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A B S T R A C T

A challenging problem confronted when designing a blind/no-reference (NR) stereoscopic image quality
assessment (SIQA) algorithm is to simulate the quality assessment (QA) behavior of the human visual system
(HVS) during binocular vision. An effective way to solve this problem is to estimate the quality of the merged
single view created in the human brain which is also referred to as the cyclopean image. However, due to the
difficulty in modeling the binocular fusion and rivalry properties of the HVS, obtaining effective cyclopean
images for QA is non-trivial, and consequently previous NR SIQA algorithms either require the MOS/DMOS
values of the distorted 3D images for training or ignore the quality analysis of the merged cyclopean view.
In this paper, we focus on (1) constructing accurate and appropriate cyclopean views for QA of stereoscopic
images by adaptively analyzing the distortion information of two monocular views, and (2) training NR SIQA
models without requiring the assistance of the MOS/DMOS values in existing databases. Accordingly, we
present an effective opinion-unaware SIQA algorithm called MUSIQUE-3D, which blindly assesses the quality
of multiply and singly distorted stereoscopic images by analyzing quality degradations of both monocular and
cyclopean views. The monocular view quality is estimated by an extended version of the MUSIQUE algorithm,
and the cyclopean view quality is computed from the distortion parameter values predicted by a two-layer
classification-regression model trained on a large 3D image dataset. Tests on various 3D image databases
demonstrate the superiority of our method as compared with other state-of-the-art SIQA algorithms.

. Introduction

Recently, the rapid development of virtual reality technology has
rovided users with the exciting visual experience of stereoscopic/3D
ontent, and consequently various 3D services and applications such
s 3D television, 3D video conferencing, 3D cinema, and 3D games,
tc. have gained popularity. Normally, these 3D visual contents of-
en go through multiple stages of processing (e.g., image acquisition,
ompression, transmission, reception, display, etc.) before ultimately
eing presented to the consumers, and for each stage, various types
f distortions can be introduced, negatively impacting the quality of
he user’s 3D visual experience. Thus, there is a need for effective and
eliable stereoscopic image quality assessment (SIQA) algorithms that
an estimate the perceptual quality of the finally observed 3D scene.

Although noticeable progress has been made on developing various
inds of 2D image quality assessment (IQA) algorithms to assess the
erceptual quality of 2D images (see [1,2] for reviews), designing
ffective SIQA algorithms to automatically assess the perceptual quality
f a 3D scene is extremely challenging because many different factors
ncluding heterogeneous distortions, mismatched inter-view percep-
ions, excessive binocular disparity, and inappropriate depth-of-focus
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can all lead to visual discomfort. Although visual discomfort is certainly
an important factor that contributes to the overall 3D quality of expe-
rience, another very important factor is image distortion, which has
been the focus of most existing works, and which is also the focus of
this paper.

Even when considering only a single factor, predicting the qual-
ity of a 3D scene is still difficult, because the human visual system
(HVS) perceives a 3D scene through two stereoscopic views and judges
its quality based mainly on the merged single view created in the
brain after complex binocular fusion and rivalry processes. Although
such QA behaviors seem to be natural to humans, designing a 3D
QA algorithm to mimic this process is non-trivial given that only
two view images are available. The difficulty arises first from the
inevitable occlusion and border area in the two view images, which is
attributed to the two slightly different perspectives of the two cameras
in capturing the image [3]. The difficulty also arises from the fact
that binocular combinations under different distortion types should
be considered. As claimed in [4], the higher quality view that con-
tains sufficient information will help suppress the lower quality view
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with information-loss distortion (e.g., blurring), while for information-
additive distortion (e.g., blockiness), the lower quality view cannot be
compensated [5]. Moreover, compared to the single-distortion scenario,
the multiple-distortion scenario adds another level of difficulty for 3D
QA: the algorithm must not only consider the joint effects of differ-
ent distortions on the two views, but also consider the influence of
these distortions on the binocular combination behaviors, because both
monocular and binocular visions provide important information for the
HVS to judge the 3D image quality.

Despite these difficulties, there have been a number of SIQA al-
gorithms developed over the recent past, and consequently various
kinds of features, models, and frameworks have been proposed. For
no-reference (NR) SIQA, the most common approach is to learn re-
gression models which map the quality-related features of the test
image to associated quality scores. Features that have been used include
natural-scene-statistics (NSS) features based on monocular/cyclopean
images [6–8]; saliency-based binocular features [9]; univariate and bi-
variate statistical features [10]; binocular quality-aware features based
on eye-weighting and contrast-gain-control models [11]; and those
extracted by using deep neural networks (e.g., [4,12,13]) and autoen-
coders (e.g., [14]). These are often called ‘‘opinion-aware’’ approaches,
because the regression models are trained on distorted images along
with their human subjective rating scores. Consequently, their applica-
bility is restricted by the limited number of existing 3D image quality
databases. In comparison, much fewer ‘‘opinion-unaware’’ approaches
have been presented. The main idea of this type of approach is to
estimate quality differences between distorted images and pristine
images by using the various quality-related features and measure-
ments, such as the BRISQUE [15] features and the Mahalanobis dis-
tance measurement of multivariate Gaussian models adopted in [16],
the amplitude/phase difference features and the visual-codebook-based
quality-lookup method adopted in [17,18], the label consistent K-
singular value decomposition classification framework adopted in [19],
etc.

Although the aforementioned NR SIQA algorithms are effective,
most of them were originally designed to work only for singly-distorted
stereoscopic images (SDSIs), while in practice a stereoscopic image
can be simultaneously contaminated by multiple distortions during the
multiple stages of processing. With the recently developed multiply-
distorted stereoscopic image quality database (i.e., the NBU-MDSID
database [20,21]), the NR SIQA topic on multiply-distorted stereo-
scopic images (MDSIs) has begun to receive increased attention. How-
ever, due to the aforementioned difficulties introduced by multiple
distortions, only a few related works have been reported. For example,
Shao et al. [20] proposed a multi-model joint sparse representation
framework based on learning modality specific dictionaries and pro-
jection matrices from singly-distorted images. Later, Shao et al. [21]
proposed another multi-model sparse representation framework which
uses a local phase and amplitude description for dictionary learning
and employs a multi-stage pooling strategy for quality estimation. Jiang
et al. [3] proposed a unified NR quality evaluator for SDSIs and MDSIs
based on learning monocular and binocular local visual primitives in
order to characterize the local receptive field properties of the visual
cortex.

Indeed, these three algorithms pioneered the progress in the field
of NR multiply-distorted SIQA; however, they all suffer from certain
limitations. For example, both Shao’s two sparse-representation-based
methods follow the traditional SIQA pipeline that the quality of the
two monocular views are evaluated separately, followed by a linear
combination that collapses the two quality estimates into one final
quality score. Without analyzing the quality degradation of the merged
view perceived by the HVS, both algorithms are unable to interpret how

and asymmetrically distorted stereopairs are viewed, and thus do not
fully mimic the intrinsic mechanism of the HVS in judging the visual
quality of stereoscopic scenes. Although Jiang’s method takes into ac-
count binocular vision by incorporating a similar cyclopean framework
as [22], the method operates in an ‘‘opinion-aware’’ manner, and thus is
also restricted by the limited quantity of training data. Finally, all three
algorithms consider only three distortion types (white noise, Gaussian
blur, and JPEG compression) and their combinations, while another
common distortion type, JPEG2000 compression, is not included.

By summarizing all existing SIQA approaches, we argue that a grand
challenge for effective blind QA of MDSIs and SDSIs lies in solving three
fundamental problems: (1) how to assess the quality of two monocular
views corrupted by multiple distortions without requiring training the
IQA models on human subjective rating scores; (2) how to construct
accurate and appropriate cyclopean views to simulate the merged single
view created in the human brain by using only stereopairs; and (3)
how to combine quality estimates corresponding to monocular and
binocular visions into one scalar to represent the overall 3D image
quality. One promising approach to build IQA models without training
on human subjective rating scores is our recently developed MUSIQUE
algorithm [23], which decouples the QA task into two subtasks: (1)
estimation of distortion parameters from input distorted images, and
(2) estimation of quality from the estimated parameters. Motivated
by this approach, as well as to overcome the potential limitations
encountered by the current NR SIQA works, we present in this paper
an effective opinion-unaware SIQA algorithm called MUSIQUE-3D to
blindly assess the quality of both MDSIs and SDSIs.

Specifically, MUSIQUE-3D operates via three main stages as shown
in Fig. 1. In the first stage, the quality of the two monocular views are
estimated separately by an extension of the MUSIQUE algorithm to take
into account four common distortion types (white noise, Gaussian blur,
JPEG compression, and JPEG2000 compression) and their combina-
tions. To this end, we present a more advanced classification framework
trained on a large dataset of 2D images to distinguish among nine
different distortion cases. We also present a more advanced quality-
fusion strategy which adaptively addresses the joint effects of the four
distortion types by considering the masking effect caused particularly
by noise.

In the second stage, the quality of the cyclopean view is estimated
based on modeling the most crucial properties of the HVS in 3D view-
ing. Specifically, intermediate maps corresponding to the luminance
and the pixel-based contrast are generated based on an optical flow
algorithm which is employed to compute a disparity map, and based on
a quality-compensated multipathway contrast gain-control model (QC-
MCM) which is employed to model the binocular fusion and rivalry
behaviors of the HVS in viewing symmetrically and asymmetrically
distorted 3D images. The cyclopean view quality is then estimated by a
cyclopean IQA framework, which contains classification and regression
models trained on a large dataset of 3D images to predict the distortion
parameter values of the two intermediate maps (cyclopean luminance
and contrast images).

In the final stage, the two quality estimates obtained from the two
monocular views are combined, which is then incorporated by the
cyclopean view quality obtained in the second stage to yield the overall
quality estimate of the stereoscopic image. To this end, we propose a
new combination strategy that adaptively merges the quality estimates
of the left and right views based not only on the contrast of each
view, but also on analyzing whether or not the lower quality view
can be compensated by the other when the two view images share
similar perceived contrast. As we will demonstrate, all stages together
allow MUSIQUE-3D to achieve better/competitive quality predictive
performance as compared with many other FR/NR IQA algorithms on
the binocular fusion and rivalry behaviors operate when symmetrically various 3D image quality databases.
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Fig. 1. A block diagram of the MUSIQUE-3D algorithm. Note that Stage 1 operates independently for the left and right views. Also note that the SVM approach can possibly be
eplaced by other machine learning models such as the back propagation (BP) neural network (please refer to Section 3.5 for more discussions).

The rest of the paper is organized as follows. Section 2 describes
etails of the proposed MUSIQUE-3D algorithm. Section 3 analyzes the
erformance of MUSIQUE-3D on various multiply and singly distorted
tereoscopic image databases. General conclusions are presented in
ection 4.

. Algorithm

The proposed MUSIQUE-3D algorithm is based on the assumption
hat the overall perceptual quality of a 3D scene can be evaluated by
ombining the two monocular view qualities and the merged binocular
iew quality. Thus, MUSIQUE-3D operates via three main stages as
entioned in Section 1: (1) MUSIQUE-based QA of the two monocular

iews; (2) QC-MCM-based QA of the cyclopean view; and (3) combi-
ation of the monocular and cyclopean views’ qualities to yield the
inal quality score of the stereoscopic image. We provide the algorithm
etails in the following subsections.

.1. MUSIQUE on stereopairs

As reported in [23], the MUSIQUE algorithm operates based on a
wo-layer classification-regression framework, which is employed to
redict distortion parameter values of three distortion types (white
oise, Gaussian blur, and JPEG compression) by analyzing 218
istortion-sensitive features extracted from the image. To achieve the
oal of distortion parameter estimation, the framework consists of three
lassification models and five regression models, all of which were
rained on a large 2D image dataset generated by adding the three
istortion types to the 125 pristine natural images in the Berkeley
egmentation database [24]. By employing parametric functions to map
he distortion parameter values to associated quality scores, and also
y employing the most-apparent-distortion strategy to combine the
ifferent quality scores to a single value to represent the overall image
uality, the MUSIQUE algorithm was shown to achieve reliable quality
redictive performance on various multiply and singly distorted 2D
mage databases.

