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A B S T R A C T

Although numerous methods have been proposed to remove blocking artifacts in JPEG-compressed images, one
important issue not well addressed so far is the construction of a unified model that requires no prior knowledge
of the JPEG encoding parameters to operate effectively on different compression-level images (grayscale/color)
while occupying relatively small storage space to save and run. To address this issue, in this paper, we present
a unified JPEG compression artifact reduction model called DSPW-Net, which employs (1) the deep steerable
pyramid wavelet transform network for Y-channel restoration, and (2) the classic U-Net architecture for CbCr-
channel restoration. To enable our model to work effectively on images with a wide range of compression
levels, the quality factor (QF) related features extracted by the convolutional layers in the QF-estimation
network are incorporated in the two restoration branches. Meanwhile, recursive blocks with shared parameters
are utilized to drastically reduce model parameters and shared-source residual learning is employed to avoid
the gradient vanishing/explosion problem in training. Extensive quantitative and qualitative results tested on
various benchmark datasets demonstrate the effectiveness of our model as compared with other state-of-the-art
deblocking methods.
. Introduction

Images/videos captured by cameras have to be compressed before
eing used due to the limited transmission bandwidth and storage
apacity. Apart from a few cases where lossless compression is adopted
e.g., medical imaging and technical drawing), the JPEG [1] and HEVC
High efficiency video coding) [2] standards are most commonly used
or lossy compression. These compressed images/videos often suffer
rom undesired compression artifacts such as blockiness, ringing, and
lurring, all of which are introduced due to degradation of higher-
requency components in the coarse quantization stage. These com-
ression artifacts not only give rise to degraded perceptual quality of
mages/videos which ultimately affects the user experience, but also
ave a negative impact on various computer vision algorithms that take
ompressed images as input. Thus, an algorithm that can effectively
liminate compression artifacts in compressed images/videos is highly
esired.

Admittedly, compression artifacts can occur under many image/
ideo coding standards such as H.264/AVC [3], HEVC, VVC (Versatile
ideo coding) [4], and many different techniques have been proposed
o improve the quality of these kinds of images/videos (e.g., [5–9]).
n this paper, we focus on reducing blocking/ringing artifacts in JPEG-
ompressed images, which is one of the most popular image formats for

∗ Corresponding author.
E-mail address: yi.zhang.osu@xjtu.edu.cn (Y. Zhang).

photographic images. Compared with restoration techniques designed
to remove noise and/or blur, designing restoration techniques to com-
bat with JPEG compression artifacts is more challenging. This is due to
the fact that the non-linearity of the quantization operations makes the
quantization noise non-stationary and signal dependent [10]. For exam-
ple, after quantization, the boundaries between different coding blocks
become discontinuous which results in blocking artifact; banding effects
become visible in smooth regions, and ringing artifacts appear around
sharp edges. Thus, existing restoration algorithms (e.g., [11–14]) that
model quantization noises as signal-independent often perform less
effectively on compressed images.

To remove such non-stationary and signal dependent quantization
noise, a number of deblocking/soft-decoding methods have been pro-
posed; these approaches can be roughly classified into three different
types. The first type of approach is enhancement-based, which re-
moves compression artifacts by performing filtering operations along
block boundaries in the spatial and/or frequency domains. The early
spatial-domain algorithms (e.g., [15,16]) usually select a filtering mode
according to the characteristics of the region and then apply the cor-
responding spatial-adaptive filtering near block boundaries. Later on,
more complicated filtering methods were developed which include
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postfiltering in shifted windows of image blocks [17], non-linear space-
variant filtering [18], adaptive nonlocal means filtering [19], adap-
tive bilateral filtering [20], etc. In comparison, the frequency-domain
filtering approaches directly adjust discrete cosine transform (DCT)
coefficients (e.g., [17,21–24]) or reapply JPEG compression to the
various shifted versions of the compressed image and then average the
reapplied results [25,26].

The second type of approach is restoration-based, which treats
compression artifact reduction as an ill-posed inverse problem in which
prior knowledge is employed to guide the restoration process. Some
typical image priors include the field of experts prior [27], the low-rank
prior [28–30], the quantization constraint prior [31,32], the non-local
similarity [14,33], the sparse representation prior [34–38], etc. More-
over, some approaches employ more than one image prior to operate
effectively. For example, the sparse representation and quantization
constraint priors were used in [39–42]; the low-rank and quantization
constraint priors were used in [43]; the Laplacian prior, sparsity prior,
and graph-signal smoothness prior were used in [44]. However, as
mentioned in [45], most of the restoration-based deblocking algorithms
are time-consuming due to the complex optimization process.

The third type of approach is learning-based, which employs deep
convolutional neural network (CNN) as well as the traditional image
transforms, priors, and constraints to perform the JPEG artifact removal
task. Some typical CNN-based models include ARCNN [46], TNRD [47],
DnCNN [48], CAS-CNN [49], MemNet [50], S-Net [51], STRRN [52],
QCN [53], FeCarNet [54], ARF [55], DAGL [56], the one-to-many net-
work [57], the deep convolutional sparse coding (DCSC) network [58],
the generative adversarial networks [59] based model [60–62], and
so forth. There are also some dual-domain models such as D3 [10],
DCN [63], DMCNN [64], DDCN [65], QGAC [66], MWCNN [67],
nd DPW-SDNet [45], which incorporate DCT and/or discrete wavelet
ransform (DWT) within the network design to explore the redundant
nformation neglected by the JPEG encoder for better restoration per-
ormance. Generally, learning-based approaches have shown to be more
ffective than other approaches, owning to the remarkable advantage
f the deep learning techniques.

Despite the various CNN-based models being developed and the
romising results so far achieved, one important issue not well ad-
ressed is the need for a unified model1 that requires no prior knowl-
dge of the JPEG encoding parameters to operate effectively on both
he grayscale and color images with a wide range of compression levels
hile still occupying relatively small storage space. Specifically, for
NN-based models such as ARCNN [46], TNRD [47], CAS-CNN [49],
MCNN [64], MWCNN [67], IDCN [63], STRRN [52], and FeCar-
et [54] etc., the individual network was trained for specific quality

actor (QF), and thus only a few compression levels were considered.
lthough DnCNN [48] was trained on images with QF ranging from 5

o 99, the model works on grayscale image only and the performance is
elatively weak. Subsequently, to improve the restoration performance
or a variety of compression levels, a two-stage framework was pro-
osed which first predicts the QF value of the image and then employs
specific network model corresponding to that QF value to perform

he restoration task (e.g., [60,61,68]). This two-stage framework indeed
orks competitively on more compression levels. However, it is not
unified model, meaning that multiple network models are trained

or multiple QF values. The more compression levels considered, the
ore models are trained, and consequently it generally requires a large

torage space to save and run.
In recent years, more advanced model-based approaches have been

roposed (e.g., [69,70]), which treat the deblocking task as an ill-
osed inverse problem, and solve the problem via deep unfolding
etworks. Although unified models have been developed and trained

1 In this paper, the term ‘‘unified model’’ is defined as a set of the consistent
etwork parameters that is able to perform effective restoration on images
cross a wide range of different compression levels.
2

by these methods, only a few QF values (usually QF ∈ {10, 20, 30, 40})
ere considered, and thus their performances on other compression

evels/ranges are not quite impressive. To the best of our knowledge,
GARNet [71] and FBCNN [72] are the two state-of-the-art deblocking
ethods that tackle a wide range of compression levels via single
etworks. However, there is still room to further improve their per-
ormances. Specifically, for AGARNet, because the gating scheme is
ontrolled by a coarse rescaled estimated QF map, small blocking
rtifacts are often left over on flat regions of the restored images, as
hown in Fig. 1. For FBCNN, large storage is required to save the huge
mount of network parameters.

Based on the aforementioned points, the main motivation of our
ork is to develop a single unified lightweight network that can blindly
nd effectively reduce JPEG compression artifacts over a wide range
f compression levels. Towards this end, we propose a Deep Steerable
yramid Wavelet Network (DSPW-Net), which utilizes QF-related fea-
ure maps to assist image restoration in both the spatial and frequency
omains. As shown in Fig. 2, our model consists of three branches:
1) a QF-related feature extraction branch; (2) a frequency-domain
-channel restoration branch; and (3) a spatial-domain CbCr-channel
estoration branch. The QF-related feature extraction branch uses a
ascade of convolutional layers to extract non-linear feature maps from
he Y-channel of the input image. The Y-channel restoration branch
irst decomposes the Y-channel of the image into three scales and eight
rientations via the complex version of the steerable pyramid wavelet
ransform (SPWT), resulting into one highpass residual band H0, 24
riented bandpass subbands B𝑠,𝑜 (𝑠 = 1, 2, 3; 𝑜 = 1, 2,… , 8), and one low-
ass image L0. These subband coefficients, along with the QF-related
eature maps (𝐶1 ∼ 𝐶4) and the different scales of the original input, are
hen passed through six recursive blocks via residual learning to predict
he uncompressed subband coefficients. Finally, the network outputs
H′
0, B′

𝑠,𝑜, L′0) are converted back to the restored Y-channel image (Y′)
y the inverse SPWT. The CbCr-channel restoration branch takes as
nput the compressed Cb and Cr channel images, the QF-related feature
aps, and the restored Y-channel image, to produce the restored Cb

nd Cr channels. It also employs recursive blocks to reduce parameters
nd residual learning to prevent gradient explosion. Different from the
-channel branch, the recursive blocks used in CbCr-channel branch
onstitute a spatial-domain U-Net [76] architecture, which is sufficient
o restore the color information of images.

Compared with existing learning-based approaches, our method has
everal appealing properties. First, the QF-related feature maps are
mbedded into the restoration network such that a unified model can
e effectively built for a wide range of compression levels. These feature
aps serve as important hints that guide the network to adaptively

it different compression-level images. Compared with AGARNet [71]
hat utilizes only a rescaled estimated QF map, direct connection of
he QF-related features can increase the nonlinearity of the restoration
etwork to learn complex mappings at different compression levels,
nd thus avoid small blocking artifacts left on flat regions. Second,
ifferent from MWCNN [67] and DPW-SDNet [45] that analyze images
sing only the first level of the wavelet subband coefficients, DSPW-Net
mploys the complex version of the SPWT [77] to explore the spatial
orrelations of images not only at multiple scales and orientations, but
lso in magnitude and phase. The multi-level feature concatenation
trategy additionally allows for the potential fusion of image structure
nformation from different scales for better restoration. More impor-
antly, by setting constraints on the steerable filters, SPWT improves
pon orthonormal wavelet transforms in two useful properties: (1) it
s translation-invariant (i.e., the subbands are aliasing-free), and (2) it
s rotation-invariant (i.e., the subbands are steerable), both of which
lay important roles in representing the position and orientation of
he image structure, and thus are of great importance to JPEG image
estoration. Finally, the recursive blocks used in both the Y-channel
nd CbCr-channel restoration branches can help reduce the amount
f network parameters, making the model efficient to save and run.
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Fig. 1. An illustration of three pristine images (from the LIVE [73], Urban100 [74], and CSIQ [75] databases, respectively), their JPEG-compressed versions, and the restored
images output by AGARNet [71] and DSPW-Net models, respectively. We add color to the AGARNet result by using the restored Cb/Cr channels generated by DSPW-Net. Note
that small blocking artifacts can be observed on the flat regions of the AGARNet output images, while our DSPW-Net model can produce more smooth and favorable results.
Fig. 2. A block diagram of the proposed DSPW-Net model. Detailed network architectures of the QF-related feature extraction branch, the recursive block, and the U-Net are
illustrated in Figs. 3, 4, and 6, respectively.
Experimental results demonstrate the advantages of our model over
other recent state-of-the-art deblocking methods.

