% largest values of the
D1 map; and where i i T ND ( ), = 1, 2, …, /1 1 1 denotes a value in the D1
map. Similarly, for the D2 and D3 maps, the four scalars are given by

∑f
T

iD(1) = 1 ( ),
i

T

D
2 =1

22

2

(15)

∑f
N

iD(2) = 1 ( ),
i

N

D
2 =1

22

2

(16)

Table 3
All 15 classification features, their formulas and purposes.

Feature Formulas Purpose/Good for:

Linear correlation between two maps f corr= (S , S )ref dst
1

A high value of f1 suggests a high quality image or a global-
contrast-changing image.

Linear correlation between the reference and
error maps

f corr= (S , (S − S ))ref dst ref
2

A high value of f1 and f2 suggests a contrast enhanced image.

Maximum of the error map f max= (S − S )dst ref
3

Appears sharpened (noise-added) if f f+ > 03 4 . Appears blurred if

f f+ < 03 4 .

Minimum of the error map f min= (S − S )dst ref
4

Average of the error map f mean= (S − S )dst ref
5

Appears sharpened if f > 05 and appears blurred if f < 05 .

Average of the increment in Sref map f mean s s= (S ( ) − S ( ))dst ref
6 for all s sS ( ) > S ( )dst ref (1) f ≈ 06 and f ⪡07 : Blurred family (e.g., GBLUR, JP2K, etc.)

(2) f ⪢06 and f ≈ 07 : Noise family (e.g., AGN, ACN, SCN, etc.)

Average of the decrement in Sref map f mean s s= (S ( ) − S ( ))dst ref
7 for all s sS ( ) < S ( )dst ref (3) f ⪢06 and f ⪡07 : Two-sided distorted (e.g., JPG_TE, CQ, etc.)

Average of the increment in Lref map f mean l l= (L ( ) − L ( ))dst ref
8 for all l lL ( ) > L ( )dst ref A high value suggests a noise-added image.

Average of the decrement in Lref map f mean l l= (L ( ) − L ( ))dst ref
9 for all l lL ( ) < L ( )dst ref A low value suggests pixel-value quantization in the smooth area.

Average of the increment in Mref map f mean m m= (M ( ) − M ( ))dst ref
10 for all m mM ( ) > M ( )dst ref Similar to f8

Average of the decrement in Mref map f mean m m= (M ( ) − M ( ))dst ref
11 for all m mM ( ) < M ( )dst ref Similar to f9

Average of the increment in Href map f mean h h= (H ( ) − H ( ))dst ref
12 for all h hH ( ) > H ( )dst ref Similar to f8

Average of the decrement in Href map f mean h h= (H ( ) − H ( ))dst ref
13 for all h hH ( ) < H ( )dst ref Similar to f9

Average of the increment in Vref map f mean v v= (V ( ) − V ( ))dst ref
14 for all v vV ( ) > V ( )dst ref Similar to f8

Average of the decrement in Vref map f mean v v= (V ( ) − V ( ))dst ref
15 for all v vV ( ) < V ( )dst ref Similar to f9
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∑f
T

iD(1) = 1 ( ),
i

T

D
3 =1

33

3

(17)

∑f
N

iD(2) = 1 ( ),
i

N

D
3 =1

33

3

(18)

where N2, N3, iD ( )2 , and iD ( )3 have the same meanings as N1 and iD ( )1 in
Eqs. (13) and (14). T2 and T3 denote the number of pixel values which
receive the 1% smallest value indices of the D2 and D3 maps,
respectively. Thus, for each sharpness map pair, six scalars which serve
as regression features, are computed to represent the map distance.

3.3.3. Regression feature extraction
The regression features are mainly extracted by applying the six

distance measures to various sharpness/sharpness feature maps.
However, we found that these regenerated sharpness feature maps
are not always effective, which means that some feature maps
regenerated from the three original sharpness maps are useless or
redundant, and can even degrade the overall performance. Also,
different maps may require different distance measures to achieve the
best quality prediction results. A brief summary of the maps used and
the features extracted is shown in Table 4.