Recognizing that considering only three distortion types is insuf-
icient for an NR SIQA algorithm, in the MUSIQUE-based QA stage
f this work, we developed an extended version of MUSIQUE [23]
or QA of the stereopairs (i.e., the left and right view images) also
ontaining JPEG2000 compression artifacts. Specifically, we present a
ore advanced two-layer classification model (shown in Fig. 2) such

that four distortion types and their combinations are considered: white
noise, Gaussian blur, JPEG compression, and JPEG2000 compression.
Among the four distortion parameters corresponding to the four dis-
tortion types, three of them are the same as in MUSIQUE: (1) the
standard deviation 𝜎𝐺 for generating the Gaussian blur (Gblur); (2) the
compression quality factor 𝑄 for the JPEG compression (JPEG); and
(3) the variance �̄�𝑁 for generating the white noise (WN). The fourth
distortion parameter is the compression ratio 𝑅 for measuring the size
of the JPEG2000 (JP2K) output bit stream. Note that in this work,
we compute the JPEG2000 distortion parameter as �̄� = ln(1 + 𝑅) to
balance the different ranges of 𝑅. As in original MUSIQUE, the same
three steps are employed: (1) distortion identification; (2) distortion
parameter estimation; and (3) quality mapping and combination. We
provide details for each step in the following subsections.

2.1.1. Distortion identification
To predict the four distortion parameter values, a two-layer clas-

sification model is first applied to perform distortion identification.
As shown in Fig. 2, the ‘‘Class-I’’ model in the first layer distin-
guishes three classes: (1) WN only; (2) WN + Gblur/JPEG/JP2K; and
(3) Gblur/JPEG/JP2K only. Then, the two parallel sub-classification
models in the second layer (i.e., ‘‘Class-II’’ and ‘‘Class-III’’) further
distinguish the four sub-classes under the two different noise conditions
(i.e., noise present or not present), and consequently nine distortion
types are distinguished: (1) Gblur, (2) JPEG, (3) JP2K, (4) WN, (5)
Gblur + JPEG, (6) Gblur + WN, (7) JPEG + WN, (8) JP2K + WN, and
(9) Gblur + JPEG + WN.

It is important to note that the four distortion types will theoret-
ically produce 11 (𝐶2

4 + 𝐶3
4 + 𝐶4

4 ) different distortion combinations.
However, we do not consider images that simultaneously contain both
JPEG and JPEG2000 distortions in this work, because images are often
compressed by using only one standard in practice, which implies
that the compression artifacts of JPEG and JPEG2000 rarely coexist
in an image. Also note that in our model, we do not have training
images with such distortion combinations as ‘‘Gblur + JP2K’’ or ‘‘WN
+ Gblur + JP2K’’. This is due to the fact that when Gaussian blur and
JPEG2000 compression coexist, the two distortion types will interact
with each other, making images look more blurred, and consequently it
is difficult to determine the equivalent values of the Gaussian blur and
JPEG2000 compression parameters of the training images generated
by simultaneously adding the two distortions. However, this does not

mean that the extended MUSIQUE algorithm performs less effectively
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Fig. 2. Topological diagram of the two-layer classification model. Note that 𝑝𝑘, 𝑝2𝑙 , and 𝑝3𝑙 (𝑘 = 1, 2, 3; 𝑙 = 1, 2, 3, 4) represent the class probabilities given by the three classification
models, respectively; 𝐿1, 𝐿2, and 𝐿3 are the corresponding classification labels; and the numbers 1, 2, 3, 4 represent the corresponding class. Also note that the symbols in
parentheses represent the distortion parameters estimated for each corresponding class.

on these kinds of images. In fact, since the blur artifacts introduced by
Gaussian blur and JPEG2000 compression are similar, the joint effect
between the two distortion types will not affect the performances of
corresponding regression models in predicting 𝜎𝐺 and �̄� values, even
if they were not trained on ‘‘Gblur + JP2K’’ and ‘‘WN + Gblur + JP2K’’
images.

To train the three classification models, a large dataset of distorted
images was generated by adding the four distortion types to the 125
pristine natural images in the Berkeley segmentation database [24], as
well as the left views of the 20 pristine stereoscopic images in the high-
resolution stereo datasets [25], and then quality-sensitive features were
extracted from these distorted images as the training data. Here, we
summarize all of the features adopted by MUSIQUE-3D in Table 1, and
we refer interested readers to [23] for more details about the feature
extraction. A summary of the features required by each classification
model in the first distortion identification stage is shown in Table 2.
By using support vector machine (SVM) learning for training, each
classification model has two types of output, the predicted label and the
class probability, and both will be used by the corresponding regression
models to predict the distortion parameter values.

2.1.2. Distortion parameter estimation
The next task is to estimate distortion parameters which will be used

to assess image quality. Specifically, we adopt the same probability
weighting strategy in [23], but employ different equations to compute
the Gaussian blur, JPEG, and JPEG2000 compression parameters be-
cause more distortion types are classified in the second layer. To this
end, we trained corresponding regression models via SVM on the large
dataset of the 2D distorted images whose four distortion parameter
values were saved when creating the data. A block diagram of this stage
is shown in Fig. 3.

The noise estimation is almost the same as in [23]. Let ‘‘Regress-I-
N’’ denote the two regression models trained on the ‘‘WN’’ and ‘‘WN
+ Gblur/JPEG/JP2K’’ images, respectively. Let �̄�𝑁1 and �̄�𝑁2 denote the
two outputs of Regress-I-N. The noise distortion parameter (denoted by
�̄�𝑁 ) is computed by

�̄�𝑁 =

{
(

𝑝1 ⋅ �̄�𝑁1 + 𝑝2 ⋅ �̄�𝑁2
)

∕
(

𝑝1 + 𝑝2
)

, 𝐿1 = 1, 2

𝑝1 ⋅ �̄�𝑁1 + 𝑝2 ⋅ �̄�𝑁2, 𝐿1 = 3
(1)

where 𝑝1 and 𝑝2 are the classification probabilities given by the Class-I
model; 𝐿1 is the predicted classification label; and the numbers 1, 2, 3
represent the three corresponding classes (see Fig. 2).

To estimate the distortion parameters of the Gaussian blur, JPEG
compression, and JPEG2000 compression, regression models trained on
images contaminated by the three distortion types are required. Specifi-
cally, we train ‘‘Regress-II-G’’ and ‘‘Regress-III-G’’ models to predict the

Gaussian blur parameters 𝜎𝑔𝑖1 and 𝜎𝑔𝑖4; we also train ‘‘Regress-II-Q’’ and
‘‘Regress-III-Q’’ models to predict the JPEG parameters 𝑞𝑖2 and 𝑞𝑖4; and
finally we train ‘‘Regress-II-R’’ and ‘‘Regress-III-R’’ models to predict the
JPEG2000 parameters �̄�𝑖3. Note that distortion parameters estimated for
each corresponding class are shown in Fig. 2. Then, the intermediate
Gaussian blur, JPEG, and JPEG2000 parameters (denoted by 𝜎𝐺𝑖, 𝑄𝑖,
and �̄�𝑖, respectively) are computed by

𝜎𝐺𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑖1 ⋅ 𝜎𝑔𝑖1 + 𝑝𝑖4 ⋅ 𝜎𝑔𝑖4
𝑝𝑖1 + 𝑝𝑖4

, 𝐿𝑖 = 1, 4

𝑝𝑖1 ⋅ 𝜎𝑔𝑖1 + 𝑝𝑖4 ⋅ 𝜎𝑔𝑖4
𝑝𝑖1 + 𝑝𝑖2 + 𝑝𝑖4

, 𝐿𝑖 = 2, 3
(2)

𝑄𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑖2 ⋅ 𝑞𝑖2 + 𝑝𝑖4 ⋅ 𝑞𝑖4
𝑝𝑖2 + 𝑝𝑖4

, 𝐿𝑖 = 2, 4

(𝑝𝑖1 + 𝑝𝑖3) ⋅ 80 + 𝑝𝑖2 ⋅ 𝑞𝑖2
+ 𝑝𝑖4 ⋅ 𝑞𝑖4, 𝐿𝑖 = 1, 3

(3)

�̄�𝑖 =

⎧

⎪

⎨

⎪

⎩

�̄�𝑖3, 𝐿𝑖 = 3
𝑝𝑖2 ⋅ ln 2 + 𝑝𝑖3 ⋅ �̄�𝑖3

𝑝𝑖2 + 𝑝𝑖3
, 𝐿𝑖 = 1, 2, 4

(4)

where 𝑖 takes the values of 2 or 3; 𝑝𝑖𝑙 (𝑙 = 1, 2, 3, 4) denote the
classification probabilities given by the Class-II/III models; 𝐿𝑖 denote
their predicted classification labels; and the numbers 1, 2, 3, 4 represent
the four corresponding classes (see Fig. 2).

Note that by Eqs. (1)–(4), we assume that (1) the noise distor-
tion parameter for a noise-free image is zero, (2) the blur parameter
for a non-blurred image is zero, (3) the JPEG parameter for a non-
JPEG-compressed image is 80, and (4) the JPEG2000 parameter for
a non-JPEG2000-compressed image is one. As claimed in [23], the
value of 80 was selected based upon the range of the JPEG parameters
that have been used to generate the training data. The value of one
indicates that a non-JPEG2000-compressed image has an equal size
with its original. Although the same probability-weighting rule in the
original MUSIQUE algorithm is adopted, a key difference occurs when
computing the Gaussian blur and JPEG2000 compression parameters.
For example in Eq. (2), the ‘‘WN + JP2K’’ and ‘‘JP2K’’ terms are not
included in the weighted summation when 𝐿𝑖 equal to 2 and 3 (i.e., the
denominator does not contain 𝑝𝑖3). The reason is that the Gaussian blur
parameters for non-blurred images (e.g., ‘‘WN + JP2K’’ and ‘‘JP2K’’)
are not zero, owning to the fact that JPEG2000 compression can also
introduce blur. The same principle is followed when computing the
JPEG2000 parameter in Eq. (4), because the JPEG2000 parameters
for non-JPEG2000-compressed images (e.g., ‘‘Gblur’’, ‘‘Gblur + JPEG’’,
4



Y. Zhang, D.M. Chandler and X. Mou Signal Processing: Image Communication 94 (2021) 116175

(

‘
f
s
c

J
t

𝜎

Table 1
A summary of the bag of features extracted by MUSIQUE-3D algorithm.

Feature ID Feature description

𝑓1–𝑓16 PS/LDS-based spatial-domain features (𝜎)
𝑓17–𝑓32 PS/LDS-based spatial-domain features (𝛼)
𝑓33–𝑓52 Gradient-weighted LBP features
𝑓53–𝑓68 LDS-based log-Gabor-domain features
𝑓69–𝑓92 Relative phase features
𝑓93–𝑓122 Across-scale correlation features

Fig. 3. Block diagram of estimating the four distortion parameters by using the two-layer classification model. The outputs of the three classification models 𝑝𝑘, 𝑝2𝑙 , 𝑝3𝑙 , and 𝐿𝑘
𝑘 = 1, 2, 3; 𝑙 = 1, 2, 3, 4) represent the same meaning as in Fig. 2.

‘WN + Gblur’’, and ‘‘WN + Gblur + JPEG’’) are not one. As we have
ound in our research, giving up these unknown terms in the weighted
ummation can significantly increase the accuracy in predicting the
orresponding distortion parameter values.