The rest of the paper is organized as follows. Section 2 describes
details of the proposed DSPW-Net. In Section 3, we analyze and discuss
the performance of DSPW-Net on various JPEG-compressed images.
General conclusions are presented in Section 4.

2. Algorithm

In this section, we describe the design methodology of DSPW-Net.
As shown in Fig. 2, DSPW-Net takes as input an RGB compressed image
and first converts it into the YCbCr space. The conversion is based on
the ITU-R BT.601 standard [78] and is given by

⎧

⎪

⎨

⎪

𝑌 = (65.481 ⋅ 𝑅 + 128.553 ⋅ 𝐺 + 24.966 ⋅ 𝐵) ∕255 + 16
𝐶𝑏 = (−37.797 ⋅ 𝑅 − 74.203 ⋅ 𝐺 + 112.0 ⋅ 𝐵) ∕255 + 128
𝐶𝑟 = (112.0 ⋅ 𝑅 − 93.786 ⋅ 𝐺 − 18.214 ⋅ 𝐵) ∕255 + 128

(1)
⎩

3

where R, G, B represent the 8-bit pixel values of the three chan-
nels of the image. Then, the compressed Y and CbCr channel images
are restored by the Y-channel and CbCr-channel restoration branches,
respectively. To enable better performance on a wide range of compres-
sion levels, the QF-related features are incorporated in each restoration
network. In the following subsections, We provide details for each
branch of DSPW-Net in terms of network architecture, loss function,
and network training/implementation.

2.1. QF-related feature extraction

As illustrated in Fig. 3, the QF-related feature extraction branch
consists of 11 convolution layers (Conv), each of which is followed
by a Rectified Linear Unit (ReLU) to extract non-linear feature maps
from the Y-channel of the input image. Apart from the first and second

convolution layers that contain convolution filters of kernel size 7 × 7
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Fig. 3. Network architecture of the QF-related feature extraction branch.
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nd 5 × 5 pixels, respectively, to gain large receptive fields, all other
onvolution filters are of size 3 × 3 pixels. The network also contains
hree pooling layers, each of which employs both the max and average
ooling strategies to extract the peak/average feature values over each
on-overlapping 2 × 2-pixel region. The down-sampled feature maps
btained by applying the two pooling strategies are then concatenated
n the third dimension and fed into the subsequent layers for further
rocessing. We consistently set the channel number of the output
eature maps of each convolution layer as 64, and consequently the
utputs of the second, fifth, eighth, and eleventh convolution layers
marked in blue) are directly used as the QF-related features without
hannel rescaling.

To train the QF-related feature extraction branch, one average
ooling layer and two fully connected (FC) layers have been added
fter 𝐶4 such that training the QF-related feature extraction branch
quals to training a QF-estimation network, and the training target
s the square root of the ground-truth QF value of each image. The
urpose of using

√

𝑄𝐹 instead of 𝑄𝐹 as the target value is to balance
the distortion intensity variations vs. neighboring compression-level
changes (see detailed explanation in Section 2.2). Given an input
patch of size 128 × 128 pixels, the detailed architecture of the QF-
estimation network is shown in Table 1, and we use 10,207 high-quality
images from the VOC2012 database [79] for training. Specifically, after
compressing each RGB image using a random QF value within the
range [10, 90], the non-overlapping 128 × 128 image patches were
extracted from the Y-channel, and the network is optimized to minimize
the error computed over the predicted and ground-truth

√

𝑄𝐹 values
via the L1 loss function. In total, we extracted 63,852 patches from
10,207 compressed images. After training is done, the 11 convolution
layer parameters will be fixed and used in training the two subsequent
restoration networks described in the following subsections.

2.2. Y-channel restoration

As shown in Fig. 2, the Y-channel restoration first relies on the com-
plex version of SPWT [77] to decompose images into multiple scales
and multiple orientations, then employs recursive blocks to predict the
uncompressed wavelet coefficients via residual learning, and finally
transforms the wavelet coefficients back to the spatial domain through
the inverse SPWT. Specifically, an input image is first split into highpass
and lowpass subbands using the non-oriented highpass filter 𝐻0(𝜔) and
he lowpass filter 𝐿0(𝜔). The lowpass subband is then decomposed
nto a set of oriented subbands and a lower-pass subband by using
he bandpass oriented filter 𝐵𝑘(𝜔) and the narrow-band lowpass filter
1(𝜔), where 𝑘 denotes the index of different orientations. The lower-
ass subband image can be further downsampled by a factor of 2 along
oth axes and decomposed again into oriented subbands and a lowpass
4

Table 1
Detailed network architecture of the QF-estimation network given an input patch of
128 × 128 pixel size.

Layer Kernel size Stride Padding Output size

Conv+ReLU 7 × 7 1 3 128 × 128 × 64
Conv+ReLU 5 × 5 1 2 128 × 128 × 64
Conv+ReLU 3 × 3 1 1 128 × 128 × 64

Max/Average Pooling + Concatenation 64 × 64 × 128

Conv+ReLU 3 × 3 1 1 64 × 64 × 64
Conv+ReLU 3 × 3 1 1 64 × 64 × 64
Conv+ReLU 3 × 3 1 1 64 × 64 × 64

Max/Average Pooling + Concatenation 32 × 32 × 128

Conv+ReLU 3 × 3 1 1 32 × 32 × 64
Conv+ReLU 3 × 3 1 1 32 × 32 × 64
Conv+ReLU 3 × 3 1 1 32 × 32 × 64

Max/Average Pooling + Concatenation 16 × 16 × 128

Conv+ReLU 3 × 3 1 1 16 × 16 × 64
Conv+ReLU 3 × 3 1 1 16 × 16 × 64
Average Pooling – – – 1 × 64
FC – – – 1 × 64
FC – – – 1 × 1

residual band. Consequently, by repeatedly downsampling and decom-
posing the lowpass subband image, multi-scale and multi-orientation
pyramid representations of the image are obtained.

For the inverse SPWT, considering a single stage of steerable pyra-
mid decomposition, the reconstructed image in the frequency domain
can be written as

�̂� (𝜔) =
{

|

|

𝐻0(𝜔)||
2 + |

|

𝐿0(𝜔)||
2 (|
|

𝐿1(𝜔)||
2 +

𝑁
∑

𝑘=0

|

|

𝐵𝑘(𝜔)||
2)
}

𝑋(𝜔) + 𝑎.𝑡. (2)

here 𝑁 denotes the total number of the oriented filters; 𝑎.𝑡. indicates
he aliasing terms. To avoid aliasing, the 𝐿1(𝜔) filter is constrained to
ave a zero response for frequencies higher than 𝜋∕2, i.e., 𝐿1(𝜔) = 0 for
𝜔| > 𝜋∕2. Also, to ensure perfect reconstruction, the transfer function
f the system should be equal to one, i.e.,

𝐿0(𝜔)||
2
[

|

|

𝐿1(𝜔)||
2 +

𝑁
∑

𝑘=0

|

|

𝐵𝑘(𝜔)||
2
]

+ |

|

𝐻0(𝜔)||
2 = 1 (3)

The angular constraint on the bandpass filters 𝐵𝑘(𝜔) is derived from
he condition of steerability [80], which can be expressed as

𝑘(𝜔) = 𝐴(𝜃 − 𝜃𝑘) ⋅ 𝐵(𝜔), (4)

here 𝜃 = 𝑡𝑎𝑛−1(𝜔), 𝜃𝑘 = 𝜋𝑘∕𝑁 for 𝑘 ∈ {0, 1,… , 𝑁 − 1}, and 𝐵(𝜔)
s the radial function. Notice that 𝐴(𝜃) is determined by the desired
erivative order, and 𝐵(𝜔) is constrained by both the desire to build
he decomposition recursively and the need to prevent aliasing. The
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filters used in our work are polar-separable in the Fourier domain, and
they are given by

𝐿1(𝑟, 𝜃) =

⎧

⎪

⎨

⎪

⎩

2 cos[ 𝜋2 log2(
4𝑟
𝜋 )],

𝜋
4 < 𝑟 < 𝜋

2
2 𝑟 ≤ 𝜋

4
0 𝑟 ≥ 𝜋

2

(5)

(𝜃 − 𝜃𝑘) =
{

𝛼𝑘[cos(𝜃 − 𝜃𝑘)]𝑁−1
|

|

𝜃 − 𝜃𝑘|| < 𝜋∕2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

(𝑟) =

⎧

⎪

⎨

⎪

⎩

cos
[

𝜋
2 log2(

2𝑟
𝜋 )

]

, 𝜋
4 < 𝑟 < 𝜋

2
1, 𝑟 ≥ 𝜋

2
0, 𝑟 ≤ 𝜋

4

(7)

where 𝑟 and 𝜃 are polar frequency coordinates, and

𝑘 = 2𝑘−1
(𝑁 − 1)!