Specifically, for the FISH sharpness map, three distance measures
[ f (1)D1

, f (1)D2
, and f (2)D3

] are applied to both the original luminance-
based FISH map and its regenerated local sharpness distance map (i.e.,
S f4

), which yield six features (2 maps × 3 distance measures). For the
LSD sharpness map, four sharpness feature maps are first generated.
Then, we apply the four distance measures [ f (1)D1

, f (2)D1
, f (1)D2

, and
f (2)D2

] to the original LSD map, and its four regenerated sharpness
feature maps (i.e., S f1

- S f4
), which yield another 40 features (2 scales ×

5 maps × 4 distance measures).
In summary, we extract in total 46 regression features from the

three original sharpness maps (one luminance-based FISH map and two
LSD maps), and these features will be used to perform the distortion-
family-specific QA task, which is the second stage of S4RR.

3.4. Quality estimation

Given the 30 classification features and 46 regression features, the
final stage of S4RR is to employ the probability-based weighted-
summation strategy to estimate image quality. Specifically, given a test
image, S4RR first employs a support vector classification (SVC) model
to measure the probability that the distortion in the image falls into one
of the seven distortion families.

Let p denote the k-dimensional vector of probabilities (k=7 in this
work), and its elements are denoted by p(i) (i k= 1, 2, …, ). For any
classification feature vector x and its corresponding label y, the goal is
to estimate p i P y i x( ) = ( = | ). Based on the “one-against-one” approach
[47] for multi-class classification, the pairwise class probabilities (i.e.,
r P y i y i or j x≈ ( = | = , )ij ) are estimated by using method proposed in
[48]. After collecting all rij values, the second approach of [49] is
employed to obtain p(i) by solving the following optimization problem:

∑ ∑

∑

r p i r p j

p i i p i

min 1
2

( ( ) − ( ))

subject to ( ) ≥ 0, ∀ , ( ) = 1.

p i

k

j j i
ji ij

i

k
=1 : ≠

2

=1 (19)

More details for solving Eq. (19) are referred to [49].
After obtaining these probability values, we next select the top two

highest probabilities (denoted by pm, m=1,2) and their corresponding
distortion-family-specific support vector regression (SVR) models for
quality estimation. In this work, we employ ϵ-SVR [50] to perform the
regression task, as this prediction approach has been proved efficient
and widely used in many applications.

Specifically, given a set of training data y yx x( , ), …, ( , )l l1 1 where
x ∈l

d and y ∈ , ϵ-SVR aims to find a function, which takes the form

f w ϕ bx x( ) = , ( ) + , (20)

such that f x( ) has at most ϵ deviation from the desired target y for all
the training data, and at the same time is as flat as possible. In Eq. (20),

ϕ x( ) ∈ ′d (d d′ > ) is a non-linear projection, which maps the data from
the original d-dimensional domain to a higher d′-dimensional feature
space; w ∈ d is the weight vector, and b ∈ is the bias. This can be
done by solving the following optimization problem:

⎧
⎨⎪

⎩⎪

∑w C ξ ξ

y w ϕ b ξ

w ϕ b y ξ

ξ ξ

x
x

min 1
2

+ ( + *)

subject to

− , ( ) − ≤ ϵ +

, ( ) + − ≤ ϵ + *

, * ≥ 0

w b ξ ξ i

l

i i

i i i

i i i

i i

, , , *
2

=1

(21)

where ξi and ξ*i are the slack variables introduced to allow for some
small errors; C > 0 determines the trade-off between the flatness of f
and the amount up to which deviations larger than ϵ are tolerated. By
using Lagrange multipliers and a quadratic programming solver, the
final solution of Eq. (21) is given by

∑f α α K bx x x( ) = ( − *)· ( , ) + ,
i

l

i i i
=1 (22)

where K ϕ ϕx x x x( , ) = ( ) ( )T
i i is a kernel function; αi and α*i are Lagrange

multipliers, which are both zeros if xi does not contribute to the error
function. More details for training ϵ-SVR models are referred to [51,52].

Finally, the trained SVR model will map the 46-regression-feature
vector (denoted by z) to the associated quality score, which is given by

∑q α α K bx z= ( − * )· ( , ) + ,m
i

l

m m m m m
=1

m

i i i (23)

where m=1,2 represents the two SVR models corresponding to the two
highest probabilities. The final quality, denoted by S4RR, is then given
by

p q

p
S4RR =

∑

∑
.m m m

m m

=1
2

=1
2

(24)

Note that only the top two highest probabilities and the correspond-
ing SVR models are selected for QA; we have found that generally fewer
or more than two probabilities/SVR models gives rise to more QA
errors. Also note that the SVR requires training on TID2013 [20] using
the mean opinion scores (MOS). Thus, larger values of S4RR denote
predictions of better image quality. As we will demonstrate next,
training the seven distortion families on TID2013 using these 30
classification features and 46 regression features can yield excellent
prediction performance on a variety of distorted images from other
databases.