The final estimates of the Gaussian blur, JPEG compression, and
PEG2000 compression parameters (denoted by 𝜎𝐺, 𝑄, and �̄�, respec-
ively) are given by

𝐺 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝2 ⋅ 𝜎𝐺2 + 𝑝3 ⋅ 𝜎𝐺3, 𝐿1 = 1
𝑝2 ⋅ (1 − 𝜔) ⋅ 𝜎𝐺2 + 𝑝3 ⋅ 𝜔 ⋅ 𝜎𝐺3

𝑝2 ⋅ (1 − 𝜔) + 𝑝3 ⋅ 𝜔
, 𝐿1 = 2

𝑝2 ⋅ 𝜎𝐺2 + 𝑝3 ⋅ 𝜎𝐺3
𝑝2 + 𝑝3

, 𝐿1 = 3

(5)

𝑄 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝1 ⋅ 80 + 𝑝2 ⋅𝑄2 + 𝑝3 ⋅𝑄3, 𝐿1 = 1
𝑝2 ⋅ (1 − 𝜔) ⋅𝑄2 + 𝑝3 ⋅ 𝜔 ⋅𝑄3

𝑝2 ⋅ (1 − 𝜔) + 𝑝3 ⋅ 𝜔
, 𝐿1 = 2

𝑝2 ⋅𝑄2 + 𝑝3 ⋅𝑄3
𝑝2 + 𝑝3

, 𝐿1 = 3

(6)

�̄� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝1 ⋅ ln 2 + 𝑝2 ⋅ �̄�2 + 𝑝3 ⋅ �̄�3, 𝐿1 = 1
𝑝2 ⋅ (1 − 𝜔) ⋅ �̄�2 + 𝑝3 ⋅ 𝜔 ⋅ �̄�3

𝑝2 ⋅ (1 − 𝜔) + 𝑝3 ⋅ 𝜔
, 𝐿1 = 2

𝑝2 ⋅ �̄�2 + 𝑝3 ⋅ �̄�3
𝑝2 + 𝑝3

, 𝐿1 = 3

(7)

where 𝑝𝑘 (𝑘 = 1, 2, 3) denote the classification probabilities given by
the Class-I model; 𝐿1 and the three numbers 1,2,3 represent the same
meanings as they are in Eq. (1); 𝜔 is a parameter determined by �̄�𝑁
through a sigmoid function:

𝜔 = 𝐴∕[1 + 𝑒𝑡1(�̄�𝑁−𝑡2)] + 𝐵, (8)

where 𝑡1 = 6 and 𝑡2 = 1.25. Because 𝜔 is in the range of [0, 1], we set
𝐴 = 1 and 𝐵 = 0. The motivation of employing a control variable 𝜔
in Eqs. (5)–(7), as well as the selections of 𝑡1 and 𝑡2 values in Eq. (8)
are the same as that in original MUSIQUE. We refer interested readers
to [23] for more detailed analysis and discussion.

To train the regression models (see Fig. 3), relevant distortion-
sensitive features are required. A summary of the features employed by
each regression model is shown in Table 2. As in [23], the NSS features
employed for the Gaussian blur and JPEG2000 parameters estimation
are extracted from the sharper regions of an image, which are defined
as those image blocks corresponding to the 50% largest sharpness val-
ues within the sharpness map computed by the FISH𝑏𝑏 algorithm [26].
By summarizing both the distortion identification and distortion param-
eter estimation stages, we observe that (1) most features required by
the classification and regression models in MUSIQUE-3D are similar to
those used in MUSIQUE; and (2) only part of the original MUSIQUE
features are adopted in this work. For example, we do not use all of the
features extracted from the denoised image and the Laplacian pyramid
bands. As we have found, such a feature optimization can significantly
increase the algorithm speed while still maintaining an equivalent QA
performance.

2.1.3. Quality mapping and combination
The final step of the MUSIQUE-based QA stage is to map the four

distortion parameter values to quality scores, which are then combined
to yield the final quality estimate. To this end, we employ the same
polynomial fitting method in [23] to map the four distortion parameters
(�̄�𝑁 , 𝜎𝐺, 𝑄, and �̄�) to VIF [27] quality scores. Fig. 4 shows scatter plots
of distortion parameter values (which correspond to the four subsets of
the training images) versus VIF scores for four types of distortion: Gaus-
sian blur, white noise, JPEG compression, and JPEG2000 compression.
5
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Table 2
A summary of the required features for all classification and regression models in the MUSIQUE-based QA stage of
MUSIQUE-3D. Note that ‘‘�’’ indicates that the features are required by the corresponding models.

𝑓1–𝑓16 𝑓17–𝑓32 𝑓33–𝑓52 𝑓53–𝑓68 𝑓69–𝑓92 𝑓93–𝑓122
Class-I � � � � �
Class-II � � � �
Class-III � � � �
Regress-I-N � � � �
Regress-II-G � � �
Regress-III-G � � � �
Regress-II-Q � � � � �
Regress-III-Q � � � � �
Regress-II-R � � �
Regress-III-R � � � �

As in [23], the shape of each scatter plot can be modeled by a four-
parameter third-order polynomial curve (i.e., the red curves in Fig. 4)
which is given by

𝑦 = 𝜆1 ⋅ 𝑥
3 + 𝜆2 ⋅ 𝑥

2 + 𝜆3 ⋅ 𝑥 + 𝜆4, (9)

where 𝜆𝑖 (𝑖 = 1, 2, 3, 4) are the curve parameters. The fitted values of the
four curve parameters for each distortion type are shown in Table 3.

Note that, although we added Gaussian blur to the pristine 2D/3D
images at 12 different levels (see Section 3.1) to generate the training
data, the curve parameter values computed based on only the eight
different levels in [23] are also qualified for the quality-mapping task
in this work. In fact, the more number of Gaussian blur levels will only
lengthen the curve tail above the horizontal axis, and thus the modeling
of the curve can be easily achieved by setting all mapped negative
VIF scores (if encountered by using the four-parameter polynomial
curve for quality mapping) to be zero instead of using a higher-order
polynomial curve.

Let VIF𝐺, VIF𝑁 , VIF𝑄, and VIF𝑅 denote the original mapped qual-
ities [computed by using Eq. (9) with parameter values in Table 3]
for Gaussian blur, white noise, JPEG compression, and JPEG2000 com-
pression, respectively. The corrected values for the quality degradation
(denoted by D𝐺, D𝑁 , D𝑄, and D𝑅, respectively) corresponding to the
four distortion types are given by

D𝐺 = 1 − VIF𝐺 , (10)

D𝑁 = 1 −
(

VIF𝑁 + 𝛽1
)

, (11)

D𝑄 = 1 −
(

VIF𝑄 + 𝛽2
)

, (12)

D𝑅 = 1 − VIF𝑅, (13)

where 𝛽1 and 𝛽2 denote the two offsets employed to make the mapped
quality more reasonable across different distortion types; the subtrac-
tion from one aims to make the mapped quality as differential mean
opinion scores.

With these four estimated quality degradation scores, the next step
is to combine these scores into one scalar that represents the overall
image quality. Let D𝐺𝑅 denote the maximum value of D𝐺 and D𝑅. Then,
the final image quality score, denoted by S, is computed by

S =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D𝑁 , 𝐿1 = 1

D𝛾
1 × D1−𝛾

2 , 𝐿1 = 2

max
(

D𝐺𝑅,D𝑄
)

× 𝜌min
(

D𝐺𝑅 ,D𝑄

)

, 𝐿1 = 3

(14)

where 𝐿1 and the numbers 1, 2, 3 denote the same meanings as
in Eq. (1); 𝜌 = 1.15 is an exponential factor which aims to model
the impact of the second-most-apparent distortion; D1 and D2 are the
two quality estimates computed respectively for two different noise
levels. Specifically, D1 is computed when images are assumed to be
corrupted by only a slight amount of noise, in which case the previ-
ous most-apparent-distortion strategy in [23] is adopted. In contrast,
D2 is computed when images are assumed to be severely contam-
inated by the noise distortion, in which case the other distortion

artifacts (e.g., the blur/block/ringing artifacts introduced by Gaus-
sian blur/JPEG/JPEG2000 compression) are masked due to the much
increased local contrast of the image. Accordingly, the two quality
estimates are given by

D1 = 𝑑1 × 𝜌𝑑2 , (15)

D2 = max
(

D𝐺𝑅 + 𝛽3,D𝑁
)

× 𝜌min
(

D𝐺𝑅+𝛽3 ,D𝑁

)

, (16)

where 𝑑1 and 𝑑2 denote the top two largest values of D𝐺𝑅, D𝑄, and
D𝑁 ; 𝛽3 denotes the masking effect caused by the noise distortion. To
measure the overall quality degradation of an image simultaneously
corrupted by noise and other distortion types, D1 and D2 are adaptively
combined based on a control parameter 𝛾, which is determined by �̄�𝑁
through another sigmoid function that has the same form as Eq. (8). In
this work, we set the following parameter values: 𝛽1 = 𝛽2 = 𝛽3 = −0.1,
𝐴 = 1, 𝐵 = 0, 𝑡1 = 3, and 𝑡2 = 0.5 to help achieve the best performance
across different 3D image quality databases.

2.2. QC-MCM-based cyclopean IQA

As mentioned in Section 1, the HVS judges the quality of a 3D
scene based mainly on the merged single view created in the brain
after binocular fusion and rivalry processes. Thus, in the second stage
of MUSIQUE-3D, we first build a so-called cyclopean view1 from the
two monocular views, and then evaluate the cyclopean view quality by
using the same approach in Section 2.1. In the following subsections,
we provide algorithm details for each step.

2.2.1. Compute disparity map
To compute the cyclopean view, a disparity map which indicates

the apparent pixel difference or motion between the two views of a
stereoscopic image is required. In an FR setting, the disparity map is
often computed from the reference stereopairs. However, in an NR
setting, obtaining an accurate disparity map can be difficult because
of the various types of distortion. Although a denoising algorithm can
possibly be applied to reduce the error of the estimated disparity map,
as shown in Fig. 5, we have found that the contribution of this process
is rather minor in regards to improving the overall QA performance (see
Section 3.5 for a demonstration). Thus, in this paper, we directly apply
the optical flow algorithm presented in [28] (namely ‘‘SIFT flow’’) to
stereopairs to obtain the disparity map.

2.2.2. QC-MCM-based cyclopean image
Given the estimated disparity map, we next build the disparity-

compensated cyclopean view images to mimic the merged single view
seen by humans based on a QC-MCM. Specifically, we build two
cyclopean images, one based on luminance, and another one based on
contrast, which is given by

I (𝑥, 𝑦) = 𝐿 (𝑥, 𝑦) ∕[�̄�𝐵 (𝑥, 𝑦) +𝐾] (17)

1 The term ‘‘cyclopean view’’ is usually defined as the merged single image
of a scene created in the brain by combining the two images received from
the two eyes.
6
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r
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Table 3
Values of polynomial fitting parameters for the four distortion types.

𝜆1 𝜆2 𝜆3 𝜆4
Gblur −4.6738 × 10−3 7.4033 × 10−2 −4.0485 × 10−1 8.4124 × 10−1

WN −2.7938 × 10−3 4.9839 × 10−2 −3.4269 × 10−1 9.2673 × 10−1

JPEG 3.0303 × 10−6 −4.7193 × 10−4 2.9372 × 10−2 3.0030 × 10−2

JP2K −3.9012 × 10−3 1.0140 × 10−1 −8.8495 × 10−1 2.6059

where 𝐿 denotes the luminance value; �̄�𝐵 (𝑥, 𝑦) denotes the average
luminance value of a 9 × 9 block centered around pixel (𝑥, 𝑦); 𝐾 = 0.001
is a small constant that prevents division by zero.

In our previous FR SIQA work [29], we argued that the quality of a
monocular view with higher contrast will play a more dominant role in
determining the HVS’s judgment of the 3D image quality. In this paper,
we further argue that given two monocular views with similar contrast
but apparently different quality degradations, the view with greater
quality degradation should weigh more on determining the overall 3D
image quality. This statement is also in accord with findings in [5]
that the low-quality view caused by information-additive distortion
(e.g., blockiness) cannot be compensated by the high-quality view. To
emphasize the dominant role of such information-additive distortion
in stereoscopic viewing, we present a quality-compensated MCM as
follows:

(1) If the two view images have significantly different quality ratings
but similar averaged contrast values, then the view with a lower
quality rating will be compensated by a larger weight in the
cyclopean-image-build process;

(2) Given a stereopair satisfying the condition of (1), if the lower-
quality view contains no/less noise and its estimated JPEG com-
pression parameter 𝑄 is lower than a threshold 𝑄𝑇 , then the
higher-quality view image is also compressed by using JPEG and
the newly-compressed image will be the input for the computa-
tion of the cyclopean images.