√

𝑁[2(𝑁 − 1)]!
(8)

e choose 𝐻0(𝑟) = 𝐵( 𝑟2 ) and 𝐿0(𝑟, 𝜃) = 1
2𝐿1(

𝑟
2 , 𝜃) so that the initial

ighpass/lowpass shape is the same as that used within the recursion.
e refer interested readers to [77,81,82] for more details about the

PWT.
In this paper, we decompose an image into three pyramid levels

scales) and eight orientations, resulting into one highpass subband,
hree scales of bandpass subbands (each of which further contains
ight bands corresponding to the eight orientations), and one lowpass
ubband, all of which are then fed into the recursive block for fur-
her processing. As shown in Fig. 2, the input of the recursive block
ontains both wavelet subband coefficients and the compressed Y-
hannel image rescaled to the same size as the wavelet subband, as
e believe that these Y-channel images can help recover the wavelet

oefficients. Because the highpass subband H0 shares the same height
nd width as the first-level bandpass subband B1,𝑜 (𝑜 = 1, 2,… , 8), we

concatenate them in the third dimension. Also, because the lower-pass
subband L0 is in fact a downsampled version of the original input,
we do not combine it with the downsampled Y-channel image. For
each of the 24 (3 scales × 8 orientations) bandpass subbands B𝑠,𝑜
(𝑠 = 1, 2, 3; 𝑜 = 1, 2,… , 8) that contains complex values, we extract
their real and imaginary parts as separate feature maps. Consequently,
the four-level input contains feature maps of 18 (i.e., Y-channel image
+ H0 + ℜ{B1,𝑜} + ℑ{B1,𝑜}), 17 (i.e., downsampled Y-channel image +
ℜ{B2,𝑜} + ℑ{B2,𝑜}), 17 (i.e., downsampled Y-channel image + ℜ{B3,𝑜}

ℑ{B3,𝑜}), and 1 (i.e., L0) channels, respectively. Here, the symbols
{⋅} and ℑ{⋅} denote, respectively, the real and imaginary part of a

omplex value.
The network architecture of the recursive block is shown in Fig. 4,

here 𝐶1, 𝐶2, 𝐶3, and 𝐶4 (marked in blue) denote the QF-related fea-
ures obtained previously. Four paralleled branches consist of
equentially-cascaded convolution layers are applied to the four-scale
ubband coefficients, respectively, to predict the residual wavelet coef-
icients. The QF-related features are incorporated such that the network
arameters can be more easily/flexibly tuned to different compression
evels. Meanwhile, motivated by the U-Net [76] architecture that
ombines feature maps of a downsampled layer with high-resolution
eatures to explore feature correlation among different scales, in this
aper the wavelet features at different branches are also concatenated
n the channel dimension to enable a potential fusion of the im-
ge structure information from different scales for better compression
rtifact reduction. As we will demonstrate in Section 3.3, such a fu-
ion/concatenation technique can significantly improve the algorithm
erformance.

Specifically, for each branch, apart from the first and last layers
hat contain convolution filters of kernel size 7 × 7 and 5 × 5 pixels,
espectively, all other convolution filters are of size 3 × 3 pixels.
ccordingly, we use reflection paddings of 3 and 2 pixels for the first
nd last convolution layers, respectively, and 1 pixel zero-padding for
he extra 3 × 3 convolution filters to keep the dimensions consistent
 𝑙

5

etween the input and output. Each convolution layer is followed by
parametric rectified linear unit (PReLU) to introduce nonlinearity to

he network, and channels of the output feature maps in each layer
re denoted in Fig. 4. To perform concatenation, downsampling and
psampling operations are applied such that feature maps at different
evels can reach the same height and width. As illustrated in Fig. 5, we
se (1) convolution filters with 1 × 1-pixel kernel size (one-pixel stride)
o allow the same level feature transfer, (2) 2 × 2 average pooling
peration (two-pixel stride) to downsample feature maps with scale
actor 2, and (3) 2 × 2 transposed convolution (or namely deconvolu-
ion) operation (two-pixel stride) to upsample feature maps with scale
actor 2. Multiple downsampling/upsampling operations are applied
hen larger scale factors have to be reached. For example, a double
ownsampling/upsampling operation can reach scale factor 4, and a
riple downsampling/upsampling operation can reach scale factor 8,
tc.

After concatenation, the 512-channel feature maps at each level will
e fed into subsequent convolution layers to produce subband residual
mages, which have 17 (i.e., H′

0 + ℜ{B′
1,𝑜} + ℑ{B′

1,𝑜}), 16 (i.e., ℜ{B′
2,𝑜}

ℑ{B′
2,𝑜}), 16 (i.e., ℜ{B′

3,𝑜} + ℑ{B′
3,𝑜}), and 1 (i.e., L′0) channels,

respectively. Then, these predicted residual images are combined with
the original input wavelet subband using element-wise summation to
generate the restored subband coefficients. As shown in Fig. 2, this
shared-source skip connection is repeated for six times, and the six
recursive blocks share the same network parameters to reduce model
complexity. Finally, the inverse SPWT transforms the wavelet coeffi-
cients back to the spatial domain to produce the deblocked Y-channel
image.

To train the Y-channel restoration branch, we built a large dataset
which consists of 400 images from the training and validation set of
the Berkeley Segmentation Database (BSD) [83], 850 images from the
DIV2K database [84], and 4440 images from the Waterloo Exploration
Database [85]. As DIV2K contains images of high resolution, both
the original and down-sampled (by a scale factor of 2) versions of
the 850 images in DIV2K are used as pristine images. Since our pur-
pose is to train unified models that can effectively deal with different
compression-level images, we compressed each of these 6540 images
with a random QF value, which gives rise to 6540 compressed images.
We also selected 100 images from the DIV2K dataset and compressed
each of them with eight fixed QF values (i.e., QF∈ {10:10:80}) to fur-
ther enhance the algorithm performance on some specific compression
levels. Accordingly, the training dataset contains 7340 images in total.
Note that when QF is small (e.g., less than 20), even ±1 change of
QF value can cause significantly different distortion variation. When
QF is large (e.g., more than 40), however, such distortion variation is
relatively small even for large QF value changes. Thus, in this work, the
random QF values were selected from the following set: QF∈ {10:20,
22:2:30, 35:5:80, 90} such that the distortion intensity variations for
neighboring compression-level changes are roughly the same. In other
words, the training data roughly equally distributed over different
intensities of the compression distortion.

After generating 7340 JPEG-compressed images, the non-
overlapping 128 × 128 patches were extracted from the Y-channel of
each image. Specifically, we extracted in total 270,770 image patch
pairs from both the reference and the compressed images, and the
network is trained to minimize the difference between the restored
image I𝑅 and the reference image I, which is computed as a linear
combination of mean square error (MSE) loss and structural similarity
(SSIM) [86] loss. The pixel-wise MSE loss is defined as

𝑙𝑀𝑆𝐸 = 1
𝑊𝐻

𝑊
∑

𝑖=1

𝐻
∑

𝑗=1

[

𝐼(𝑖, 𝑗) − 𝐼𝑅(𝑖, 𝑗)
]2 , (9)

where 𝐼(𝑖, 𝑗) and 𝐼𝑅(𝑖, 𝑗) denote the pixel values of spatial location (𝑖, 𝑗)
n I and I𝑅, respectively; 𝑊 and 𝐻 represent image width and height.
he SSIM loss is defined as

= 1 − SSIM
(

I, I
)

, (10)
𝑆𝑆𝐼𝑀 𝑅
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Fig. 4. Detailed network architecture of the recursive block in the Y-channel restoration branch.
Fig. 5. An illustration of concatenating different wavelet feature maps at different
levels.

where SSIM
(

I, I𝑅
)

denotes the average value of SSIM
(

I, I𝑅
)

which is
computed by

SSIM(I, I𝑅) =

(

2𝜇I𝜇I𝑅 + 𝐶1

)(

2𝜎I𝜎I𝑅 + 𝐶2

)

(

𝜇2
I + 𝜇2

I𝑅
+ 𝐶1

)(

𝜎2I + 𝜎2I𝑅
+ 𝐶2

) , (11)

where 𝜇I∕I𝑅 and 𝜎I∕I𝑅 denote, respectively, the local mean and local
standard deviation of I∕I𝑅; 𝐶1 and 𝐶2 are two constants which take the
same values as in [86]. The overall loss function is then defined as

𝐿 = 𝑙𝑀𝑆𝐸 + 𝜆 ⋅ 𝑙𝑆𝑆𝐼𝑀 , (12)

where 𝜆 = 0.001 is a parameter used to adjust the weights of the two
losses.

2.3. CbCr-channel restoration

To restore the color information of JPEG-compressed images, we
built a CbCr-channel restoration network within DSPW-Net model. As
shown in Fig. 2, the CbCr-channel restoration branch is also a recursive
network, which repeatedly utilizes the restored Y-channel image and
the QF-related features to predicted the uncompressed Cb and Cr
channels through residual learning. The recursive block adopts a similar
U-Net architecture as illustrated in Fig. 6. The network takes as input
the concatenation of Y′, Cb, and Cr channels, and outputs the residual
Cb and Cr channel images. The purpose of incorporating the restored
Y channel as input is to make use of the structure/texture information
in luminance to guide the restoration of the color components. The QF-
related features extracted in Section 2.1 are embedded in the encoder to
enable the network to be adaptive to different compression levels. Since
compression artifacts in the Cb and Cr channels are less perceptible,
we set the outputs of all layers to have 64-channel feature maps to
reduce model parameters. We set the convolution filter size to be 3 × 3
pixels for all convolution layers except the first, last, and the transposed
convolution layer. As in Section 2.2, the first and last layers contain
convolution filters of size 7 × 7 and 5 × 5 pixels, respectively, and
the transposed convolution layers contain convolution filters of size
2 × 2 pixels. Each convolution layer is followed by PReLU to introduce

nonlinearity to the network. We pad zeros around the boundaries

6

before applying convolution to keep the sizes of all feature maps the
same as the input at each scale.

To train the CbCr-channel restoration branch, the same training
dataset and the same patch extraction method adopted in Section 2.2
were employed. Specifically, we extracted in total 270,770 non-
overlapping 128 × 128 × 3 image patch pairs from the Y, Cb, and Cr
channels of the reference and its compressed version, and the network
is trained to minimize the difference between the restored Cb/Cr
channel images and the reference via MSE loss defined in Eq. (9). Only
MSE loss was used because (1) compression artifacts on Cb/Cr channels
are less perceptible as compared with the Y channel; and (2) Cb/Cr
channels typically contribute little-to-no new structure and texture
information over what is already provided by the Y channel. Thus,
minimizing MSE loss is sufficient to train the CbCr-channel restoration
branch quite well, and consequently the computations related to SSIM
loss can be saved. Note that the six U-Nets share the same network
parameters to reduce model complexity. Also note that the training of
CbCr-channel restoration branch requires the well-trained QF-related
feature extraction model described in Section 2.1, and the well-trained
Y-channel restoration model described in Section 2.2. Because of such
a reliance, a small fluctuation on one network parameters during the
training process may very likely cause big fluctuation on the other.
After all, the update of the network parameters depends not only on
the backpropagation error, but also on the changing input values. Thus,
instead of jointly training the DSPW-Net model, we first trained the
QF-related feature extraction branch, then the Y-channel restoration
branch, and finally the CbCr-channel restoration branch. Such an
independent training has the advantage of finding the optimal solution
easily, because each network has a fixed input and a definite training
goal/objective.