4. Results

In this section, we analyze S4RR's ability to predict image quality by
using various image quality databases. We also compare the perfor-
mance of S4RR to other FR, RR, and NR IQA algorithms.

Table 4
Summary of sharpness (feature) maps used and the corresponding extracted features.

Feature maps Distance measure Feature Id

FISH, S f4
of FISH f (1)D1

, f (1)D2
, f (2)D3

f1 - f6

LSD, S f1
- S f4

of LSD f (1)D1
, f (2)D1

, f (1)D2
, f (2)D2

f7 - f46
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4.1. Training

We trained our models on the TID2013 [20] database, which
contains 25 reference images and 3000 distorted images spanning 24
distortion types. As mentioned in Section 3.2, we do not train on CCS,
because changes of color saturation do not introduce any visible
distortions when images are viewed in grayscale. Thus, the total
number of training images was 2875, which cover seven distortion
families. We use the LIBSVM package [51] to implement the training.
To improve the predictive performance, optimal radial basis function
kernel parameters were used for both the classification and the
regression.

4.2. Testing

To assess the predictive performance of S4RR, five databases of
subjective image quality were used: (1) the LIVE database [26], (2) the
CSIQ database [27], (3) the TID2008 database [19], (4) the IVC
database [53], and (5) the Toyama [54] database.

The LIVE database contains 29 reference images and 779 distorted
images that span five distortion categories: JPEG compression,
JPEG2000 compression, Gaussian blur, additive Gaussian noise, and
fast fading (FF). The CSIQ database consists of 30 original images
distorted using six different types of distortions at four to five different
levels: JPEG compression, JPEG2000 compression, Gaussian blur,
additive pink Gaussian noise (APGN), additive white Gaussian noise
(AWGN), and global contrast decrements. The TID2008 database
consists of 25 reference images and 1700 distorted images over 17
distortion types. The IVC database contains 10 original images and 185
distorted versions that cover four distortion types: JPEG, JPEG2000
compression, LAR coding, and Blurring. The Toyama database contains
14 original images and 168 distorted versions that cover two distortion
types: JPEG and JPEG2000 compression. The subjective ratings in the
LIVE and CSIQ databases are provided in the term of differential mean
opinion scores (DMOS); ratings in the TID2008, IVC, and Toyama
databases are presented as mean opinion scores (MOS).

We compared S4RR with various FR, RR, and NR quality assessment
methods for which code is publicly available. The four FR methods
were SSIM [41], multiscale structure similarity (MS-SSIM) [22], visual
information fidelity (VIF) [23], and most apparent distortion (MAD)
[24]. The five RR methods were wavelet-domain natural image
statistics model (WNISM) [55], hybrid wavelets and directional filter
banks (HWD) [5], entropy of DNT coefficients of local weighted
gradient (REDLOG) [40], reduced reference entropic differencing
(RRED) [16], and regularity of phase congruency metric (SPCRM)
[21]. The three NR methods were the spatial-spectral entropy-based
quality index (SSEQ) [56], the derivative statistics-based quality
evaluator (DESIQUE) [18], and the convolutional-neural-network-
(CNN-) based IQA framework proposed in [57].

Before evaluating the performance of a particular quality assess-

ment method on a particular database, we applied a logistic transform
to bring the prediction values on the same scales as the MOS values. The
logistic transform recommended by Video Quality Experts Group [58] is
a four-parameter sigmoid given by

f x
τ τ

τ( ) =
−

1 + exp( − )
+ ,x τ

τ

1 2
−
| |

23
4 (25)

where x denotes the raw predicted score, and where τ1, τ2, τ3, and τ4 are
free parameters selected to provide the best fit of the predicted scores to
the MOS/DMOS values. Three criteria were used to measure the
prediction monotonicity and prediction accuracy of each algorithm:
(1) the Spearman Rank-Order Correlation Coefficient (SROCC), (2) the
Pearson Linear Correlation Coefficient (CC), and (3) the Root Mean
Square Error (RMSE) after non-linear regression. Note that the logistic
transform in Eq. (25) will affect only CC and RMSE, not SROCC.