The assumption is that when there is no obvious noise distortion
being observed, the first modification alone is insufficient to describe
the much dominant role of the view with massive blocking artifacts in
the QA process (note that heavy noise can suppress the dominant role of
the blocking artifact). Thus, the other higher-quality view image should
be compensated by more blocking artifacts in order that the computed
cyclopean image can get closer to the merged 3D view perceived by the
HVS.

Specifically, we use the MUSIQUE scores obtained in the first
stage of MUSIQUE-3D as the approximate quality estimates of the
two monocular views, and their quality similarity is computed by
𝑟 = 2S𝐿S𝑅∕(S2𝐿 + S2𝑅), where S𝐿 and S𝑅 denote the quality estimates
of the left and right views, respectively. Then, the perceived cyclopean
luminance and contrast images [denoted by C𝑖 (𝑖 = 1, 2)] for each

Fig. 4. Scatter plots of distortion parameter values versus VIF quality scores for images distorted by Gaussian blur, white noise, JPEG compression, and JPEG2000 compression,
espectively. Note that for each scatter plot, the x axis represents the distortion parameter value and the y axis represents the corresponding VIF quality score computed from the
istorted image regenerated by using that parameter value.

Fig. 5. Disparity maps computed for a reference stereopair as well as a multiply-distorted stereopair in the NBU-MDSID database [20,21] with and without denoising. Observe that
when noise is present, the computed disparity map displays erroneous granule-shaped regions, whereas the denoised version captures the smooth, segment-based depth information.
7
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C𝑖(𝑥, 𝑦) =

[(

𝜂𝐿I𝑖,𝐿(𝑥, 𝑦)
𝐸𝐿

1+ 𝜖𝑅 (𝑥,𝑦)
1+𝛽𝜖𝐿 (𝑥,𝑦)

)𝛾2

+

(

𝜂𝑅I𝑖,𝑅(𝑥 − 𝑑𝑥,𝑦, 𝑦)
𝐸𝑅

1+
𝛼𝜖𝐿 (𝑥−𝑑𝑥,𝑦,𝑦)
1+𝜖𝑅 (𝑥−𝑑𝑥,𝑦,𝑦)

)𝛾2]
1
𝛾2

[(

𝜂𝐿𝐸𝐿

1+ 𝜖𝑅 (𝑥,𝑦)
1+𝛽𝜖𝐿 (𝑥,𝑦)

)𝛾2

+

(

𝜂𝑅𝐸𝑅

1+
𝛼𝜖𝐿 (𝑥−𝑑𝑥,𝑦,𝑦)
1+𝜖𝑅 (𝑥−𝑑𝑥,𝑦,𝑦)

)𝛾2]
1
𝛾2

, (𝑖 = 1, 2) (18)

ixel (𝑥, 𝑦) are computed by Eq. (18), where I𝑖,𝐿∕𝑅 (𝑖 = 1, 2) denotes the
uminance and contrast of the two view images; 𝑑𝑥,𝑦 = 𝐷(𝑥, 𝑦) denotes

an estimated disparity index in 𝐷; 𝐸𝐿 and 𝐸𝑅 are the two compensation
factors; all the other parameters (i.e., 𝜖𝐿, 𝜖𝑅, 𝜂𝐿, 𝜂𝑅, 𝛼, 𝛽, and 𝛾2) share
the same meanings and values as they were previously defined in [29].

In this work, we define:

𝐸𝐿 = [𝑠 (𝜔)]𝑙(𝑟)⋅𝑢(S𝐿−S𝑅) , (19)
𝐸𝑅 = [𝑠 (𝜔)]𝑙(𝑟)⋅𝑢(S𝑅−S𝐿) , (20)

where 𝑢(⋅) is a step function; and, 𝑙(⋅) is a linear piecewise function
which aims to control the weight compensation for the lower-quality
view in building cyclopean images. We assume that 𝑟 < 0.8 indicates
an apparent quality difference between the two views, and 𝑟 > 0.9
indicates considerable quality similarity. Accordingly, 𝑙(𝑟) is computed
by

𝑙 (𝑟) =

⎧

⎪

⎨

⎪

⎩

1, 𝑟 < 0.8

− 10𝑟 + 9, 0.8 ≤ 𝑟 ≤ 0.9

0, 𝑟 > 0.9.

(21)

𝑠(𝜔) is a sigmoid function which has the same form as Eq. (8). The func-
tion variable 𝜔 = 2�̄�𝐿�̄�𝑅∕(�̄�2

𝐿 + �̄�2
𝑅) represents the contrast similarity

between the two monocular views, where �̄�𝐿 and �̄�𝑅 are computed by

�̄�𝐿∕𝑅 =

[

1
𝑁

𝑁
∑

𝑏=1
𝐶𝐿∕𝑅(𝑏)

]

⋅

[

1
𝑁𝑇

𝑁𝑇
∑

𝑛𝑡=1
F𝐿∕𝑅(𝑛𝑡)

]

. (22)

Here, 𝐶𝐿 and 𝐶𝑅 denote the block-based contrast maps computed
for the left and right views of a stereoscopic image by using the
same approach in [29] (note that 𝑏 is the block index and 𝑁 is the
total number of blocks); F𝐿 and F𝑅 denote the sharpness maps of the
two views computed by using the FISH𝑏𝑏 algorithm2 [26]; 𝑛𝑡 and 𝑁𝑇
represent the index and total number of the blocks corresponding to the
1% largest sharpness values within the sharpness map. For 𝑠(𝜔), we set
the following parameter values 𝐴 = 50, 𝐵 = 1, 𝑡1 = −20, 𝑡2 = 0.75 to
provide a larger weight for the lower-quality view when 𝜔 is close to
one.

As mentioned previously, given a noise-free or lightly-noised stere-
opair, the higher-quality view should be compensated by more block
artifacts if the lower-quality view is deemed to be severely distorted
by JPEG compression. Thus, for such stereopairs, we first simulate the
JPEG compressed version of the higher-quality view by using a JPEG
parameter 𝑄 given by

𝑄 = exp(
√

ln(1 +𝑄𝐿) × ln(1 +𝑄𝑅)) − 1, (23)

where 𝑄𝐿 and 𝑄𝑅 denote the JPEG parameters predicted for the left
nd right views respectively in the first stage of MUSIQUE-3D. Then, we
se the original lower-quality view image and the newly-compressed
iew image to compute the cyclopean luminance and contrast images.

2 Here in this work, we use the weight of {1, 2, 4} (instead of {4, 2, 1}
in [26]) in combining the three per-level log-energy values in order that the
energy of the middle-frequency bands are emphasized.

2.2.3. Cyclopean quality estimate
The quality estimation of the cyclopean images [defined in Eq. (18)]

follows the same procedures in Section 2.1. Specifically, we trained
another two-layer classification-regression framework to predict the
four distortion parameters corresponding to the four distortion types in
the cyclopean luminance and contrast images. The training data are the
same quality-sensitive features employed in Section 2.1, but extracted
from a large dataset of symmetrically-distorted 3D images generated by
adding the four distortion types to the 50 pristine stereopairs among
which 30 were obtained from the high-resolution stereo datasets [25]
and the remaining 20 were captured by our own 3D camera. Note that
the 3D training dataset contains only symmetrically-distorted stere-
opairs primarily for simplicity because the distortion parameters of a
symmetrically-distorted stereopair are equal to the parameters of either
of the two monocular views. Again, in order for these classification and
regression models to work effectively, different features are required. A
summary of the features required by each classification and regression
models in the QC-MCM-based cyclopean IQA stage is shown in Table 4,
in which ‘‘Luminance’’ and ‘‘Contrast’’ indicate that the corresponding
features are extracted from the cyclopean luminance and cyclopean
contrast images, respectively.

As shown in Table 4, the relative phase and across-scale corre-
lation features (i.e., 𝑓69–𝑓122) are only extracted from the cyclopean
luminance image. This is due to the more abundant frequency compo-
nents contained in the luminance map, which ultimately facilitate the
phase and scale correlation analysis of the complex wavelet subbands.
Specifically, the across-scale correlation features (𝑓93–𝑓122) describe the
distribution of different frequency components on different wavelet
scales and orientations, and thus are more sensitive to the noise.
Conversely, the relative phase features (𝑓69–𝑓92), which describe the
phase change for each individual wavelet subband, are more sensitive
to the Gaussian blur, JPEG, and JPEG2000 compression. Consequently,
𝑓93–𝑓122 are adopted whenever the training images contain noise dis-
tortion, and 𝑓69–𝑓92 are adopted whenever the parameters of Gaussian
blur/JPEG/JPEG2000 are predicted. In regards to the other features,
we observe that the gradient-based LBP features (𝑓33–𝑓52) and the LDS-
based log-Gabor domain features (𝑓53–𝑓68) are crucial and fundamental,
and thus they are required by all classification and regression models.
We also observe that the PS/LDS-based spatial domain features (𝑓1–𝑓32)
are extracted from the cyclopean contrast image for noise estimation
(same for 𝑓33–𝑓68), and from the cyclopean luminance image to deal
with the Gaussian blur/JPEG/JPEG2000 classification/regression task.
This is due to the fact that noise is more observable in the contrast map
which mostly contains the high-frequency components of an image.
Similar to Section 2.1, the NSS features employed for the Gaussian blur
and JPEG2000 parameters estimation (i.e., 𝑓53–𝑓122 are not applied) in
the cyclopean IQA stage are extracted from the sharper regions of the
cyclopean luminance and contrast images, and the sharpness map is
computed from the monocular view that has less quality degradation
instead of the cyclopean images.

After predicting the four distortion parameters of the cyclopean
luminance and contrast images, the final step of the cyclopean IQA
stage is to map these parameter values to the corresponding VIF scores,
which are then combined to yield the final cyclopean view quality.
To this end, we employ the same approach in Section 2.1.3, and
the only difference is the parameter setting. Specifically, we have
found that the four curve parameters in Eq. (9), though originally
8
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Table 4
A summary of the required features for all classification and regression models in the QC-MCM-based cyclopean IQA stage of
MUSIQUE-3D. Note that ‘‘�’’ indicates that the features are required by the corresponding models.

Luminance Contrast

𝑓1–𝑓16 𝑓17–𝑓32 𝑓33–𝑓52 𝑓53–𝑓68 𝑓69–𝑓92 𝑓93–𝑓122 𝑓1–𝑓16 𝑓17–𝑓32 𝑓33–𝑓52 𝑓53–𝑓68
Class-I � � � � �
Class-II � � � � � � � �
Class-III � � � � � � �
Regress-I-N � � � � �
Regress-II-G � � � � � �
Regress-III-G � � � � �
Regress-II-Q � � � � � � � �
Regress-III-Q � � � � � � �
Regress-II-R � � � � � �
Regress-III-R � � � � �

designed for 2D images, also work for cyclopean images. However, a
cyclopean luminance/contrast image can be a bit more blurred due
to inevitable computational errors in the disparity map. Thus, we set
D𝐺𝑅 = max(D𝐺 ,D𝑅) − 0.05 to take into account the unexpected blur
distortion. In addition, we set 𝛽1 = 0 in Eq. (11) and D𝑁 = D𝑁 − 0.05
n Eq. (16) to account for the increased noise strength in the cyclopean
mages as compared to each monocular view, and 𝛽3 = −0.2 in Eq. (16)
o account for the same masking effect caused by the noise distortion.
ll other parameters are assigned the same values as in Section 2.1.3.