2.4. Experimental setup

All three branches in DSPW-Net were trained on a remote server
using an NVIDIA GeForce RTX 3090 GPU. Since different deblocking
methods may require different deep learning frameworks/environments
to run, we conducted the performance test and comparison on a
local workstation with an 8-core Intel i9-9900K 3.6 GHz CPU and an
NVIDIA GeForce RTX 2080 SUPER GPU. The network parameters of
all three branches were initialized with values sampled from a normal
distribution 𝑁(1, 0.02), and the leaky slopes were initialized to 0.1 for
PReLU. We used the Adam algorithm [87] with an initial learning rate
of 2 × 10−4 and set the exponential decay rates for the first/second
moment estimate to be 0.9 and 0.999, respectively. As for other hyper-
parameters of Adam, the default settings were used. For training the
QF-related feature extraction branch, the learning rate was scaled down
by a factor of 0.9 per epoch. We set batch size to be 8 and trained the
network for 100 epochs which took about 8 h. For training the two
restoration branches, the learning rate was scaled down by a factor of
0.9 after every 40,000 iterations until 10−7. We set batch size to be 16
and trained the network for 25 epochs which took about two weeks.

To evaluate the performance of DSPW-Net, we used as testing data
the JPEG-distorted images generated by JPEG-compressing-

decompressing pristine images in five public benchmark datasets: LIVE
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Fig. 6. Detailed network architecture of the recursive block in the CbCr-channel restoration branch.
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[73], CSIQ [75], BSD100 (100 images in the validation set of BSD [83]),
Urban1002 [74], and SDIVL [88]. All images are compressed and
decompressed by using the MATLAB JPEG encoder applied on RGB
channels. We also conducted a test on real-compressed images by using
the pristine images in the CIDIQ dataset [89]. For evaluation purposes,
three criteria were used: (1) peak signal-to-noise ratio (PSNR), (2)
SSIM [86], and (3) the learned perceptual image patch similarity
(LPIPS) [90]. The PSNR index estimates image quality in terms of noise,
while the SSIM index employs three elements (i.e., luminance, contrast,
and structure) to estimate quality. LPIPS operates by measuring the
‘‘perceptual loss’’ between the reference and distorted images. Based
on the networks used to extract deep features, the LPIPS metric can
have several variants. In this paper, two LPIPS variants were adopted
which employ AlexNet [91] and VGG [92] for feature extraction, and
the resulting metrics are denoted by LPIPS_A and LPIPS_V, respectively.
Both PSNR and SSIM were computed for the Y-channel (luminance)
images only, while LPIPS was computed upon the RGB color images.
Higher values for PSNR/SSIM and smaller values for LPIPS indicate
more similarity between a reconstructed image and its target.

Specifically, for the restoration performance test with known com-
pression quality factors, we compressed the reference RGB images in
the four datasets (i.e., LIVE, CSIQ, BSD100, and Urban100) by using
the MATLAB JPEG encoder at eight QF values: 10, 20, 30, 40, 50,
60, 70, and 80. To test the algorithm performance on images with
unknown compression levels, we used the JPEG-compressed images
whose QF values are less than 90 in the SDIVL dataset [88]. To
specifically test the performance of DSPW-Net on images with a wide
range of compression levels, we used the pristine images in SDIVL [88],
and compressed each of them via the same method at QF values
ranging from 10 to 90 (with a step size of 1). We also trained and
tested variants of the Y-channel restoration branch which (1) does
not incorporate QF-related features, (2) does not adopt multi-layer
concatenation, (3) uses Laplacian pyramid/DWT instead of SPWT, (4)
uses different SPWT decomposition levels, (5) uses different numbers
of the recursive blocks, (6) uses different residual learning methods,
and (7) uses different hyper-parameters in the loss function to illustrate
the importance of some key factors in network design. Finally, we
tested on CIDIQ pristine images which were first uploaded and then
downloaded from the Internet to evaluate the algorithm performance
on real compression.

3. Experiment results

In this section, we compare DSPW-Net with several state-of-the-art
deblocking methods on benchmark datasets. We present quantitative
evaluations and a qualitative comparison on images with known and
unknown QF values. The performances of DSPW-Net and other QF-
blind methods on a wide range of compression levels are also tested and
compared. In addition, we analyze the impact of different network com-
ponents, parameters, and structures on the overall restoration perfor-
mance. Finally, we evaluate our method on images/photos compressed
via a social media website.

2 Due to the limited GPU memory, in our test we used as the reference
mage the rescaled version (three quarters of its original size) of the pristine
mages in the Urban100 dataset to enable CUDA acceleration.
7

3.1. Restoration with known QF

For performance evaluation of DSPW-Net on images with known
compression levels, we generate JPEG-compressed images using eight
different QF values: 10, 20, 30, 40, 50, 60, 70, and 80. Some of
these values (e.g., 10 and 20, etc.) are taken into account by most
of the existing deblocking algorithms. We compared DSPW-Net with
12 state-of-the-art deblocking algorithms for which code is available:
(1) Pointwise Shape-Adaptive DCT [23] (SA-DCT), (2) ARCNN [46],
(3) TNRD [47], (4) DnCNN [48], (5) MemNet [50], (6) MWCNN [67],
(7) DMCNN [64], (8) AGARNet [71], (9) QCN [53] (10) FBCNN [72],
(11) IDCN [63], and (12) MDU [70]. Note that all the learning-based
algorithms except QCN, IDCN, and FBCNN were initially trained on
the grayscale images only, while DSPW-Net was designed to address
both grayscale and RGB color images. Also note that among these
algorithms, SA-DCT, DnCNN, MemNet, AGARNet, QCN, FBCNN, and
MDU consist of a single unified model trained for different compression
levels, while for the others, different models were trained for different
QF values.

Tables 2 and 3 present respectively the average PSNR/SSIM and
LPIPS values of DSPW-Net and other deblocking algorithms tested
on the aforementioned dataset images. Also included in Table 2 are
the results of a baseline model (denoted by ‘‘Baseline’’) whose Y-
channel restoration branch was trained on images with only a few
QF values i.e., QF ∈ {10, 20, 30, 40}. For both tables, the averaged
PSNR/SSIM/LPIPS values of the original JPEG-compressed images are
included for reference. The network parameter numbers, floating point
operations (FLOPs; computed for a 128 × 128-pixel image), and run-
ning time (average of 30 images of size 512 × 512 pixels) of the
earning-based deblocking algorithms are shown in Table 4. Among the
.926M parameters in DSPW-Net, 0.549M are for the QF-related feature
xtraction branch, and 0.837M are for the CbCr-channel restoration
ranch. Note that ARCNN and MWCNN were originally trained on
PEG images with QF equals to 10, 20, 30, and 40 only, and thus
heir testing results on other QF values are not presented (similarly for
NRD, which was originally trained on images with QF ∈ {10, 20, 30},

and DMCNN/IDCN with QF ∈ {10, 20}). Accordingly, the network
parameters of these QF-specific models (marked with ‘‘∗’’) listed in
Table 4 correspond to a single network trained for one specific QF,
not all QF values. Also note that the testing results of ARCNN, TNRD,
DnCNN, MemNet, MWCNN, DMCNN, AGARNet, and MDU are not
presented in Table 3, as LPIPS is applied to the RGB color images only.

As can be observed in Table 2, DSPW-Net provides the best or
second-best restoration performance as compared with other deblock-
ing algorithms on all dataset images and all compression levels con-
sidered, yet with a relatively small number of network parameters.
Specifically, compared with QF-specific models such as ARCNN, TNRD,
DMCNN, MWCNN, and IDCN, DSPW-Net shows better performance
on all dataset images. Although the performance improvements are
in some cases relatively minor, DSPW-Net offers the advantage of
being a single unified model for all compression levels. Compared
with QF-blind single unified models such as SA-DCT, DnCNN, MemNet,
AGARNet, QCN, FBCNN, and MDU, DSPW-Net shows better perfor-
mance in most cases. Note that only two compression levels (i.e., QF ∈

{10, 20}) were originally considered in designing MemNet, and thus its
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Table 2
Average PSNR and SSIM values of DSPW-Net vs. competing methods tested on various images datasets.

Dataset Method QF=10 QF=20 QF=30 QF=40 QF=50 QF=60 QF=70 QF=80

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LIVE

JPEG 28.360 0.794 30.621 0.865 31.965 0.896 32.935 0.913 33.758 0.926 34.602 0.936 35.776 0.948 37.561 0.962
SA-DCT 29.166 0.814 31.283 0.877 32.554 0.905 33.476 0.921 34.259 0.932 35.070 0.942 36.195 0.952 37.904 0.965
ARCNN 29.409 0.821 31.731 0.884 33.127 0.913 34.085 0.927 – – – – – – – –
TNRD 26.810 0.825 27.858 0.883 28.353 0.908 – – – – – – – – – –
DnCNN 29.730 0.830 32.073 0.892 33.458 0.918 34.450 0.932 35.259 0.942 36.079 0.950 37.194 0.959 38.842 0.970
MemNet 29.906 0.835 32.251 0.893 33.189 0.910 33.626 0.917 33.882 0.920 34.057 0.922 34.213 0.924 34.317 0.926
MWCNN 30.100 0.838 32.452 0.897 33.851 0.922 34.857 0.936 – – – – – – – –
DMCNN 30.100 0.838 32.493 0.897 – – – – – – – – – – – –
AGARNet 30.034 0.835 32.455 0.897 33.891 0.923 34.893 0.936 35.711 0.946 36.531 0.953 37.620 0.962 39.249 0.972
QCN 30.109 0.839 32.476 0.898 33.876 0.922 34.856 0.936 35.667 0.945 36.474 0.953 37.548 0.962 39.036 0.971
FBCNN 30.082 0.838 32.440 0.897 33.843 0.922 34.841 0.935 35.667 0.945 36.497 0.953 37.629 0.962 39.283 0.972
IDCN 30.046 0.838 32.415 0.897 – – – – – – – – – – – –
MDU 30.028 0.835 32.420 0.896 33.831 0.922 34.769 0.935 35.404 0.942 35.873 0.947 36.377 0.952 36.851 0.956
Baseline 30.137 0.840 32.487 0.898 33.889 0.923 34.874 0.936 35.674 0.945 36.428 0.952 37.317 0.960 38.379 0.968
DSPW-Net 30.155 0.840 32.518 0.899 33.927 0.923 34.918 0.937 35.743 0.946 36.574 0.954 37.707 0.962 39.360 0.972