4.3. Cross-validation test on TID2013

In this section, we perform a cross-validation test on TID2013 by
splitting the database into two non-overlapping sets based on the
reference images content. A 20% subset of the database was used for
training and a remaining 80% subset for testing. We compared with the
four FR and five RR IQA methods in terms of median/mean SROCC, CC
and RMSE values computed over 1000 trials, and the results are shown
in Table 5. Also included is the amount of side information that each
algorithm has to extract from the reference image, where N denotes the
reference image size, and where N* denotes the normalized image size
according to [21]. Note that in order to provide fair comparison, all
algorithms were tested on the same 80% subsets of images in TID2013.
Also note that the three NR methods were not chosen to perform this
cross-validation test because they were initially designed to be trained
on the LIVE database [26].

In order to evaluate statistical significance, we also performed a
one-sided t-test with a 95% confidence level between SROCC values
generated by these algorithms across the 1000 train-test trials. The
results are shown in Table 6, in which “1”, “0”, “−1” indicate that the
mean correlation of the row (algorithm) is statistically superior,
equivalent, or inferior to the mean correlation of the column (algo-
rithm).

To demonstrate that the S4RR classification features can be used for
different distortion family identification, Table 7 shows the median and
mean classification accuracy of the classifier in the first stage of S4RR
for seven distortion families in TID2013, as well as across all distortions
(note that the numbers 1, 2,…,7 in Table 7 denote the seven distortion
families). To show the performance consistency of each of the
algorithms considered here, Fig. 6 shows a plot the mean and standard
deviation of SROCC values across these 1000 trials.

According to the cross-validation test results, S4RR performs
statistically the best among all FR/RR IQA algorithms considered here.
In regards to the classification accuracy, S4RR still performs quite well,
with an average of more than 90% of the images classified correctly.
Note that in our cross-validation test, only 20% of the database images
are used for training, and the remaining 80% for testing. As we have
oberved, increasing the number of trained images in TID2013 will lead
to significant performance improvement of S4RR. However, it is
important to note that this cross-validation test is not necessarily the
best way to gauge the performance of any given algorithm because the
amounts of distortions (i.e., the severity levels) are similar in both
training and testing sets. Thus, in the following sections, we show the
results of these FR and RR IQA algorithms on other databases.

4.4. Performance on other databases

In this section, we evaluate the performance of S4RR for predicting
the qualities of images on the LIVE, CSIQ, TID2008, IVC, and Toyama

Table 5
Median/mean SROCC, CC, and RMSE values across 1000 train-test combinations on the
TID2013 database.

Median Mean

Metric # bits SROCC CC RMSE SROCC CC RMSE
SSIM 8×N 0.695 0.713 0.881 0.695 0.713 0.881
MS-SSIM 8×N 0.861 0.868 0.624 0.862 0.868 0.623
VIF 8×N 0.740 0.799 0.756 0.741 0.800 0.753
MAD 8×N 0.854 0.862 0.636 0.854 0.863 0.635
WNISM 162 0.541 0.598 1.006 0.546 0.607 0.997
HWD 17×32 0.503 0.558 1.042 0.507 0.560 1.041
REDLOG 6×32 0.748 0.774 0.797 0.748 0.774 0.796
RRED 32N/36 0.834 0.854 0.654 0.835 0.855 0.651
SPCRM 32N* / 32 0.829 0.860 0.641 0.830 0.861 0.640
S4RR 10N/25.6 0.887 0.901 0.545 0.884 0.899 0.549
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databases. In this case, we trained S4RR on the entire TID2013
database, which contains 2875 distorted images (the CCS distorted
images were not considered) with 23 distortion types. As mentioned
before, these 23 distortion types were clustered into seven distortion
families. Thus, our trained S4RR algorithm contains one SVC model and
seven SVR models. For a fair comparison, the three NR IQA algorithms
were also trained on these same 2875 distorted images in TID2013.