.3. MUSIQUE-3D quality estimate

Given the quality estimates obtained from the two monocular views
nd the cyclopean view (denoted by S𝐿, S𝑅, and S𝑐𝑦𝑐 , respectively),
he final stage of MUSIQUE-3D is to combine these scores into an
verall perceived distortion estimate for the stereoscopic image. To this
nd, we first combine S𝐿 and S𝑅 based on a new contrast-weighting
trategy which takes into account both the image’s local contrast and
he dominant role of the information-additive distortions. Accordingly,
he combined quality estimate corresponding to the two monocular
iews (denoted by S2𝐷) is computed by

2𝐷 =

[

𝐸𝐿𝑃𝐿
𝑁

∑𝑁
𝑏=1 𝐶𝐿 (𝑏)

]

⋅ S𝐿 +
[

𝐸𝑅𝑃𝑅
𝑁

∑𝑁
𝑏=1 𝐶𝑅 (𝑏)

]

⋅ S𝑅
[

𝐸𝐿𝑃𝐿
𝑁

∑𝑁
𝑏=1 𝐶𝐿 (𝑏)

]

+
[

𝐸𝑅𝑃𝑅
𝑁

∑𝑁
𝑏=1 𝐶𝑅 (𝑏)

] , (24)

where 𝐸𝐿, 𝐸𝑅, 𝐶𝐿, and 𝐶𝑅 share the same meanings and methods of
computation as in Eqs. (19)–(22); 𝑃𝐿 and 𝑃𝑅 describe the weight com-
pensation for the lower-quality view deemed to be severely distorted
by JPEG compression. Accordingly, both 𝑃𝐿 and 𝑃𝑅 take values of one
if the view with massive blocking artifacts does not take a dominant
role in the QA process (i.e., the higher-quality view is not compensated
by blocking artifact); otherwise, we define

𝑃𝐿 =

[

𝑄𝑇

min
(

𝑄𝐿, 𝑄𝑅
)

](1−𝑟)⋅𝑢(S𝐿−S𝑅)
, (25)

𝑃𝑅 =

[

𝑄𝑇

min
(

𝑄𝐿, 𝑄𝑅
)

](1−𝑟)⋅𝑢(S𝑅−S𝐿)
, (26)

where 𝑄𝑇 = 15 denotes the aforementioned threshold of the JPEG
parameter, as we have observed that images compressed by using a
JPEG parameter 𝑄 less than 15 will contain a large amount of blocking
artifacts; 𝑢(⋅) is a step function; S𝐿, S𝑅, and 𝑟 share the same meanings
and methods of computation as in Eqs. (19)–(20); 𝑄𝐿 and 𝑄𝑅 share the
same meanings as in Eq. (23).

The final quality estimate of the stereoscopic image (denoted by
S3𝐷) is a scalar computed as a square product of S2𝐷 and S𝑐𝑦𝑐 , which is
given by

S3𝐷 =
√

S2𝐷 × S𝑐𝑦𝑐 . (27)

The assumption is that the HVS judges the quality of a 3D scene based
on the merged cyclopean view created in the brain, whose appearance

is influenced by the distortion in each 2D monocular view. Thus, the
overall 3D image quality can be more precisely estimated by combining
the two monocular view qualities with the merged cyclopean view
quality. Although the exact combination strategy used by the HVS
remains unknown, we have found that this simple geometric mean is
an effective way to average the two scores while compensating for their
different ranges. Note that smaller values of S3𝐷 denote predictions of
greater stereoscopic image quality.

3. Results

In this section, we analyze MUSIQUE-3D’s ability to predict im-
age quality by using various multiply and singly distorted stereo-
scopic image quality databases. We also compare the performance of
MUSIQUE-3D with other FR and NR SIQA algorithms.

3.1. Training

As mentioned in Section 2, we trained MUSIQUE-3D’s models on
large datasets of both 2D and 3D images. For the 2D dataset, the
distorted images were generated by adding the four distortion types
(Gaussian blur, white noise, JPEG compression, and JPEG2000 com-
pression) either singly or multiply to the 125 Berkeley segmentation
database [24] images, as well as to the left views of the 20 high-
resolution stereo datasets [25] images at various levels, which ulti-
mately leads to a total of 33,940 distorted images. For the 3D dataset,
the distorted images were generated by adding the same distortion
types and each with the similar distortion levels as in the 2D dataset
to the 50 pristine stereopairs, which ultimately leads to a total of 6610
symmetrically-distorted 3D images.

Specifically, for white noise, Gaussian blur, and JPEG compression,
we used the same approach as in [23] to generate the training data.
For JPEG2000 compression, we applied a discrete wavelet transform to
obtain wavelet subbands coefficients, which were then quantized and
entropy coded to form the output bit stream with compression ratio 𝑅.
For the multiple distortions, we followed the same procedure as in [30]:
the Gaussian blur is first introduced, followed by JPEG or JPEG2000
compression, and finally the white noise. Detailed information of the
training data is shown in Table 5.

After generating the distorted images, their corresponding distortion
types and parameter values (𝜎𝐺, �̄�𝑁 , 𝑄, and �̄�) were saved for training
the classification and regression models. First, three support vector
classification (SVC) models (Class-I/II/III) were trained to decide the
type of distortion that an image may contain as well as its probability.
Let 𝐩 denote the 𝑘-dimensional vector of probabilities, and its elements
are denoted by 𝑝(𝑖) (𝑖 = 1, 2,… , 𝑘). For any classification feature
vector 𝐱 and its corresponding label 𝑦, the goal is to estimate 𝑝(𝑖) =
𝑃 (𝑦 = 𝑖|𝐱). Based on the ‘‘one-against-one’’ approach [31] for multi-
class classification, the pairwise class probabilities (i.e., 𝑟𝑖𝑗 ≈ 𝑃 (𝑦 =
𝑖|𝑦 = 𝑖 𝑜𝑟 𝑗, 𝐱)) are estimated by using method proposed in [32]. After
9
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Table 5
Details of the generated training dataset.

Distortion type Distortion level (2D) # 2D image Distortion level (3D) # 3D image

Gblur 12 1500 12 600
JPEG 10 1250 15 750
JP2K 10 1250 10 300
WN 8 1000 8 400
Gblur + JPEG 40 5000 40 800
Gblur + WN 40 5000 40 800
JPEG + WN 24 3000 24 480
JP2K + WN 24 3000 24 480
Gblur + JPEG + WN 100 12 500 100 2000

collecting all 𝑟𝑖𝑗 values, the method in [33] is employed to obtain 𝑝(𝑖)
by solving the following optimization problem:

min
𝑝

1
2

𝑘
∑

𝑖=1

∑

𝑗∶𝑗≠𝑖

(

𝑟𝑗𝑖𝑝(𝑖) − 𝑟𝑖𝑗𝑝(𝑗)
)2

subject to 𝑝(𝑖) ≥ 0, ∀𝑖,
𝑘
∑

𝑖=1
𝑝(𝑖) = 1.

(28)

More details for solving Eq. (28) are referred to [33].
Next, the 𝜖-SVR [34] approach is employed to train seven support

vector regression (SVR) models (Regress-I-N, Regress-II/III-G/Q/R) to
predict the four distortion parameters in different cases. Specifically,
given a set of training data (𝐱1, 𝑦1),… , (𝐱𝑙 , 𝑦𝑙) where 𝐱𝑙 ∈ R𝑑 and 𝑦 ∈ R,
𝜖-SVR aims to find a function, which takes the form

𝑓 (𝐱) = ⟨𝑤,𝜙(𝐱)⟩ + 𝑏, (29)

such that 𝑓 (𝐱) has at most 𝜖 deviation from the desired target 𝑦 for all
the training data, and at the same time is as flat as possible. In Eq. (29),
𝜙(𝐱) ∈ R𝑑′ (𝑑′ > 𝑑) is a non-linear projection, which maps the data from
the original 𝑑-dimensional domain to a higher 𝑑′-dimensional feature
space; 𝑤 ∈ R𝑑 is the weight vector, and 𝑏 ∈ R is the bias. This can be
done by solving the following optimization problem:

min
𝑤,𝑏,𝜉,𝜉∗

1
2
‖𝑤‖

2 + 𝐶
𝑙

∑

𝑖=1

(

𝜉𝑖 + 𝜉∗𝑖
)

subject to
⎧

⎪

⎨

⎪

⎩

𝑦𝑖 − ⟨𝑤,𝜙(𝐱𝑖)⟩ − 𝑏 ≤ 𝜖 + 𝜉𝑖
⟨𝑤,𝜙(𝐱𝑖)⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉∗𝑖

𝜉𝑖, 𝜉∗𝑖 ≥ 0

(30)

where 𝜉𝑖 and 𝜉∗𝑖 are the slack variables introduced to allow for small
errors; 𝐶 > 0 determines the trade-off between the flatness of 𝑓 and
the amount up to which deviations larger than 𝜖 are tolerated. By using
Lagrange multipliers and a quadratic programming solver, the final
solution of Eq. (30) is given by

𝑓 (𝐱) =
𝑙

∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

⋅𝐾
(

𝐱𝐢, 𝐱
)

+ 𝑏, (31)

where 𝐾(𝐱𝐢, 𝐱) = 𝜙(𝐱𝐢)𝑇𝜙(𝐱) is a kernel function; 𝛼𝑖 and 𝛼∗𝑖 are Lagrange
multipliers, which are both zeros if 𝐱𝐢 does not contribute to the error
function. More details for training 𝜖-SVR models are referred to [35,36].
We use the LIBSVM package [35] to implement the training, and
the optimal radial basis function kernel parameters to improve the
predictive performance.

3.2. Testing

To evaluate the performance of MUSIQUE-3D in predicting the
quality of MDSIs and SDSIs, five databases of subjective image quality
were used: (1) the NBU-MDSID database [20,21], (2) the LIVE 3D
database [37], (3) the WaterlooIVC 3D database [38], (4) the NBU
3D database [39], and (5) the IRCCyN/IVC 3D database [40]. Among
the three databases that were constructed in two phases (NBU-MDSID,

contain symmetrically-distorted images, and Phase II of NBU-MDSID
and LIVE 3D contain asymmetrically-distorted images. For WaterlooIVC
3D, both phases contain symmetrically- and asymmetrically-distorted
images. Among all the five databases, NBU-MDSID contains multiple
distortions, and the other four contain only single distortions. For NBU-
MDSID and IRCCyN/IVC 3D, all images in the two databases were used
for testing. For the other three, only images with their two monocular
views corrupted by the same four distortion types were selected for
testing. Thus, the number of test images were 270 for NBU-MDSID
Phase I (NBUMD-I), 300 for NBU-MDSID Phase II (NBUMD-II), 285 for
LIVE 3D Phase I (LIVE-I), 288 for LIVE 3D Phase II (LIVE-II), 258 for
WaterlooIVC 3D Phase I (WIVC-I), 340 for WaterlooIVC 3D Phase II
(WIVC-II), 240 for NBU 3D, and 90 for IRCCyN/IVC 3D.