BSD100

JPEG 28.127 0.770 30.248 0.848 31.518 0.881 32.435 0.901 33.216 0.915 34.026 0.928 35.165 0.942 36.877 0.958
SA-DCT 28.860 0.785 30.847 0.856 32.042 0.888 32.917 0.907 33.672 0.921 34.458 0.933 35.558 0.946 37.220 0.961
ARCNN 29.156 0.793 31.256 0.862 32.569 0.895 33.451 0.912 – – – – – – – –
TNRD 26.436 0.789 27.493 0.856 27.992 0.884 – – – – – – – – – –
DnCNN 29.308 0.802 31.481 0.871 32.786 0.901 33.714 0.918 34.541 0.930 35.362 0.941 36.497 0.953 38.183 0.967
MemNet 29.467 0.805 31.648 0.870 32.581 0.891 33.032 0.899 33.336 0.904 33.543 0.908 33.746 0.911 33.929 0.914
MWCNN 29.579 0.806 31.747 0.873 33.053 0.903 33.993 0.920 – – – – – – – –
DMCNN 29.570 0.806 31.758 0.873 – – – – – – – – – – – –
AGARNet 29.369 0.795 31.586 0.868 32.904 0.899 33.848 0.917 34.670 0.931 35.509 0.942 36.622 0.954 38.384 0.968
QCN 29.579 0.808 31.775 0.875 33.078 0.904 34.000 0.920 34.809 0.933 35.620 0.943 36.727 0.955 38.307 0.968
FBCNN 29.584 0.807 31.774 0.874 33.081 0.903 34.016 0.920 34.838 0.933 35.669 0.943 36.826 0.955 38.568 0.969
IDCN 29.544 0.807 31.749 0.874 – – – – – – – – – – – –
MDU 29.550 0.804 31.764 0.873 33.059 0.904 33.944 0.919 34.598 0.929 35.112 0.936 35.682 0.943 36.304 0.950
Baseline 29.610 0.809 31.789 0.875 33.090 0.904 34.017 0.921 34.817 0.933 35.579 0.943 36.533 0.954 37.738 0.965
DSPW-Net 29.622 0.809 31.809 0.876 33.115 0.905 34.044 0.921 34.865 0.933 35.693 0.944 36.849 0.956 38.567 0.969

CSIQ

JPEG 28.685 0.817 31.146 0.882 32.592 0.909 33.603 0.924 34.433 0.935 35.285 0.944 36.446 0.954 38.166 0.966
SA-DCT 29.569 0.839 31.849 0.894 33.191 0.918 34.129 0.931 34.902 0.940 35.700 0.948 36.781 0.957 38.406 0.967
ARCNN 29.707 0.841 31.969 0.896 33.579 0.922 34.367 0.934 – – – – – – – –
TNRD 26.244 0.789 27.276 0.848 27.610 0.857 – – – – – – – – – –
DnCNN 30.055 0.851 32.549 0.905 34.021 0.927 35.030 0.939 35.831 0.948 36.651 0.955 37.742 0.963 39.320 0.972
MemNet 30.102 0.854 32.396 0.904 33.514 0.919 33.863 0.924 34.166 0.927 34.278 0.929 34.416 0.931 34.531 0.932
MWCNN 30.367 0.856 32.844 0.908 34.325 0.930 35.342 0.942 – – – – – – – –
DMCNN 30.323 0.856 32.823 0.908 – – – – – – – – – – – –
AGARNet 30.341 0.856 32.919 0.910 34.407 0.931 35.427 0.943 36.223 0.951 37.038 0.958 38.119 0.965 39.587 0.973
QCN 30.410 0.858 32.932 0.910 34.384 0.931 35.385 0.942 36.185 0.950 36.984 0.957 38.026 0.965 39.432 0.973
FBCNN 30.392 0.858 32.912 0.909 34.371 0.931 35.378 0.942 36.196 0.950 37.019 0.957 38.121 0.965 39.703 0.973
IDCN 30.342 0.858 32.856 0.909 – – – – – – – – – – – –
MDU 30.270 0.854 32.812 0.908 34.280 0.930 35.201 0.941 35.798 0.947 36.239 0.951 36.693 0.955 37.093 0.958
Baseline 30.452 0.859 32.942 0.910 34.393 0.931 35.390 0.942 36.164 0.950 36.876 0.956 37.709 0.963 38.655 0.970
DSPW-Net 30.468 0.860 32.974 0.911 34.435 0.931 35.435 0.943 36.247 0.951 37.061 0.957 38.162 0.965 39.736 0.974

Urban100

JPEG 27.165 0.817 29.470 0.881 30.931 0.909 32.007 0.925 32.927 0.937 33.881 0.946 35.212 0.958 37.230 0.970
SA-DCT 28.181 0.848 30.344 0.900 31.727 0.924 32.751 0.937 33.620 0.946 34.530 0.955 35.792 0.964 37.707 0.974
ARCNN 28.718 0.857 31.036 0.907 32.755 0.933 33.624 0.943 – – – – – – – –
TNRD 25.813 0.843 26.793 0.889 27.270 0.908 – – – – – – – – – –
DnCNN 29.247 0.870 31.786 0.919 33.314 0.940 34.365 0.951 35.222 0.958 36.068 0.964 37.184 0.971 38.764 0.978
MemNet 29.745 0.880 32.361 0.925 33.305 0.937 33.671 0.941 33.892 0.943 34.021 0.945 34.098 0.946 34.170 0.947
MWCNN 30.355 0.890 32.969 0.932 34.533 0.949 35.644 0.959 – – – – – – – –
DMCNN 30.219 0.888 32.774 0.930 – – – – – – – – – – – –
AGARNet 30.385 0.889 33.094 0.933 34.717 0.950 35.804 0.960 36.678 0.966 37.512 0.971 38.545 0.976 40.228 0.982
QCN 30.363 0.889 33.025 0.932 34.588 0.950 35.637 0.959 36.485 0.965 37.299 0.970 38.333 0.975 39.686 0.981
FBCNN 30.195 0.886 32.853 0.930 34.440 0.948 35.530 0.958 36.418 0.964 37.286 0.970 38.431 0.976 40.063 0.982
IDCN 30.217 0.887 32.883 0.930 – – – – – – – – – – – –
MDU 30.095 0.884 32.783 0.930 34.377 0.948 35.388 0.957 36.018 0.962 36.438 0.965 36.846 0.968 37.154 0.970
Baseline 30.452 0.891 33.110 0.933 34.666 0.950 35.735 0.959 36.571 0.965 37.310 0.970 38.090 0.975 38.859 0.979
DSPW-Net 30.526 0.892 33.204 0.934 34.774 0.951 35.847 0.960 36.723 0.966 37.583 0.971 38.717 0.976 40.316 0.982
Table 3
Average LPIPS values of DSPW-Net vs. competing methods tested on various images datasets.

Dataset Method QF=10 QF=20 QF=30 QF=40 QF=50 QF=60 QF=70 QF=80

LPIPS_A LPIPS_V LPIPS_A LPIPS_V LPIPS_A LPIPS_V LPIPS_A LPIPS_V LPIPS_A LPIPS_V LPIPS_A LPIPS_V LPIPS_A LPIPS_V LPIPS_A LPIPS_V

LIVE JPEG 0.1020 0.1584 0.0570 0.1057 0.0399 0.0827 0.0306 0.0696 0.0246 0.0602 0.0197 0.0522 0.0145 0.0423 0.0094 0.0305
SA-DCT 0.1172 0.1514 0.0747 0.1122 0.0564 0.0924 0.0458 0.0801 0.0384 0.0711 0.0321 0.0631 0.0255 0.0532 0.0180 0.0411
IDCN 0.0828 0.1292 0.0508 0.0911 – – – – – – – – – – – –
QCN 0.0806 0.1275 0.0508 0.0914 0.0383 0.0752 0.0312 0.0652 0.0260 0.0579 0.0215 0.0511 0.0168 0.0434 0.0115 0.0337
FBCNN 0.0806 0.1281 0.0504 0.0914 0.0374 0.0747 0.0302 0.0647 0.0249 0.0572 0.0204 0.0503 0.0155 0.0422 0.0101 0.0318
DSPW-Net 0.0796 0.1263 0.0498 0.0900 0.0365 0.0734 0.0293 0.0632 0.0239 0.0557 0.0195 0.0488 0.0146 0.0408 0.0096 0.0307

BSD100 JPEG 0.1214 0.1804 0.0773 0.1304 0.0571 0.1083 0.0480 0.0977 0.0405 0.0850 0.0312 0.0699 0.0241 0.0577 0.0170 0.0453
SA-DCT 0.1389 0.1740 0.0982 0.1373 0.0776 0.1186 0.0681 0.1093 0.0591 0.0978 0.0498 0.0843 0.0406 0.0730 0.0297 0.0594
IDCN 0.1036 0.1551 0.0727 0.1215 – – – – – – – – – – – –
QCN 0.1021 0.1547 0.0720 0.1221 0.0583 0.1027 0.0477 0.0909 0.0424 0.0824 0.0339 0.0706 0.0266 0.0610 0.0192 0.0495
FBCNN 0.1024 0.1538 0.0710 0.1195 0.0572 0.1020 0.0474 0.0906 0.0408 0.0809 0.0314 0.0658 0.0242 0.0545 0.0168 0.0420
DSPW-Net 0.1011 0.1556 0.0705 0.1182 0.0553 0.1023 0.0463 0.0900 0.0390 0.0797 0.0298 0.0640 0.0267 0.0614 0.0197 0.0496

CSIQ JPEG 0.1201 0.1654 0.0690 0.1068 0.0468 0.0808 0.0345 0.0655 0.0266 0.0549 0.0206 0.0459 0.0147 0.0355 0.0095 0.0246
SA-DCT 0.1424 0.1555 0.0917 0.1123 0.0670 0.0898 0.0519 0.0750 0.0417 0.0638 0.0330 0.0539 0.0242 0.0422 0.0150 0.0288
IDCN 0.1069 0.1352 0.0656 0.0944 – – – – – – – – – – – –
QCN 0.1037 0.1330 0.0647 0.0944 0.0468 0.0755 0.0363 0.0638 0.0288 0.0546 0.0228 0.0469 0.0168 0.0378 0.0106 0.0273
FBCNN 0.1051 0.1337 0.0653 0.0946 0.0469 0.0757 0.0364 0.0642 0.0287 0.0550 0.0228 0.0471 0.0164 0.0375 0.0099 0.0260
DSPW-Net 0.1025 0.1318 0.0632 0.0928 0.0450 0.0740 0.0344 0.0621 0.0270 0.0529 0.0212 0.0452 0.0151 0.0355 0.0094 0.0243

Urban100 JPEG 0.1253 0.1611 0.0678 0.1108 0.0450 0.0876 0.0365 0.0754 0.0269 0.0634 0.0214 0.0543 0.0185 0.0453 0.0106 0.0314
SA-DCT 0.1287 0.1453 0.0751 0.1036 0.0525 0.0834 0.0434 0.0730 0.0334 0.0621 0.0275 0.0539 0.0242 0.0460 0.0156 0.0331
IDCN 0.0700 0.1012 0.0397 0.0667 – – – – – – – – – – – –
QCN 0.0689 0.0994 0.0394 0.0656 0.0292 0.0524 0.0265 0.0471 0.0198 0.0392 0.0166 0.0346 0.0166 0.0336 0.0103 0.0241
FBCNN 0.0692 0.1013 0.0393 0.0670 0.0282 0.0525 0.0240 0.0459 0.0186 0.0388 0.0154 0.0339 0.0149 0.0304 0.0086 0.0218
DSPW-Net 0.0679 0.0976 0.0393 0.0648 0.0282 0.0508 0.0244 0.0452 0.0189 0.0378 0.0158 0.0331 0.0147 0.0298 0.0092 0.0216
testing results on other QF values are noteworthy. The same can be
said for MDU, which takes into account only four compression levels
(i.e., QF ∈ {10, 20, 30, 40}). By comparing with the baseline model,
8

we observe that training on more QF-value images can benefit the
restoration performance, which is as expected. The better performance
of ‘‘Baseline’’ as compared with MDU and DnCNN on some QF-value
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Table 4
The network parameter numbers and running time of DSPW-Net vs. other learning-based deblocking algorithms.