4.4.1. Contributions of individual sharpness features
To analyze the contributions of each of these sharpness (feature)

maps towards the overall performance, we created nine abridged
version of S4RR in which each version used only part of the regression
features in the second stage of S4RR. Specifically, for the “FISH” and
“S f4

of FISH” versions, each employed three features for regression; for
the “LSD” and “S fi

of LSD” (i = 1, …, 4) versions, each employed four
features for regression. The other two versions, denoted by “FISH all”
and “LSD all”, respectively, indicate that all the six FISH-map-related
features and all the 40 LSD-map-related features are used in the
regression stage. Each of these versions was trained on the 2875
distorted images in the TID2013 database via the same 30 classification
features and the same SVM parameters. The testing was performed on
the aforementioned five databases, and the results of analysis are shown

in Table 8.
As observed in Table 8, the best performance is achieved when all

the 46 regression features are used. In fact, the 40 LSD-map-related
features can already give rise to high SROCC and CC values on the five
testing databases. Thus, the purpose of adding six more FISH-map-
related features is to further enhance the algorithm performance. Also,
as we have found in our experiment, extracting the same six features
from the downsampled LLD-based FISH map will conversely decrease
the algorithm performance, especially for the IVC and Toyama data-
bases. Hence, in practice, we only use the luminance-based FISH map
for regression feature extraction.

4.4.2. Overall performance
The overall testing results in terms of SROCC, CC, and RMSE on the

entire set of images from the LIVE, CSIQ, TID2008, IVC, and Toyama
databases are shown in Table 9, in which italicized entries denote FR
algorithms, and entries marked by “*” denote the NR algorithms. The
results of the best-performing FR algorithm in each case are italicized
and bolded, and the results of the best-performing RR algorithm are
bolded. Note that among the five RR algorithms, three of them
(WNISM, HWD, and REDLOG) extract a much smaller amount of side
information from the reference image, and thus their performances are
not quite competitive. In comparison, RRED and SPCRM extract more
side information proportional to the image size, and thus these two
algorithms can achieve good results on the five testing databases.

From Table 9, it is clear that compared with other FR/RR/NR IQA
methods, S4RR performs quite well in predicting quality. Although the
side information (number of bits) extracted by S4RR is nearly equiva-
lent to RRED and SPCRM (assuming that both algorithms use 32-bit

Table 6
Results of the one-sided t-test performed between SROCC values generated by different measures. “1″, “0”, “−1″ indicates that the algorithm in the row is statistically superior,
equivalent, or inferior to the algorithm in the column.

SSIM MS-SSIM VIF MAD WNISM HWD REDLOG RRED SPCRM S4RR

SSIM 0 −1 −1 −1 1 1 −1 −1 −1 −1
MS-SSIM 1 0 1 1 1 1 1 1 1 −1
VIF 1 −1 0 −1 1 1 −1 −1 −1 −1
MAD 1 −1 1 0 1 1 1 1 1 −1
WNISM −1 −1 −1 −1 0 1 −1 −1 −1 −1
HWD −1 −1 −1 −1 −1 0 −1 −1 −1 −1
REDLOG 1 −1 1 −1 1 1 0 −1 −1 −1
RRED 1 −1 1 −1 1 1 1 0 1 −1
SPCRM 1 −1 1 −1 1 1 1 −1 0 −1
S4RR 1 1 1 1 1 1 1 1 1 0

Table 7
Mean and median classification accuracy across 1000 train-test trials.

Classification accuracy (%) 1 2 3 4 5 6 7 All

Mean 93.0 95.5 90.8 85.2 94.6 73.9 84.7 91.1
Median 93.1 95.6 91.0 85.5 95.0 77.5 86.0 91.2

Fig. 6. Mean SROCC and standard error bars for various algorithms across the 1000 train-test trials on the TID2013 database.
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quantizations for their quality-map values), the proposed algorithm can
achieve better performance on all the five testing databases considered
here. Specially, on the CSIQ, TID2008, and IVC databases, S4RR
performs even better than the best FR IQA algorithms. Observe that
SSEQ and DESIQUE can also achieve competitively high performances
on TID2008, but their performances on other databases are relatively
weak. These SROCC/CC values demonstrate that the proposed distortion
family concept and the sharpness-based features are effective at the QA
task across various databases.

The last rows of the SROCC, CC, and RMSE results in Table 9 show
the average values, where the averages were weighted by the actual
number of distorted images tested in each database. Also shown in
Fig. 7 are scatter plots of logistic-transformed S4RR quality predictions
versus subjective ratings (MOS or DMOS) on different databases.
Despite the presence of some outliers, the plots are generally hetero-
scedastic. In summary, when looking at the overall performance across
databases, S4RR has a better average performance than other RR IQA
methods.