We compared MUSIQUE-3D with various FR and NR IQA methods
for which code is publicly available. The four FR 3D methods were
the cyclopean MS-SSIM proposed by Chen et al. [22], the frequency-
integrated PSNR proposed by Lin et al. [41], the BJND-based method
proposed by Shao et al. [39], and the stereoscopic omnidirectional
image quality evaluator (SOIQE) proposed by Chen et al. [42]. The
ten NR methods were: Saliency-guided binocular model proposed by
Xu et al. [9], S3D INtegrated Quality (SINQ) Predictor [10], deep
convolutional neural network (DCNN) [43], blind/referenceless image
spatial quality evaluator (BRISQUE) [15], Laplacian of Gaussian based
model (GM-LOG) [44], gradient weighted histogram of LBP model
(GLBP) [45], quality-aware clustering model (QAC) [46], natural image
quality evaluator (NIQE) [47], integrated local NIQE (ILNIQE) [48],
six-step blind metric (SISBLIM) [49]. Among these NR methods, the
three SIQA methods (Xu’s method, SINQ, and DCNN) were trained on
the LIVE 3D phase II database by referring to [9,10,43]. The three
opinion-aware methods (BRISQUE, GM-LOG, and GLBP) were trained
on the cyclopean images computed from the same 6610 symmetrically-
distorted 3D images by using MCM [29], and their qualities were
estimated by averaging the two VIF [27] scores predicted from the two
views. For the four opinion-unaware NR methods (QAC, NIQE, ILNIQE,
and SISBLIM), the predicted quality of a stereoscopic image was taken
to be the weighted quality predicted from the left and right views,
where the weights were determined based on a block-based contrast
measure [29]. After applying a four-parameter logistic transform to
bring the algorithm’s raw predicted scores to the same scales of the
MOS/DMOS values, four common criteria were used to measure the
prediction monotonicity and prediction accuracy of each algorithm: (1)
the Pearson Linear Correlation Coefficient (PLCC), (2) the Spearman
Rank-Order Correlation Coefficient (SROCC), (3) the Kendall Rank-
Order Correlation Coefficient (KROCC), and (4) the Root Mean Square
Error (RMSE). Also, as advocated in [50,51], we use three additional
criteria to take into account the uncertainty in subjective scores: (1)
the Area Under the Curve (AUC) values for different vs. similar analysis
(AUC-DS), (2) AUC values for better vs. worse analysis (AUC-BW), and
(3) correct classification in better vs. worse analysis (CC-BW). Thus,
seven criteria in total were used to measure the performance of each al-
gorithm. Note that for databases that do not provide standard deviation
of the subjective scores, we simply use 10% of the MOS/DMOS range.
As we have found, this choice does not affect the relative rankings
among different algorithms. Also note that the logistic transform will
affect only PLCC and RMSE, not SROCC nor KROCC.
LIVE 3D, and WaterlooIVC 3D), Phase I of NBU-MDSID and LIVE 3D
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3.3. Performance on multiply distorted 3D image databases

In this section, we evaluate the quality predictive performances of
MUSIQUE-3D and other FR/NR IQA algorithms on MDSIs. To this end,
the NBU-MDSID Phase I and Phase II databases which contain distorted
stereoscopic images simultaneously corrupted by three distortion types
(Gaussian blur, JPEG compression, white noise) were used for testing.
The overall testing results in terms of PLCC, SROCC, KROCC, RMSE,
AUC-DC, AUC-BW, and CC-BW on the two phases are shown in Table 6,
in which italicized entries denote the FR IQA algorithms. Also included
are the testing results of the first and the second stage of MUSIQUE-
3D (denoted by ‘‘MUSIQUE-2D’’ and ‘‘MUSIQUE-Cyc’’, respectively) for
comparison. The results of the best-performing FR IQA algorithm are
italicized and bolded, and the results of the best-performing NR IQA
algorithm are bolded.

As shown in Table 6, MUSIQUE-3D achieves the best performance
on both NBU-MDSID Phase I and Phase II databases as compared
with other FR/NR IQA algorithms. Compared with MUSIQUE-2D and
MUSIQUE-Cyc, we observe that the combined stages can improve the
algorithm’s overall performance. We also observe that the performance
of MUSIQUE-Cyc is often not as good as MUSIQUE-2D (as shown in
Table 7 also), and the reasons are twofold. First, the disparity map esti-
mated based on distorted stereopairs is imperfect, and consequently the
cyclopean images computed by using the map have some errors. Also,
the QC-MCM employed in this work, though improved upon compared
to the previous version in [29], does not fully model the binocular
processing of the HVS. All of these potential errors are inevitably in-
troduced in the second cyclopean IQA stage which ultimately decrease
the QA performance on the cyclopean images. Second, the training data
generated for the second stage contain only symmetrically-distorted
stereopairs with the main purpose of easily collecting the ground-truth
distortion parameters for model training, while database such as NBU-
MDSID Phase II contains asymmetrically-distorted stereopairs. In other
words, we are actually training symmetrically-distorted cyclopean IQA
models to predict the quality of asymmetrically-distorted stereopairs,
which inevitably brings prediction errors. Despite that, combining the
cyclopean IQA stage is meaningful and necessary, especially when
considering that humans judge 3D image quality based mainly on
a merged cyclopean view instead of two separate monocular views.
As demonstrated in the following section, combining the two stages
can also greatly improve the algorithm performance on the LIVE 3D,
WaterlooIVC 3D, and IRCCyN/IVC 3D databases.

3.4. Performance on singly distorted 3D image databases

Although MUSIQUE-3D was developed mainly for predicting the
quality of MDSIs, we demonstrate that it also works for SDSIs. To
this end, the subsets of four singly-distorted stereoscopic image quality
databases corresponding to the individual distortion types of Gaussian
blur, white noise, JPEG compression, and JPEG2000 compression were
used for testing. The overall testing results of MUSIQUE-3D and other
FR/NR IQA algorithms on the four databases are shown in Table 7,
in which the averaged values of the PLCC, SROCC, KROCC, AUC-DC,
AUC-BW, and CC-BW results were weighted by the actual number of
distorted images tested in each database. Note that we do not compute
the averaged RMSE value because different databases have different
MOS/DMOS ranges. As in Section 3.3, the testing results of the two
stages in MUSIQUE-3D are also listed in Table 7, which along with
MUSIQUE-3D are denoted by ‘‘M-2D’’, ‘‘M-Cyc’’, and ‘‘M-3D’’, respec-
tively, for brevity. Moreover, we additionally report the performances
of these FR/NR IQA algorithms on the four databases corresponding
to each individual distortion type. Test results of the four distortion
types in LIVE and NBU, and three distortion types in WaterlooIVC
and IRCCyN/IVC are presented in Table 8 in terms of SROCC values
(additional test results are available in the online supplement to this
paper at http://vision.eng.shizuoka.ac.jp/MUSIQUE3D/). For both ta-
bles, italicized entries denote the FR IQA algorithms. The results of the

best-performing FR IQA algorithm are italicized and bolded, and the
results of the best-performing NR IQA algorithm are bolded. Note that
Xu’s method [9], SINQ [10], and DCNN [43] were trained on the LIVE
3D Phase II database, and thus their testing results on LIVE-II are not
presented in Tables 7 and 8.

As shown in Table 7, MUSIQUE-3D achieves better results (on
average) as compared to other FR/NR IQA algorithms on subsets of
all four databases. Specifically, on the LIVE 3D, WaterlooIVC 3D, and
IRCCyN/IVC 3D databases, MUSIQUE-3D is superior to all the other
NR IQA algorithms considered, and even challenges the FR methods.
On the NBU 3D database, however, the performance of MUSIQUE-
3D drops slightly, which might be attributable to the relatively lower
QA performance on the WN images (see Table 8), but is still very
competitive and promising. Compared with its two individual stages,
we observe that the combination can generally improve or balance
the performance of each individual stage across different 3D image
databases.

By comparing M-2D with QAC, NIQE, ILNIQE, and SISBLIM in
Tables 6 and 7, we observe performance improvements on most stereo-
scopic image databases, which demonstrates the effectiveness of the
proposed two-layer classification/regression models as well as the
contrast-weighting strategy in predicting the quality of stereoscopic im-
ages. Also, the better performance of M-Cyc compared with BRISUQE,
GM-LOG, and GLBP demonstrates the effectiveness of the proposed
cyclopean IQA model. Note that although Xu’s method, SINQ, and
DCNN were trained on SDSIs with associated human opinion scores,
their relatively weak performances on WaterlooIVC 3D, NBU 3D,
and IRCCyN/IVC 3D indicate that training on one stereoscopic image
quality database cannot always guarantee good performances on others
because different databases may significantly vary in their distortion
types and levels. Also note that most of the FR and NR approaches con-
sidered here perform less effectively on the IRCCyN/IVC 3D database.
The reason is that these algorithms are insensitive to the resampled
images, which are also considered as blur distortion in IRCCyN/IVC
3D.

Fig. 6 shows the scatter plots of logistic-transformed MUSIQUE-
3D quality predictions versus subjective ratings (MOS or DMOS) on
subsets of all five databases. Scatter plots corresponding to other
SIQA algorithms can be referred to http://vision.eng.shizuoka.ac.jp/
MUSIQUE3D/. Note that the x axis represents the predicted value after
logistic transformation; the y axis represents the true DMOS value for
the NBU-MDSID, LIVE 3D, NBU 3D, and ICCyN/IVC 3D databases,
and true MOS value for the WaterlooIVC 3D database. Despite the
presence of some outliers, the plots are generally heteroscedastic. Fig. 7
showcases the quality scores given by MUSIQUE-3D to sample distorted
stereoscopic images from the LIVE 3D Phase I database. Note that
S𝐿 and S𝑅 denote quality estimates given to the left and right views,
respectively; S2𝐷, S𝑐𝑦𝑐 , and S3𝐷 denote quality estimates given by the
first, second, and final stage of MUSIQUE-3D (we refer readers to
http://vision.eng.shizuoka.ac.jp/MUSIQUE3D/ for more visual exam-
ples). In summary, when looking at the overall performance across all
databases, MUSIQUE-3D demonstrates a better performance than other
NR IQA methods.

3.5. Discussion

In this section, we explore alternative ways to potentially improve
the performance of our algorithm, and at the same time discuss their
value/efficacy. As mentioned in Section 2.2.1, a denoising algorithm
can be applied to prevent the erroneous granule-shaped regions in
the estimated disparity map. Here, we investigate the impacts of two
denoising algorithms on the QA performance of MUSIQUE-3D. One
is the block-matching and 3D filtering (BM3D) color-image denoising
method (C-BM3D) [52], and the other one is the denoising convo-
lutional neural network (DnCNN) [53]. We also investigate how the
performance changes when different optical flow algorithms and clas-
sification/regression models are employed. Specifically, the SIFT flow
11
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Table 6
Overall performances of MUSIQUE-3D and other FR/NR IQA algorithms on the NBU-MDSID Phase I and Phase II databases. Results of the best-performing FR algorithm are
italicized and bolded, and results of the best-performing NR algorithm are bolded.

IQA metrics NBU-MDSID Phase I NBU-MDSID Phase II

PLCC SROCC KROCC RMSE AUC-DC AUC-BW CC-BW PLCC SROCC KROCC RMSE AUC-DC AUC-BW CC-BW

Chen [22] 0.915 0.899 0.716 3.860 0.757 0.960 0.891 0.835 0.822 0.634 6.610 0.711 0.924 0.852
Lin [41] 0.931 0.917 0.738 3.484 0.839 0.972 0.903 0.832 0.797 0.611 6.669 0.703 0.923 0.841
Shao [39] 0.827 0.807 0.608 5.377 0.681 0.915 0.832 0.732 0.721 0.534 12.020 0.633 0.879 0.798
SOIQE [42] 0.807 0.766 0.570 5.658 0.682 0.899 0.811 0.858 0.822 0.637 6.172 0.726 0.936 0.855

Xu [9] 0.659 0.671 0.515 7.200 0.724 0.172 0.221 0.425 0.501 0.360 12.020 0.568 0.252 0.299
SINQ [10] 0.828 0.822 0.607 5.363 0.755 0.920 0.834 0.685 0.676 0.482 8.760 0.631 0.848 0.770
DCNN [43] 0.755 0.737 0.519 6.282 0.686 0.864 0.787 0.635 0.619 0.440 9.281 0.588 0.827 0.744
BRISQUE [15] 0.750 0.738 0.517 9.573 0.769 0.893 0.788 0.526 0.559 0.386 10.225 0.587 0.790 0.716
GM-LOG [44] 0.613 0.160 0.078 7.564 0.662 0.644 0.544 0.424 0.314 0.225 10.884 0.587 0.646 0.628
GLBP [45] 0.420 0.395 0.270 9.573 0.579 0.707 0.646 0.337 0.275 0.189 11.318 0.524 0.649 0.608

QAC [46] 0.845 0.855 0.651 5.121 0.793 0.934 0.860 0.724 0.740 0.548 8.294 0.633 0.872 0.807
NIQE [47] 0.926 0.901 0.718 3.608 0.796 0.967 0.894 0.849 0.840 0.649 6.349 0.709 0.925 0.863
ILNIQE [48] 0.708 0.592 0.427 6.765 0.660 0.824 0.734 0.716 0.682 0.488 8.391 0.618 0.859 0.772
SISBLIM [49] 0.599 0.706 0.631 7.663 0.567 0.913 0.846 0.479 0.587 0.530 10.552 0.613 0.845 0.797

MUSIQUE-2D 0.947 0.930 0.766 3.084 0.854 0.981 0.918 0.897 0.874 0.692 5.315 0.791 0.958 0.886
MUSIQUE-Cyc 0.916 0.904 0.717 3.845 0.819 0.965 0.894 0.837 0.831 0.636 6.572 0.732 0.931 0.855
MUSIQUE-3D 0.948 0.934 0.770 3.047 0.856 0.980 0.921 0.900 0.884 0.704 5.251 0.803 0.960 0.892

Fig. 6. Scatter plots of objective scores predicted by MUSIQUE-3D algorithm after logistic transform versus subjective scores on different 3D image databases.

algorithm is replaced by a scalable Lucas-Kanade optical flow (SLK
flow) [54], and the SVM model is replaced by a five-layer back prop-
agation (BP) neural network.3 Accordingly, the following comparison
ersions were created:

• C-BM3D: stereopairs were first denoised by the C-BM3D algorithm
before being used for disparity map estimation;

• DnCNN: stereopairs were first denoised by DnCNN before being
used for disparity map estimation;

• SLK: SIFT flow was replaced by SLK flow;
• BP: SVM was replaced by BP neural network.