Method ARCNN* [46] DnCNN [48] MemNet [50] MWCNN* [67] DMCNN* [64] AGARNet QCN [53] FBCNN [72] IDCN* [63] MDU [70] DSPW-Net

# of Parameter (M) 0.106 0.669 2.095 16.170 4.700 10.370 1.434 71.922 9.900 10.490 5.925
Running time (s) 7.681 0.108 42.653 1.942 0.006 0.409 0.136 0.018 0.946 0.900 0.895
FLOPs (×109) 1.746 10.966 47.876 14.467 14.315 54.058 5.931 45.558 171.263 343.676 213.305
images demonstrate the advantage of the proposed multi-scale, multi-
orientation SPWT network. Although AGARNet and FBCNN challenges
DSPW-Net on larger QF values, in most cases AGARNet leaves small
blocking artifacts in the restored images especially when QF is small
(as shown in Fig. 1), and FBCNN relies on a much larger number of
network parameters.

As for the LPIPS values reported in Table 3, we observe that
DSPW-Net achieves better/competitive performance on most datasets
especially when images are highly compressed (i.e., QF value is small).
However, it is also interesting to note that when images are less
compressed (i.e., QF value is large), the LPIPS value of a restored
image can be larger than that of the original JPEG-compressed image,
meaning that the LPIPS metric might be less effective for high-QF
scenarios, and thus the testing results for high QF-value images in
Table 3 are noteworthy. As for the running time and FLOPs reported
in Table 4, we observe that DSPW-Net also maintains an acceptable
running efficiency. It runs almost at the same speed as IDCN and MDU.
Note that ARCNN and MWCNN were tested on the CPU by using their
original MATLAB implementations, while the others were tested on
the GPU. As for MemNet, the multiple recursive modules within the
network architecture and the patch-based computation manner adopted
in the original Caffe-based framework ultimately leads to a relatively
lower running efficiency of the algorithm. The recursive blocks also
increase the computational complexity of our model. However, we be-
lieve that such a compromise is justified given the increased restoration
performance, which will be later demonstrated in Section 3.3.

Figs. 7 and 8 show visual comparisons of different deblocking
methods applied on two sample grayscale JPEG-compressed images
generated from the rescaled pristine images in the Urban100 [74]
dataset. Also included in the two figures are the ground truth for
reference. As can be observed, although all of these methods are
successful at reducing the blocking artifacts, DSPW-Net seems to per-
form better in restoring the line structures in images, which is likely
attributable to the multi-orientation and multi-scale analysis fulfilled
by the complex version of steerable pyramid wavelet transform. All of
these facts demonstrate that our strategy of incorporating QF-related
features within the deep steerable pyramid wavelet network model is
an effective way to address different compression-level images; and the
effectiveness of this strategy will be further discussed in Section 3.3.

3.2. Restoration with unknown QF

Although the previous subsection evaluated DSPW-Net’s perfor-
mance on images compressed with known QF values, it is also necessary
to evaluate the performance on images compressed with a wide range
of QF values. To this end, we used the SDIVL dataset [88] to perform
two tests. First, we directly tested DSPW-Net on the JPEG images in
SDIVL. Since our model was trained to handle images with QF ∈
[10, 90], the same compression-level images in SDIVL were tested. Sec-
ond, we compressed each of the 20 pristine images in SDIVL at QF
values ranging from 10 to 90 (with a step size of 1) to generate 1620
images for testing. Since our model was trained using only 27 different
compression levels, our objective was to examine whether or not such
a training strategy can be effective for all 81 compression levels.
We compared with SA-DCT, DnCNN, MemNet, AGARNet, QCN, MDU,
and FBCNN, all of which contain unified models trained on different
compression levels. The results of this evaluation are shown in Table 5
and Fig. 9. Note that we measured PSNR/SSIM gain which is defined as
the PSNR/SSIM value difference between the compressed and restored

images in Fig. 9 to better show the algorithm performance, and each
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curve in Fig. 9 represents the average PSNR/SSIM gain computed over
the 20 images in SDIVL for different QF values. Again, the LPIPS values
for DnCNN, MemNet, AGARNet, and MDU are not reported in Table 5,
as LPIPS is applied to the RGB color images only.

As can be observed, DSPW-Net shows the best performance among
all algorithms considered in both tests. Specifically, SA-DCT is an
image-filtering-based method that does not require training, and thus
performs less effectively than DnCNN and AGARNet, both of which
were trained to take into account a wide range of compression levels.
For MemNet, which was trained on images with only two compression
levels (i.e., QF ∈ {10, 20}), it is not surprising to see the performance
drop in Fig. 9 and the relatively low PSNR/SSIM values in Table 5.
Similarly, only four compression levels (i.e., QF ∈ {10, 20, 30, 40}) were
considered by MDU, and thus its performance drops when QF goes
larger than 40. Note that the performance of AGARNet fluctuates on
some QF values and drops considerably when QF value is larger than
80 (as shown in Fig. 9). This is probably due to the fact that AGARNet
has not been trained on such compression-level images. In comparison,
although DSPW-Net was trained for only 27 compression levels, the
same high performance can be achieved for all 81 QF values, which
demonstrates the effectiveness of our model in handling a wide range of
compression levels. Admittedly, equally good performance is achieved
by FBCNN; however, lots of network parameters have been eliminated
in our model thanks to the recursive block architecture. Also, it is
interesting to note that when QF increases, the performance gains of
all algorithms decreases gradually, which is as expected due to the
increased image quality.

Apart from the restoration test, we additionally investigate the per-
formance of the QF-estimation network by examining how accurately
these 81 QF values can be predicted. Fig. 10 shows the mean (denoted
by ‘‘×’’) and maximum-minimum prediction error bars for each QF
value, and the QF value of an overall image is computed as the average
of patches with top 50% local standard deviations. Observe that our
QF-estimation network can predict QF values of most images quite
well especially when images are highly compressed (e.g., QF < 30).
However, for larger QFs, large prediction errors occur. This result is
as expected, because large QF values generally produce minor com-
pression artifacts which confuse the network. Despite these potential
prediction errors, the overall performance of DSPW-Net is not appar-
ently affected, because our framework relies on QF-related features, not
the QF values, to perform the restoration task. This tolerance allows
a relatively smaller number of parameters for the QF-related feature
extraction branch, leading to a more lightweight network.

3.3. Discussion and analysis

In this subsection, we first perform ablation study to validate the
contributions of different components in the proposed network. Then,
we analyze the influence of different network/training parameters
towards the overall restoration performance.

3.3.1. Contributions of network components
As mentioned previously, incorporating QF-related features within

the image restoration branch applied on steerable pyramid wavelet
coefficients is an effective way to solve the challenge of being able
to handle different compression levels using a single model. We also
claimed in Section 2.2 that concatenating wavelet features at differ-
ent levels can significantly improve the algorithm performance. To

demonstrate this assertion, we trained four variant models under four
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Fig. 7. Visual comparison of various deblocking methods applied on image img_093 from the Urban100 dataset [74] compressed with QF equals to 10. The corresponding PSNR
and SSIM values are presented at the bottom of each image. Notice that DSPW-Net can reproduce the steel pipe of the drainage groove more clearly as compared to the other
methods.

Fig. 8. Visual comparison of various deblocking methods applied on image img_059 from the Urban100 dataset [74] compressed with QF equals to 20. The corresponding PSNR
and SSIM values are presented at the bottom of each image. Notice that DSPW-Net performs particularly well at recreating the stripes reflected on the mirror wall of the building
as compared to the other methods.

Fig. 9. Average PSNR and SSIM gains obtained by applying SA-DCT, DnCNN, MemNet, AGARNet, QCN, FBCNN, MDU, and DSPW-Net on JPEG-compressed images generated from
the pristine images in the SDIVL dataset [88]. For each figure, the 𝑥-axis represents the QF of the input and 𝑦-axis represents the corresponding performance gain.
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Table 5
Average PSNR and SSIM values of DSPW-Net vs. competing methods tested on the SDIVL dataset [88].

JPEG SA-DCT [23] DnCNN [48] MemNet [50] AGARNet [71] QCN [53] FBCNN [72] MDU [70] DSPW-Net

PSNR 37.903 38.721 39.698 37.881 39.958 40.229 40.296 38.938 40.321
SSIM 0.948 0.958 0.964 0.954 0.965 0.966 0.966 0.963 0.967
LPIPS_A 0.0353 0.0445 – – – 0.0275 0.0270 – 0.0263
LPIPS_V 0.0635 0.0655 – – – 0.0470 0.0466 – 0.0455
Fig. 10. Mean QF prediction errors and maximum-minimum error bars tested on SDIVL [88] dataset images compressed with QF ∈ {10 ∶ 90}. Note that the symbol ‘‘×’’ on each
bar represents the mean QF prediction error computed over 20 images; the top and bottom sides of each bar represent the maximal and minimal QF prediction errors, respectively.
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different conditions, respectively: (1) without incorporating the QF-
related features (denoted by DSPW-Net𝑁𝐹 ); (2) without using the
multi-level feature concatenation (denoted by DSPW-Net𝑁𝐶 ); (3) re-
lacing SPWT with Laplacian pyramid (denoted by Lapyr-Net); and
4) replacing SPWT with DWT (denoted by DWT-Net). In addition,
o demonstrate the effectiveness of the shared-source skip connection
sed in our network, we trained another three models using three
ifferent residual learning methods as illustrated in Fig. 11: (1) no
kip connection; (2) one skip connection; and (3) distinct-source skip
onnection. Correspondingly, the three trained models are denoted by
SPW-Net𝑁𝑆 , DSPW-Net𝑂𝑆 , and DSPW-Net𝐷𝑆 , respectively. Note that
ll these models were trained by using the same training data and
arameter settings. In Lapyr-Net, a Gaussian filter of 7 × 7-pixel size
nd a standard deviation of one was applied to generate the Laplacian
yramid. In DWT-Net, the Daubechies 3 wavelet was employed to
ecompose the image into three levels, and only 𝐶2 ∼ 𝐶4 features
ere incorporated in the Y-channel restoration branch, because the
eight/width of the first level wavelet subband is only half of the
riginal input. In DSPW-Net𝑁𝐹 , the multi-layer concatenation is re-
laced by 1 × 1 convolution filters that are applied to the 128-channel
eatures at each scale outputting 512-channel features such that the
verall network parameter number does not change significantly. For
SPW-Net𝑁𝑆 , the common strategy of gradient clipping is employed to
void the exploding gradient problem. We tested the seven models on
he same JPEG-compressed images as used in Section 3.1. The results
n the LIVE, BSD100, CSIQ, and Urban100 datasets in terms of PSNR
nd SSIM are presented in Table 6. Also included are the results of the
riginal DSPW-Net for comparison.