4.4.3. Performance on individual distortion types
In order to demonstrate that S4RR can achieve fairly good quality

evaluation across different distortion types, we also report the perfor-

mance of S4RR on individual distortion types from the five previously
mentioned databases. The same logistic transform was used and the
performance for each distortion type was evaluated by extracting the
corresponding transformed scores previously computed when all the
database images were considered. Table 10 shows the results in terms of
SROCC values. Also included are results of the four FR, three NR, and
five RR IQA algorithms for comparison. Italicized entries denote the FR
IQA algorithms. Entries marked by “*” denote the NR IQA algorithms.
Bold entries denote the best-performing FR/RR IQA algorithm for each
distortion type on each database.

From the table, we see that S4RR provides fairly good or better
predictions on most distortion types in comparison to the other five RR
IQA algorithms. Specifically, on the LIVE and CSIQ databases, the three
RR algorithms (RRED, SPCRM, and S4RR) seem to have equal
performances; there are only minor variations when comparing their
SROCC values on each distortion type. On the TID2008 database, S4RR
and the two NR models (SSEQ and DESIQUE) inevitably demonstrate
the best performances among all FR/RR/NR IQA algorithms consid-
ered. This is due to the fact that all these three algorithms were trained
on TID2013, which shares distortion similarities with TID2008
(although the two databases were collected in two separate experiments
with two separate subject pools), and thus these testing results are

Table 8
SROCC and CC for abridged versions of S4RR using only part of the feature maps in the distortion-family-specific QA stage. For reference, the SROCC and CC values of the full S4RR
algorithm are also included (denoted by “ALL”). See text for details.

Feature Map LIVE CSIQ TID2008 IVC Toyama

SROCC CC SROCC CC SROCC CC SROCC CC SROCC CC

FISH 0.900 0.890 0.802 0.806 0.800 0.820 0.786 0.778 0.816 0.813
S f4

of FISH 0.850 0.838 0.744 0.761 0.784 0.799 0.683 0.688 0.737 0.764

FISH all 0.910 0.900 0.811 0.813 0.814 0.828 0.817 0.816 0.896 0.909

LSD 0.921 0.916 0.909 0.903 0.895 0.882 0.864 0.872 0.872 0.871
S f1

of LSD 0.883 0.876 0.880 0.872 0.867 0.852 0.804 0.804 0.750 0.744

S f2
of LSD 0.894 0.869 0.911 0.904 0.893 0.882 0.904 0.909 0.907 0.904

S f3
of LSD 0.911 0.903 0.913 0.906 0.894 0.882 0.902 0.907 0.920 0.918

S f4
of LSD 0.926 0.908 0.936 0.944 0.928 0.924 0.911 0.918 0.894 0.896

LSD all 0.946 0.939 0.949 0.954 0.945 0.946 0.916 0.924 0.919 0.922

ALL 0.954 0.951 0.955 0.959 0.953 0.953 0.926 0.932 0.930 0.932

Table 9
Overall performances of S4RR and other FR/RR/NR algorithms on the LIVE, CSIQ, TID2008, IVC, and Toyama databases. Italicized entries denote FR algorithms. Entries marked by “*”
denote the NR algorithms. Results of the best-performing FR algorithm are italicized and bolded, and results of the best-performing RR algorithm are bolded.

SSIM MS-SSIM VIF MAD CNN* DESIQUE* SSEQ* WNISM HWD REDLOG RRED SPCRM S4RR

SROCC LIVE 0.910 0.945 0.963 0.967 0.730 0.740 0.796 0.747 0.748 0.932 0.943 0.944 0.954
CSIQ 0.837 0.914 0.919 0.947 0.654 0.619 0.575 0.705 0.700 0.848 0.918 0.941 0.955
TID2008 0.626 0.853 0.750 0.834 0.659 0.965 0.916 0.495 0.440 0.684 0.824 0.834 0.953
IVC 0.779 0.884 0.896 0.915 0.669 0.511 0.566 0.401 0.459 0.786 0.899 0.923 0.926
Toyama 0.786 0.886 0.909 0.936 0.777 0.628 0.414 0.645 0.796 0.825 0.823 0.883 0.930
Average 0.750 0.889 0.849 0.897 0.679 0.799 0.771 0.599 0.583 0.786 0.875 0.889 0.951

CC LIVE 0.901 0.934 0.959 0.967 0.708 0.738 0.785 0.736 0.742 0.923 0.934 0.941 0.951
CSIQ 0.815 0.897 0.925 0.950 0.736 0.649 0.667 0.693 0.667 0.842 0.908 0.944 0.959
TID2008 0.639 0.839 0.805 0.831 0.701 0.965 0.914 0.559 0.449 0.725 0.825 0.852 0.953
IVC 0.792 0.893 0.903 0.921 0.672 0.539 0.593 0.520 0.504 0.794 0.905 0.929 0.932
Toyama 0.796 0.893 0.914 0.941 0.775 0.621 0.410 0.654 0.815 0.823 0.827 0.888 0.932
Average 0.750 0.878 0.876 0.897 0.713 0.806 0.790 0.630 0.581 0.802 0.871 0.898 0.952