Note that each version was built by training on the same 33,940
egenerated 2D images and 6,610 regenerated 3D images, and all
lgorithm settings were the same as that used in training MUSIQUE-3D
xcept the replaced parts. The testing was performed on the subsets of
mages corrupted by the four distortion types from five databases (see
ection 3.2), and the results are shown in Table 9 in which the averaged

3 In this work, the numbers of nodes for the three hidden layers are set
o 40, 80, and 60, respectively, and we use the same network architecture to
rain all classification/regression models.

values were weighted by the actual number of distorted images tested
in each database. Also shown in Table 9 are the testing results of the
original MUSIQUE-3D algorithm for reference.

As observed in Table 9, MUSIQUE-3D achieves the best performance
(on average) among its four variants. Specifically, by looking at the
results of C-BM3D and DnCNN, we conclude that the employment of
noise reduction can indeed benefit our algorithm on some databases
(e.g., LIVE 3D Phase II). However, this performance improvement is
less attractive when considering the added computational complexity;
furthermore, the performance on other databases either drops or main-
tains the same level. For SLK and BP, we observe that the algorithm
performance drops on most databases, and this fact implies that the
performance of MUSIQUE-3D is dependent on the selected optical flow
algorithm and machine learning model. Note that for C-BM3D, DnCNN,
and SLK, their S2𝐷 results do not change significantly, owning to the
fact that both noise reduction and optical flow estimation belong to the
second stage of MUSIQUE-3D. Also note that the S2𝐷 and S𝑐𝑦𝑐 results of
using BP network drop considerably, suggesting that a more powerful
and complicated network might be required to more accurately predict
the distortion parameters. Thus, based on current test, the SVM model
is a promising choice in this work due to its decent performance,
simplicity, and easy implementation.
12
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Table 7
Overall performances of MUSIQUE-3D and other FR/NR IQA algorithms on subsets of the LIVE 3D, WaterlooIVC 3D, NBU 3D, and IRCCyN/IVC 3D image databases. Results of
the best-performing FR IQA algorithm are italicized and bolded, and results of the best-performing NR IQA algorithm are bolded.

Chen Lin Shao SOIQE Xu SINQ DCNN BRISQUE GM-LOG GLBP QAC NIQE ILNIQE SISBLIM M-2D M-Cyc M-3D

PLCC LIVE-I 0.930 0.872 0.933 0.799 0.742 0.901 0.866 0.718 0.774 0.795 0.893 0.858 0.897 0.820 0.916 0.908 0.924
LIVE-II 0.911 0.655 0.819 0.824 – – – 0.778 0.750 0.767 0.846 0.832 0.784 0.641 0.891 0.880 0.911
WIVC-I 0.711 0.688 0.833 0.830 0.157 0.419 0.667 0.695 0.729 0.739 0.741 0.776 0.731 0.894 0.909 0.911 0.931
WIVC-II 0.573 0.578 0.737 0.751 0.035 0.356 0.640 0.648 0.673 0.691 0.702 0.668 0.653 0.802 0.876 0.894 0.908
NBU 3D 0.880 0.932 0.918 0.874 0.461 0.574 0.786 0.791 0.799 0.760 0.800 0.817 0.906 0.682 0.886 0.861 0.884
IVC 3D 0.689 0.697 0.719 0.753 0.587 0.452 0.762 0.576 0.317 0.485 0.693 0.535 0.672 0.574 0.842 0.803 0.882

Average 0.785 0.731 0.835 0.808 – – – 0.713 0.715 0.732 0.788 0.770 0.779 0.757 0.892 0.886 0.910

SROCC LIVE-I 0.903 0.830 0.904 0.870 0.738 0.849 0.885 0.684 0.751 0.757 0.891 0.825 0.870 0.786 0.888 0.871 0.890
LIVE-II 0.904 0.639 0.797 0.815 – – – 0.757 0.723 0.727 0.828 0.820 0.764 0.528 0.887 0.865 0.903
WIVC-I 0.626 0.611 0.817 0.783 0.069 0.259 0.472 0.591 0.653 0.624 0.547 0.601 0.696 0.872 0.897 0.884 0.918
WIVC-II 0.489 0.479 0.721 0.717 0.183 0.150 0.530 0.523 0.622 0.611 0.541 0.515 0.618 0.778 0.849 0.862 0.885
NBU 3D 0.887 0.939 0.924 0.885 0.420 0.638 0.826 0.830 0.798 0.796 0.823 0.840 0.906 0.636 0.884 0.862 0.885
IVC 3D 0.673 0.636 0.649 0.653 0.551 0.386 0.761 0.543 0.228 0.431 0.684 0.417 0.643 0.609 0.844 0.798 0.877

Average 0.745 0.682 0.815 0.799 – – – 0.660 0.676 0.682 0.717 0.693 0.755 0.715 0.877 0.864 0.895

KROCC LIVE-I 0.726 0.637 0.734 0.681 0.503 0.657 0.685 0.474 0.552 0.543 0.704 0.625 0.676 0.589 0.703 0.684 0.707
LIVE-II 0.731 0.480 0.605 0.651 – – – 0.551 0.528 0.531 0.630 0.612 0.566 0.395 0.702 0.667 0.720
WIVC-I 0.469 0.458 0.636 0.596 0.062 0.172 0.319 0.429 0.482 0.449 0.393 0.456 0.523 0.706 0.723 0.711 0.764
WIVC-II 0.346 0.344 0.535 0.527 0.017 0.110 0.369 0.367 0.453 0.444 0.385 0.366 0.451 0.596 0.662 0.681 0.707
NBU 3D 0.701 0.781 0.757 0.699 0.291 0.382 0.621 0.633 0.601 0.604 0.620 0.639 0.730 0.451 0.702 0.677 0.704
IVC 3D 0.502 0.483 0.498 0.527 0.380 0.265 0.564 0.383 0.161 0.249 0.498 0.289 0.461 0.437 0.639 0.608 0.694

Average 0.579 0.523 0.637 0.619 – – – 0.477 0.497 0.494 0.538 0.517 0.573 0.542 0.693 0.679 0.718

RMSE LIVE-I 5.723 7.620 5.576 15.532 10.424 6.746 7.774 10.816 9.832 9.430 6.988 7.979 6.858 8.895 6.226 6.520 5.949
LIVE-II 4.619 8.452 6.409 6.338 – – – 7.025 7.401 7.169 5.969 6.200 6.942 8.583 5.076 5.321 4.613
WIVC-I 11.936 12.319 9.397 9.457 16.950 15.405 12.641 12.200 11.608 11.427 11.395 10.704 11.583 7.606 7.073 6.990 6.174
WIVC-II 16.627 16.556 13.705 13.403 20.286 18.962 15.593 15.453 15.017 14.678 14.459 15.101 15.377 12.116 9.777 9.080 8.488
NBU 3D 8.322 6.344 6.933 8.517 15.545 14.344 10.826 10.719 10.528 11.381 10.503 10.092 7.427 12.818 8.117 8.911 8.197
IVC 3D 15.998 15.822 15.326 14.507 17.866 19.676 14.290 18.032 20.926 19.288 15.909 18.644 16.331 18.064 11.917 13.153 10.416

AUC-DC LIVE-I 0.805 0.738 0.812 0.759 0.686 0.781 0.782 0.612 0.616 0.645 0.767 0.726 0.763 0.711 0.777 0.778 0.791
LIVE-II 0.750 0.621 0.681 0.705 – – – 0.667 0.658 0.654 0.705 0.709 0.657 0.627 0.753 0.734 0.775
WIVC-I 0.626 0.632 0.699 0.663 0.559 0.516 0.615 0.649 0.662 0.654 0.620 0.615 0.631 0.755 0.778 0.778 0.818
WIVC-II 0.554 0.582 0.630 0.628 0.552 0.531 0.611 0.640 0.638 0.641 0.621 0.577 0.606 0.676 0.735 0.747 0.764
NBU 3D 0.739 0.824 0.797 0.747 0.543 0.556 0.674 0.709 0.669 0.681 0.678 0.712 0.774 0.616 0.748 0.732 0.756
IVC 3D 0.601 0.599 0.603 0.645 0.562 0.532 0.644 0.558 0.503 0.537 0.594 0.539 0.575 0.590 0.700 0.699 0.747

Average 0.684 0.667 0.711 0.694 – – – 0.648 0.639 0.647 0.672 0.656 0.675 0.672 0.754 0.750 0.778

AUC-BW LIVE-I 0.977 0.949 0.980 0.958 0.891 0.961 0.965 0.842 0.898 0.903 0.967 0.943 0.961 0.920 0.972 0.964 0.974
LIVE-II 0.966 0.820 0.923 0.922 – – – 0.893 0.885 0.882 0.938 0.931 0.903 0.811 0.962 0.951 0.969
WIVC-I 0.831 0.830 0.936 0.918 0.493 0.608 0.786 0.826 0.858 0.853 0.795 0.821 0.884 0.963 0.970 0.969 0.981
WIVC-II 0.737 0.757 0.874 0.873 0.570 0.581 0.798 0.796 0.831 0.834 0.780 0.754 0.833 0.910 0.948 0.955 0.964
NBU 3D 0.958 0.985 0.979 0.956 0.709 0.805 0.936 0.939 0.930 0.928 0.938 0.946 0.973 0.854 0.966 0.958 0.967
IVC 3D 0.836 0.811 0.804 0.782 0.799 0.707 0.896 0.774 0.615 0.688 0.852 0.696 0.839 0.828 0.937 0.917 0.957

Average 0.884 0.858 0.927 0.914 – – – 0.850 0.862 0.866 0.878 0.863 0.902 0.888 0.961 0.957 0.970

CC-BW LIVE-I 0.920 0.870 0.916 0.894 0.795 0.882 0.895 0.777 0.823 0.819 0.906 0.864 0.894 0.841 0.905 0.896 0.907
LIVE-II 0.910 0.771 0.840 0.864 – – – 0.812 0.798 0.802 0.857 0.845 0.819 0.723 0.893 0.876 0.903
WIVC-I 0.765 0.760 0.862 0.838 0.467 0.597 0.683 0.746 0.777 0.757 0.725 0.758 0.799 0.900 0.909 0.904 0.930
WIVC-II 0.693 0.691 0.797 0.793 0.510 0.554 0.706 0.706 0.754 0.748 0.714 0.704 0.752 0.833 0.868 0.880 0.893
NBU 3D 0.904 0.948 0.931 0.903 0.666 0.722 0.856 0.864 0.847 0.847 0.859 0.869 0.918 0.764 0.903 0.886 0.903
IVC 3D 0.783 0.769 0.772 0.789 0.716 0.652 0.813 0.710 0.584 0.636 0.777 0.662 0.760 0.751 0.856 0.839 0.884

Average 0.829 0.798 0.859 0.851 – – – 0.772 0.784 0.783 0.807 0.795 0.827 0.809 0.892 0.885 0.905

4. Conclusion

This paper presented an opinion-unaware NR algorithm for qual-
ity assessment of multiply and singly distorted stereoscopic images
via adaptive construction of cyclopean views. Our method, called
MUSIQUE-3D, operates under the principle that the quality degradation
of a 3D image can be represented by the distortion parameters of
both the monocular and cyclopean views, and can thereby lead to an
improved estimate of quality. Accordingly, MUSIQUE-3D contains three
main stages: (1) MUSIQUE-based quality assessment of the two monoc-
ular views; (2) QC-MCM-based quality assessment of the cyclopean
view; and (3) quality combination of the monocular and cyclopean
views to yield the final quality score. Based on the results presented
in this paper, we can make the following conclusions: (1) In regards
to the first stage, our results suggest that it is not only important
to accurately predict the quality of each view separately, but also
to properly combine them such that the combined quality estimate
can be representative of the overall 3D image quality. (2) In regards

to the second stage, our results suggest that it is necessary to use
a quality compensation mechanism such that the non-compensable
quality-degradation effect caused by the information-additive distor-
tions (e.g., JPEG compression) in binocular vision can be captured.
(3) For the third stage of predicting the overall 3D image quality,
we observe that the QA estimates of both previous stages have to be
sufficiently veridical in order that the combined performance can be
further enhanced.