As these results demonstrate, Lapyr-Net, DWT-Net, DSPW-Net𝑁𝐶 ,
nd DSPW-Net𝑁𝐹 generally perform less effectively than DSPW-Net,
eaning that the multi-level feature concatenation, the QF-related fea-

ure incorporation, and the steerable pyramid wavelet transform are the
hree key elements in the network design. The relatively weak perfor-
ance of Lapyr-Net and DWT-Net seems to suggest that analyzing the

teerable pyramid magnitude/phase representation of images can be
ore effective in JPEG-image restoration task. By comparing the three

lements, we further observe that the multi-level feature concatenation
pplied on steerable pyramid wavelet subband seems to play much
mportant roles in boosting the overall performance, suggesting that
eatures of different scales/orientations in the wavelet domain have
o be fused for better restoration. In contrast, the QF-related features
eem to be less important which is as expected because these features
nly serve to assist our model in tackling different compression levels.
y comparing with DSPW-Net𝑁𝑆 , DSPW-Net𝐷𝑆 , and DSPW-Net𝑂𝑆 , we
bserve that the shared-source skip connection generally performs bet-
er than other residual learning methods. In fact, this residual learning
 p
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method has been used in many super-resolution networks such as
DRRN [93] and LapSRN [94], and our results demonstrate that it is
also suitable for JPEG compression artifact reduction.

3.3.2. Network/training parameters
In this subsection, we analyze the influence of some important net-

work/training parameters towards the overall restoration performance.
These important parameters are (1) the decomposition level ‘‘𝑆’’ of the
WPT, (2) the recursive block number ‘‘𝑅’’, and (3) the weight ‘‘𝜆’’

in the loss function. Specifically, we trained eight variant models for
the restoration branch by using the same training data. Among these
eight variants, two models employ a SPWT that decomposes images
into one and two scales respectively; three models use respectively
two, four, and eight recursive blocks; and the extra three models
were trained with different 𝜆 values in Eq. (12). Note that when the
number of decomposition levels of the SPWT changes, the number of
QF-related features incorporated in the restoration branch also varies.
For example, a two-scale decomposition (i.e., 𝑆 = 2) will produce 16
oriented bandpass subbands, and thus only the three fine-scale QF-
related features (i.e., 𝐶1, 𝐶2, and 𝐶3 in Fig. 4) will be concatenated.
imilarly, a one-scale decomposition (i.e., 𝑆 = 1) will require only
wo QF-related features (i.e., 𝐶1, 𝐶2 in Fig. 4) to be concatenated. We
ested the eight models on the same JPEG-compressed images as used
n Section 3.1. The results on the LIVE, BSD100, CSIQ, and Urban100
atasets in terms of PSNR and SSIM are presented in Table 7. Again,
he results of the original DSPW-Net are included for comparison.

As can be seen from Table 7, the performance of DSPW-Net gen-
rally improves as the number of decomposition levels and recursive
locks increases. However, such an increased performance comes at
he expense of a heavier computational burden. In particular, compared
ith DSPW-Net, only a slight performance increase is obtained by the

‘𝑅 = 8’’ model. For some cases, the performance does not change or
ven slightly decrease. Thus, by considering the performance improve-
ent, computational cost, and the available hardware, we adopted 6

ecursive blocks in our restoration branch. As for the different combi-
ations of the two terms in Eq. (12), we observe that larger 𝜆 values
enerally produce higher SSIM and lower PSNR values. This is as
xpected, because larger 𝜆 values indicate more emphasis being placed
n minimizing the structure similarity between the restored and ground
ruth images by the optimization algorithm. We empirically set 𝜆 = 10−3

n this work to balance the two metrics.

.4. Test on real compression

The aforementioned tests were all conducted on synthetically com-
ressed images. In this subsection, we test DSPW-Net on real-world
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Table 6
Performance of seven variant models of DSPW-Net trained by using different network components. See text for more details.

Dataset Method QF=10 QF=20 QF=30 QF=40 QF=50 QF=60 QF=70 QF=80

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LIVE

DSPW-Net𝑁𝐶 30.053 0.838 32.425 0.898 33.834 0.922 34.826 0.936 35.654 0.945 36.480 0.953 37.614 0.962 39.271 0.972
DSPW-Net𝑁𝐹 30.136 0.839 32.503 0.898 33.904 0.923 34.895 0.936 35.722 0.946 36.548 0.953 37.679 0.962 39.322 0.972
Lapyr-Net 30.031 0.838 32.386 0.897 33.787 0.921 34.773 0.935 35.596 0.945 36.423 0.952 37.557 0.961 39.202 0.971
DWT-Net 29.871 0.833 32.195 0.894 33.573 0.919 34.549 0.933 35.368 0.943 36.190 0.951 37.315 0.960 38.955 0.970
DSPW-Net𝑁𝑆 30.047 0.838 32.375 0.898 33.745 0.922 34.702 0.936 35.495 0.945 36.284 0.953 37.348 0.962 38.866 0.971
DSPW-Net𝐷𝑆 30.122 0.839 32.491 0.898 33.895 0.923 34.885 0.936 35.710 0.946 36.538 0.953 37.671 0.962 39.327 0.972
DSPW-Net𝑂𝑆 30.138 0.840 32.503 0.899 33.909 0.923 34.896 0.936 35.722 0.946 36.552 0.953 37.686 0.962 39.330 0.972
DSPW-Net 30.155 0.840 32.518 0.899 33.927 0.923 34.918 0.937 35.743 0.946 36.574 0.954 37.707 0.962 39.360 0.972

BSD100

DSPW-Net𝑁𝐶 29.543 0.808 31.742 0.875 33.052 0.904 33.985 0.921 34.805 0.933 35.632 0.943 36.788 0.955 38.511 0.969
DSPW-Net𝑁𝐹 29.608 0.808 31.797 0.875 33.102 0.904 34.034 0.921 34.853 0.933 35.679 0.944 36.831 0.956 38.529 0.969
Lapyr-Net 29.534 0.807 31.712 0.874 33.013 0.903 33.942 0.920 34.759 0.932 35.586 0.943 36.741 0.955 38.459 0.969
DWT-Net 29.414 0.804 31.577 0.872 32.862 0.902 33.782 0.919 34.590 0.931 35.411 0.942 36.553 0.954 38.236 0.968
DSPW-Net𝑁𝑆 29.442 0.807 31.549 0.874 32.780 0.903 33.646 0.920 34.400 0.932 35.151 0.943 36.178 0.955 37.650 0.968
DSPW-Net𝐷𝑆 29.601 0.809 31.792 0.876 33.094 0.905 34.024 0.921 34.844 0.933 35.672 0.944 36.827 0.956 38.545 0.969
DSPW-Net𝑂𝑆 29.613 0.809 31.800 0.876 33.104 0.905 34.036 0.921 34.855 0.933 35.682 0.944 36.838 0.956 38.541 0.969
DSPW-Net 29.622 0.809 31.809 0.876 33.115 0.905 34.044 0.921 34.865 0.933 35.693 0.944 36.849 0.956 38.567 0.969

CSIQ

DSPW-Net𝑁𝐶 30.363 0.858 32.872 0.910 34.342 0.931 35.346 0.942 36.151 0.950 36.969 0.957 38.071 0.965 39.649 0.973
DSPW-Net𝑁𝐹 30.441 0.859 32.953 0.910 34.408 0.931 35.410 0.943 36.221 0.951 37.039 0.957 38.142 0.965 39.717 0.974
Lapyr-Net 30.350 0.858 32.844 0.909 34.295 0.930 35.290 0.942 36.099 0.950 36.915 0.957 38.010 0.964 39.575 0.973
DWT-Net 30.215 0.854 32.694 0.907 34.139 0.929 35.133 0.940 35.938 0.949 36.752 0.956 37.850 0.964 39.407 0.972
DSPW-Net𝑁𝑆 30.220 0.857 32.588 0.909 33.961 0.930 34.860 0.941 35.594 0.949 36.309 0.956 37.260 0.964 38.560 0.972
DSPW-Net𝐷𝑆 30.439 0.859 32.949 0.911 34.410 0.931 35.411 0.943 36.220 0.951 37.035 0.957 38.137 0.965 39.705 0.973
DSPW-Net𝑂𝑆 30.452 0.859 32.962 0.911 34.421 0.931 35.420 0.943 36.231 0.951 37.045 0.957 38.147 0.965 39.709 0.974
DSPW-Net 30.468 0.860 32.974 0.911 34.435 0.931 35.435 0.943 36.247 0.951 37.061 0.957 38.162 0.965 39.736 0.974

Urban100

DSPW-Net𝑁𝐶 30.249 0.888 32.945 0.931 34.528 0.949 35.603 0.958 36.483 0.965 37.341 0.970 38.476 0.976 40.086 0.982
DSPW-Net𝑁𝐹 30.502 0.891 33.180 0.934 34.751 0.950 35.832 0.960 36.711 0.966 37.566 0.971 38.695 0.976 40.288 0.982
Lapyr-Net 30.116 0.885 32.784 0.930 34.346 0.948 35.422 0.957 36.304 0.964 37.171 0.969 38.319 0.975 39.938 0.982
DWT-Net 29.664 0.877 32.227 0.924 33.738 0.943 34.787 0.953 35.652 0.960 36.511 0.966 37.653 0.973 39.287 0.980
DSPW-Net𝑁𝑆 30.255 0.889 32.829 0.932 34.310 0.949 35.300 0.958 36.105 0.964 36.876 0.970 37.865 0.975 39.213 0.981
DSPW-Net𝐷𝑆 30.401 0.890 33.082 0.933 34.646 0.950 35.716 0.959 36.594 0.965 37.451 0.970 38.589 0.976 40.196 0.982
DSPW-Net𝑂𝑆 30.436 0.890 33.115 0.933 34.680 0.950 35.748 0.959 36.627 0.965 37.483 0.971 38.622 0.976 40.223 0.982
DSPW-Net 30.526 0.892 33.204 0.934 34.774 0.951 35.847 0.960 36.723 0.966 37.583 0.971 38.717 0.976 40.316 0.982
Fig. 11. The additional three different residual learning methods explored in this work: (a) no skip connection; (b) one skip connection; and (c) distinct-source skip connection.
compressed images. To this end, 23 pristine images in the CIDIQ
dataset [89] were first uploaded to Facebook3 and then downloaded to
the local drive. Note that this is the most common way in our daily lives
to share images/photos. Since social media networks such as Facebook
mostly re-compress photos when uploading, these downloaded images
are actually the compressed images that contain ringing/blocking arti-
facts though very minor. Accordingly, we use as testing data the 23
downloaded images and compare DSPW-Net against five deblocking
methods which also consist of single unified models: SA-DCT, DnCNN,
AGARNet, QCN, and MDU. The results in terms of average PSNR and
SSIM values are presented in Table 8, and a visual comparison of
different algorithm outputs is shown in Fig. 12. Also included in Fig. 12
are the downloaded compressed image and the ground truth image for
reference.