RMSE LIVE 11.850 9.782 7.733 6.942 19.295 18.447 16.920 18.489 18.324 10.484 9.784 9.245 8.447
CSIQ 0.152 0.116 0.100 0.082 0.178 0.200 0.196 0.189 0.196 0.141 0.110 0.086 0.074
TID2008 1.032 0.730 0.795 0.747 0.957 0.354 0.545 1.113 1.199 0.924 0.758 0.703 0.407
IVC 0.743 0.549 0.524 0.475 0.902 1.026 0.981 1.041 1.052 0.741 0.519 0.450 0.441
Toyama 0.757 0.564 0.507 0.425 0.791 0.981 1.142 0.947 0.725 0.712 0.704 0.575 0.453
Average 3.078 2.477 2.067 1.868 4.627 4.191 3.962 4.546 4.543 2.736 2.493 2.339 2.027
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rather expected. In comparison, S4RR has some difficulties in predict-
ing the qualities of images in the IVC and Toyama databases, which
differ significantly from TID2013. Despite that, S4RR still performs
fairly well on the four distortion types considered, and we believe that
such a slight dip in performance is acceptable.

From Table 10, we also observe that although some distortion types
[e.g., the fast fading (denoted by “FF”) in LIVE, the additive pink
Gaussian noise distortion (denoted by “APGN”) in CSIQ, and the LAR
coding distortion in IVC] are not “seen” in the training database, yet
competitive performance on these distortions can still be achieved. This
important finding indicates that our algorithm can possibly generalize
to new distortions as long as this new distortion displays the same/

similar quality degradation properties as those in the training database.
We acknowledge that the classification process employed in our work
has the potential of not being able to generalize to new distortion types.
Indeed, this is a potential weakness that exists for all the machine-
learning-based IQA approaches. Nonetheless, our soft-classification-
driven approach has the potential to be robust to new distortion types,
as long as those distortions share similar perceptual impacts as those in
our existing distortion families.

In summary, when looking at the performance on individual
distortion types, S4RR is still the best overall choice to estimate image
quality.

Fig. 7. Scatter plots of objective scores predicted by S4RR algorithm after logistic transform versus subjective scores on different image databases. Note that the x axis across all five
figures represents the predicted value transformed via Eq. (25); the y axis represents the true differential mean opinion score (DMOS) value for the LIVE and CSIQ databases, true MOS
value for the TID2008, IVC, and Toyama databases.
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5. Conclusion

This paper presented an RR IQA algorithm, called S4RR, which
operates based on analyzing image sharpness maps. The proposed
algorithm operates via two main stages. In the first stage, two FISH
maps (luminance-based FISH map and downsampled LLD-based FISH
map) are employed to extract 30 classification features, which are used
to estimate the probabilities that the image is afflicted by one of the
multiple distortion families. In the second stage, three sharpness maps
(one luminance-based FISH map and two LSD maps) are employed to
extract 46 regression features based on seven types of local statistics
and six distance measures. These regression features, which represent
the sharpness map differences between the reference and distorted
images, are then fed into the corresponding SVR models to compute the
distortion-family-specific quality scores. Finally, the probabilities from
the first stage and the associated quality scores from the second stage
are combined to yield an overall image quality prediction. Experimental
results on various databases demonstrated that S4RR can achieve
competitive or better performance than many other state-of-the-art
FR/RR IQA algorithms.

Future work could build upon S4RR in several ways. One potential
extension could be better incorporating the HVS modeling into the
distortion-family specific QA stage. Contrast sensitivity models and all
masking models could potentially supplement our existing QA stage.
The main difficulty of such an approach, however, is the need for
perceptual models that could operate primarily using the distorted
image. Another way to build upon S4RR would be to use a multistage

framework, in which multiple alternative measures are used besides
sharpness. For example, specialized measures such as texture-based
features or color-based features can possibly provide improved quality
estimates depending on the distortion type. Thus, our current work is
limited to sharpness, and we envision future work employing an array
of other perceptually relevant measures.
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