Despite the effectiveness of the proposed MUSIQUE-3D algorithm,
there are number of aspects which could benefit from future research.
One line of future work would involve improving the accuracy of
computing the disparity maps, or better still, to perform the QA task
on stereoscopic images without using such maps. Other future work
would involve exploiting new methods to extract more efficient features
for quality prediction (e.g., using pre-trained deep neural networks)
instead of the hand-crafted features employed in MUSIQUE-3D. Finally,
the important QA behaviors/properties of the HVS during binocular
vision could certainly benefit from future psychophysical research and
13
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Table 8
SROCC values of MUSIQUE-3D and other FR/NR IQA algorithms on different types of distortion on the LIVE 3D, WaterlooIVC 3D, NBU 3D and IRCCyN/IVC 3D databases. Results
of the best-performing FR IQA algorithm are italicized and bolded, and results of the best-performing NR IQA algorithm are bolded.

Chen Lin Shao SOIQE Xu SINQ DCNN BRISQUE GM-LOG GLBP QAC NIQE ILNIQE SISBLIM MUSIQUE-3D

LIVE-I WN 0.948 0.928 0.930 0.925 0.088 0.910 0.619 0.731 0.891 0.760 0.855 0.914 0.926 0.931 0.935
JP2K 0.896 0.839 0.883 0.902 0.841 0.819 0.919 0.477 0.664 0.749 0.917 0.744 0.845 0.853 0.869
JPEG 0.558 0.207 0.611 0.618 0.382 0.561 0.730 0.479 0.491 0.218 0.701 0.597 0.587 0.678 0.673
Gblur 0.926 0.935 0.910 0.911 0.813 0.882 0.884 0.795 0.866 0.850 0.894 0.881 0.885 0.901 0.879

LIVE-II WN 0.955 0.907 0.807 0.963 – – – 0.908 0.841 0.571 0.686 0.895 0.948 0.863 0.917
JP2K 0.833 0.719 0.788 0.915 – – – 0.586 0.413 0.654 0.782 0.632 0.768 0.634 0.860
JPEG 0.840 0.613 0.745 0.833 – – – 0.601 0.596 0.624 0.809 0.637 0.663 0.871 0.832
Gblur 0.910 0.711 0.939 0.820 – – – 0.754 0.842 0.846 0.846 0.864 0.889 0.900 0.877

WIVC- I WN 0.837 0.784 0.829 0.912 0.489 0.772 0.655 0.669 0.443 0.563 0.873 0.889 0.807 0.805 0.898
JPEG 0.935 0.960 0.828 0.919 0.749 0.290 0.585 0.595 0.761 0.675 0.797 0.861 0.726 0.876 0.862
Gblur 0.600 0.758 0.924 0.932 0.037 0.272 0.562 0.876 0.879 0.430 0.451 0.935 0.945 0.932 0.959

WIVC- II WN 0.783 0.797 0.799 0.893 0.560 0.721 0.700 0.641 0.522 0.630 0.903 0.834 0.797 0.839 0.852
JPEG 0.859 0.903 0.727 0.875 0.138 0.111 0.649 0.543 0.571 0.449 0.596 0.680 0.651 0.733 0.822
Gblur 0.312 0.669 0.912 0.823 0.228 0.137 0.591 0.854 0.920 0.619 0.717 0.936 0.883 0.880 0.937

NBU 3D WN 0.925 0.860 0.912 0.828 0.244 0.764 0.938 0.802 0.765 0.720 0.811 0.879 0.906 0.614 0.848
JP2K 0.874 0.947 0.940 0.910 0.569 0.508 0.865 0.850 0.808 0.871 0.839 0.857 0.855 0.121 0.886
JPEG 0.904 0.939 0.934 0.925 0.466 0.519 0.917 0.905 0.896 0.860 0.881 0.882 0.894 0.695 0.951
Gblur 0.930 0.953 0.939 0.966 0.444 0.483 0.858 0.839 0.926 0.946 0.856 0.916 0.951 0.750 0.946

IVC 3D JP2K 0.823 0.885 0.802 0.958 0.641 0.452 0.749 0.619 0.252 0.224 0.746 0.748 0.743 0.249 0.877
JPEG 0.775 0.782 0.897 0.938 0.420 0.510 0.862 0.665 0.637 0.470 0.754 0.714 0.689 0.814 0.956
Gblur 0.459 0.467 0.321 0.143 0.657 0.243 0.725 0.466 0.186 0.307 0.693 0.143 0.835 0.777 0.847

Fig. 7. Quality scores given by MUSIQUE-3D to sample distorted stereoscopic images from the LIVE 3D Phase I database.

ssociated models. Although the quality-compensated multipathway
ontrast gain-control model presented in this paper is effective, it is
imited to four distortion types and their arbitrary combinations. Also,
he two monocular view images considered in this work are assumed
o be corrupted by the same distortion types/combinations, while in
ractice other cases can occur. In the future, more advanced cyclopean

frameworks that can handle more/different distortion scenarios could
be developed, thus giving rise to improved future SIQA algorithms.
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Table 9
PLCC, SROCC, and KROCC values tested by including a denoising operation, as well as using different optical flow algorithms and classification/regression models in the MUSIQUE-3D
algorithm. Note that S2𝐷 , S𝑐𝑦𝑐 , and S3𝐷 represent correlation coefficient values computed for quality scores given by the first, second, and final stage of the algorithm, respectively.

Datasets C-BM3D DnCNN SLK BP MUSIQUE-3D

S2𝐷 S𝑐𝑦𝑐 S3𝐷 S2𝐷 S𝑐𝑦𝑐 S3𝐷 S2𝐷 S𝑐𝑦𝑐 S3𝐷 S2𝐷 S𝑐𝑦𝑐 S3𝐷 S2𝐷 S𝑐𝑦𝑐 S3𝐷

PLCC NBUMD-I 0.947 0.928 0.948 0.947 0.929 0.947 0.947 0.706 0.955 0.940 0.927 0.945 0.947 0.916 0.948
NBUMD-II 0.897 0.830 0.889 0.897 0.822 0.881 0.897 0.815 0.916 0.886 0.816 0.870 0.897 0.837 0.900
LIVE-I 0.916 0.906 0.923 0.916 0.903 0.922 0.916 0.878 0.917 0.902 0.852 0.888 0.916 0.908 0.924
LIVE-II 0.891 0.890 0.916 0.891 0.891 0.917 0.892 0.866 0.901 0.852 0.780 0.840 0.891 0.880 0.911
WIVC-I 0.909 0.911 0.930 0.909 0.903 0.926 0.910 0.898 0.928 0.854 0.888 0.904 0.909 0.911 0.931
WIVC-II 0.876 0.889 0.905 0.876 0.876 0.900 0.878 0.896 0.912 0.833 0.855 0.859 0.876 0.894 0.908
NBU 3D 0.886 0.864 0.884 0.886 0.871 0.889 0.886 0.736 0.826 0.862 0.824 0.855 0.886 0.861 0.884
IVC 3D 0.842 0.814 0.884 0.842 0.809 0.881 0.842 0.712 0.846 0.842 0.746 0.803 0.842 0.803 0.882

Average 0.900 0.885 0.912 0.900 0.881 0.910 0.900 0.826 0.906 0.873 0.844 0.876 0.900 0.883 0.914

SROCC NBUMD-I 0.930 0.917 0.933 0.930 0.909 0.934 0.930 0.862 0.938 0.926 0.923 0.934 0.930 0.904 0.934
NBUMD-II 0.874 0.824 0.869 0.874 0.798 0.855 0.874 0.761 0.888 0.857 0.812 0.852 0.874 0.831 0.884
LIVE-I 0.888 0.870 0.891 0.888 0.867 0.889 0.888 0.820 0.882 0.863 0.794 0.842 0.888 0.871 0.890
LIVE-II 0.887 0.875 0.907 0.887 0.877 0.906 0.888 0.855 0.895 0.845 0.779 0.838 0.887 0.865 0.903
WIVC-I 0.898 0.879 0.917 0.897 0.865 0.906 0.901 0.871 0.914 0.781 0.860 0.878 0.897 0.884 0.918
WIVC-II 0.849 0.851 0.878 0.849 0.829 0.868 0.852 0.886 0.897 0.760 0.815 0.818 0.849 0.862 0.885
NBU 3D 0.884 0.864 0.887 0.884 0.871 0.890 0.884 0.736 0.828 0.862 0.830 0.855 0.884 0.862 0.885
IVC 3D 0.844 0.809 0.878 0.844 0.800 0.877 0.845 0.688 0.836 0.843 0.743 0.795 0.844 0.798 0.877

Average 0.884 0.865 0.895 0.884 0.855 0.891 0.885 0.824 0.890 0.840 0.825 0.855 0.884 0.864 0.898

KROCC NBUMD-I 0.766 0.738 0.768 0.766 0.731 0.773 0.766 0.655 0.780 0.753 0.749 0.769 0.766 0.717 0.770
NBUMD-II 0.691 0.627 0.686 0.691 0.606 0.675 0.693 0.566 0.710 0.678 0.612 0.667 0.692 0.636 0.704
LIVE-I 0.703 0.681 0.706 0.703 0.679 0.705 0.703 0.630 0.698 0.668 0.591 0.647 0.703 0.684 0.707
LIVE-II 0.702 0.681 0.726 0.702 0.682 0.725 0.705 0.652 0.705 0.646 0.580 0.642 0.702 0.667 0.720
WIVC-I 0.724 0.707 0.763 0.723 0.692 0.749 0.727 0.697 0.757 0.600 0.674 0.703 0.723 0.711 0.764
WIVC-II 0.663 0.670 0.699 0.662 0.647 0.687 0.667 0.706 0.723 0.572 0.623 0.627 0.662 0.681 0.707
NBU 3D 0.702 0.683 0.707 0.702 0.690 0.711 0.702 0.551 0.641 0.676 0.644 0.671 0.702 0.677 0.704
IVC 3D 0.639 0.623 0.691 0.639 0.617 0.690 0.640 0.524 0.642 0.657 0.533 0.593 0.639 0.608 0.694

Average 0.702 0.680 0.719 0.702 0.670 0.715 0.704 0.634 0.714 0.654 0.632 0.669 0.702 0.678 0.723
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