Again, we observe that DSPW-Net demonstrates better results than
other deblocking methods. On this test, it seems that AGARNet per-
forms less effectively on these downloaded images according to Table 8,

3 https://www.facebook.com
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perhaps suggesting that AGARNet has not been well trained to take into
account high-QF images. This finding is also in accord with the results
in Fig. 9, in which the performance of AGARNet drops considerably
when QF is greater than 80. Although we are able to show only a
limited set of demonstrative images, overall, DSPW-Net shows either
highly competitive or superior deblocking performance as compared to
existing methods.

4. Conclusion

In this paper, we presented a unified model for JPEG compres-
sion artifact reduction based on introducing deep convolutional neural
networks to the complex version of steerable pyramid wavelet trans-
form. Our model separately restores the Y channel image and the
Cb/Cr channel image via two restoration branches. The Y-channel
restoration branch contains six recursive blocks and takes as input the
multiple-scale, multiple-orientation wavelet coefficients to predict the

uncompressed wavelet subbands. The CbCr-channel restoration branch

https://www.facebook.com
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Fig. 12. Visual comparison of various deblocking methods applied on a pristine image final03 in the CIDIQ dataset [89]. Color was added to the DnCNN, AGARNet, and MDU
output by using the restored Cb/Cr channels generated by DSPW-Net. The image was first uploaded and then downloaded from the Facebook website to generate the compressed
version. The corresponding PSNR and SSIM values are presented at the bottom of each image. Notice that DSPW-Net performs particularly well at recreating the tree branches as
compared to the other methods.
Table 7
Performance of DSPW-Net trained using different network/training parameters.

Dataset Method QF=10 QF=20 QF=30 QF=40 QF=50 QF=60 QF=70 QF=80

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LIVE

𝑆 = 1 30.058 0.838 32.425 0.897 33.828 0.922 34.819 0.936 35.645 0.945 36.474 0.953 37.610 0.962 39.265 0.972
𝑆 = 2 30.107 0.839 32.471 0.898 33.877 0.923 34.867 0.936 35.692 0.945 36.521 0.953 37.657 0.962 39.311 0.972
𝑅 = 2 30.080 0.839 32.450 0.898 33.856 0.922 34.849 0.936 35.676 0.945 36.507 0.953 37.641 0.962 39.296 0.972
𝑅 = 4 30.136 0.840 32.504 0.899 33.913 0.923 34.903 0.936 35.729 0.946 36.561 0.953 37.695 0.962 39.344 0.972
𝑅 = 8 30.159 0.840 32.523 0.899 33.930 0.923 34.919 0.937 35.744 0.946 36.574 0.954 37.707 0.962 39.359 0.972
𝜆 = 0.01 30.143 0.842 32.509 0.900 33.914 0.924 34.905 0.937 35.730 0.946 36.561 0.954 37.696 0.962 39.344 0.972
𝜆 = 0.1 30.046 0.844 32.422 0.901 33.842 0.925 34.843 0.937 35.676 0.946 36.513 0.954 37.655 0.963 39.318 0.972
𝜆 = 1 29.846 0.845 32.282 0.901 33.742 0.925 34.765 0.938 35.611 0.947 36.457 0.954 37.610 0.963 39.284 0.972
DSPW-Net 30.155 0.840 32.518 0.899 33.927 0.923 34.918 0.937 35.743 0.946 36.574 0.954 37.707 0.962 39.360 0.972

BSD100

𝑆 = 1 29.550 0.808 31.740 0.875 33.047 0.904 33.980 0.920 34.800 0.933 35.627 0.943 36.783 0.955 38.502 0.969
𝑆 = 2 29.588 0.809 31.775 0.875 33.082 0.904 34.014 0.921 34.833 0.933 35.661 0.944 36.816 0.956 38.536 0.969
𝑅 = 2 29.568 0.808 31.757 0.875 33.066 0.904 33.999 0.921 34.819 0.933 35.649 0.944 36.806 0.956 38.524 0.969
𝑅 = 4 29.610 0.809 31.800 0.876 33.105 0.905 34.037 0.921 34.856 0.933 35.685 0.944 36.843 0.956 38.545 0.969
𝑅 = 8 29.625 0.809 31.812 0.876 33.116 0.905 34.045 0.921 34.865 0.934 35.692 0.944 36.847 0.956 38.563 0.969
𝜆 = 0.01 29.613 0.811 31.798 0.877 33.104 0.906 34.034 0.922 34.854 0.934 35.682 0.944 36.837 0.956 38.540 0.969
𝜆 = 0.1 29.507 0.815 31.699 0.879 33.024 0.907 33.965 0.923 34.788 0.935 35.622 0.945 36.785 0.956 38.506 0.969
𝜆 = 1 29.283 0.816 31.532 0.880 32.902 0.907 33.869 0.923 34.706 0.935 35.552 0.945 36.727 0.956 38.460 0.969
DSPW-Net 29.622 0.809 31.809 0.876 33.115 0.905 34.044 0.921 34.865 0.933 35.693 0.944 36.849 0.956 38.567 0.969

CSIQ

𝑆 = 1 30.369 0.858 32.883 0.910 34.344 0.931 35.344 0.942 36.156 0.950 36.972 0.957 38.072 0.965 39.646 0.973
𝑆 = 2 30.421 0.859 32.929 0.910 34.385 0.931 35.387 0.942 36.195 0.950 37.012 0.957 38.115 0.965 39.695 0.973
𝑅 = 2 30.401 0.858 32.914 0.910 34.372 0.931 35.374 0.942 36.182 0.950 37.000 0.957 38.102 0.965 39.674 0.973
𝑅 = 4 30.449 0.859 32.959 0.911 34.421 0.931 35.420 0.943 36.231 0.951 37.047 0.957 38.148 0.965 39.721 0.974
𝑅 = 8 30.472 0.860 32.977 0.911 34.436 0.931 35.437 0.943 36.247 0.951 37.061 0.957 38.162 0.965 39.723 0.974
𝜆 = 0.01 30.458 0.861 32.969 0.911 34.430 0.932 35.431 0.943 36.243 0.951 37.058 0.958 38.159 0.965 39.721 0.974
𝜆 = 0.1 30.372 0.863 32.905 0.912 34.378 0.932 35.388 0.944 36.205 0.951 37.024 0.958 38.129 0.965 39.703 0.974
𝜆 = 1 30.183 0.864 32.785 0.913 34.290 0.933 35.320 0.944 36.146 0.951 36.973 0.958 38.086 0.965 39.667 0.974
DSPW-Net 30.468 0.860 32.974 0.911 34.435 0.931 35.435 0.943 36.247 0.951 37.061 0.957 38.162 0.965 39.736 0.974

Urban100

𝑆 = 1 30.261 0.887 32.947 0.931 34.527 0.949 35.605 0.958 36.482 0.965 37.342 0.970 38.474 0.976 40.073 0.982
𝑆 = 2 30.423 0.890 33.093 0.933 34.668 0.950 35.745 0.959 36.624 0.965 37.481 0.970 38.613 0.976 40.217 0.982
𝑅 = 2 30.271 0.887 32.949 0.931 34.536 0.949 35.621 0.958 36.507 0.965 37.374 0.970 38.520 0.976 40.129 0.982
𝑅 = 4 30.495 0.891 33.173 0.934 34.746 0.950 35.823 0.960 36.702 0.966 37.563 0.971 38.698 0.976 40.289 0.982
𝑅 = 8 30.563 0.892 33.236 0.934 34.799 0.951 35.864 0.960 36.736 0.966 37.591 0.971 38.724 0.976 40.324 0.982
𝜆 = 0.01 30.492 0.892 33.164 0.934 34.728 0.951 35.794 0.960 36.666 0.966 37.525 0.971 38.658 0.976 40.249 0.982
𝜆 = 0.1 30.432 0.894 33.109 0.935 34.680 0.951 35.750 0.960 36.626 0.966 37.488 0.971 38.624 0.977 40.223 0.982
𝜆 = 1 30.306 0.895 33.014 0.935 34.604 0.952 35.685 0.960 36.570 0.966 37.437 0.971 38.580 0.977 40.185 0.982
DSPW-Net 30.526 0.892 33.204 0.934 34.774 0.951 35.847 0.960 36.723 0.966 37.583 0.971 38.717 0.976 40.316 0.982
Table 8
Average PSNR and SSIM values of DSPW-Net vs. competing methods tested on real-world compressed images downloaded from Facebook.

Downloaded SA-DCT [23] DnCNN [48] AGARNet [71] QCN [53] MDU [70] DSPW-Net

PSNR 44.468 44.750 45.208 44.431 45.085 40.778 45.747
SSIM 0.986 0.987 0.988 0.986 0.988 0.974 0.989
contains six recursive U-Net architectures, and takes as input the com-
pressed Cb/Cr channel as well as the restored Y-channel to produce the
restored Cb/Cr channel. To enable the two branches to work effectively
without requiring the prior knowledge about the encoding parameters,
the QF-related features are incorporated to allow the network to learn
13
complex mappings between the pristine and distorted images. By using
skip connections in each branch to train deeper models and by adopting
recursive blocks to share parameters, DSPW-Net has fewer parameters
while still achieving state-of-the-art restoration performance. We pre-
sented a comprehensive evaluation on various network design choices
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and believe that the thorough analysis can benefit other researchers in
this field. However, despite the effectiveness of the proposed DSPW-Net
in reducing JPEG compression artifact in natural-scene images, whether
or not it can be applied to other types of distortions (e.g., JPEG2000
compression, noise, and blur, etc.) or other types of images (e.g., med-
ical image, remote sensing image, etc.) remains an open question, and
we will take into account these issues in our future work.
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