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A B S T R A C T

Stereoscopic/3D image quality measurement (SIQM) has emerged as an active and important research branch
in image processing/computer vision field. Existing methods for blind/no-reference SIQM often train machine-
learning models on degraded stereoscopic images for which human subjective quality ratings have been
obtained, and they are thus constrained by the fact that only a limited number of 3D image quality
datasets currently exist. Although methods have been proposed to overcome this restriction by predicting
distortion parameters rather than quality scores, the approach is still limited to the time-consuming, hand-
crafted features extracted to train the corresponding classification/regression models as well as the rather
complicated binocular fusion/rivalry models used to predict the cyclopean view. In this paper, we explore the
use of deep learning to predict distortion parameters, giving rise to a more efficient opinion-unaware SIQM
technique. Specifically, a deep fusion-and-excitation network which takes into account the multiple-distortion
interactions is proposed to perform distortion parameter estimation, thus avoiding hand-crafted features by
using convolution layers while simultaneously accelerating the algorithm by using the GPU. Moreover, we
measure distortion parameter values of the cyclopean view by using support vector regression models which
are trained on the data obtained from a newly-designed subjective test. In this way, the potential errors in
computing the disparity map and cyclopean view can be prevented, leading to a more rapid and precise
3D-vision distortion parameter estimation. Experimental results tested on various 3D image quality datasets
demonstrate that our proposed method, in most cases, offers improved predictive performance over existing
state-of-the-art methods.
1. Introduction

1.1. Background

In recent years, 3D imaging technology has experienced rapid de-
velopment, giving rise to a stereoscopic/3D viewing experience in both
consumer and industrial settings (e.g., 3D television/cinema/gaming,
3D teleoperation, 3D video meetings). However, despite the impressive
level of immersion in 3D vision, visual discomfort and/or fatigue
can be easily introduced if the quality is not properly maintained.
For example, asymmetric image degradations, inter-view mismatches,
incorrect depth-of-focus, and unnatural binocular disparity are not
encountered in 2D scenarios, but can seriously impact the 3D quality.
Even the retargeting of 3D images to different display devices can
bring noticeable artifacts such as shape twisting and visually important
content loss [1]. Thus, designing effective stereoscopic image quality
measurement (SIQM) techniques continues to be an important but
extremely challenging task.
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In this paper, we address the SIQM scenario in which the qual-
ity is measured without using a reference image (or associated side-
information). This so-called blind/no-reference (NR) SIQM task is more
realistic and applicable, as in many practical applications the reference
information is unavailable. A stereoscopic image normally contains two
monocular views (called the ‘‘stereopair’’) captured by two individual
cameras, and humans judge its quality based mainly on the so-called
‘‘cyclopean view’’, which is a merged 3D view created in the brain.
Therefore, an effective SIQM method must somehow mimic this process
based only on the two available views. Unfortunately, accurately mod-
eling the binocular vision processes of the human visual system (HVS)
to properly construct the cyclopean view is nontrivial. Various issues
such as the presence of occlusion and border areas, and differences in
the types/amounts of distortions in the stereopair can complicate the
cyclopean view synthesis process. Moreover, another level of difficulty
can be added when multiple distortions are introduced, in which case
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the joint effect of different distortion types/levels on the perceived
image quality also requires consideration.

Because of the aforementioned difficulties, most existing NR SIQM
approaches (e.g., [2–14]) have relied on machine-learning by training
models on multiply/singly-distorted 3D images with MOS/DMOS val-
ues obtained from human subjects. Unfortunately, such datasets of 3D
quality ratings are limited in both quantity and diversity. In particular,
because different databases may have images with different contents,
distortion types/levels, and even different quality-judging standards,
these ‘‘opinion-aware’’ NR SIQM approaches often achieve impressive
results on cross-validation tests but relatively weak quality measure-
ment (QM) performance on cross-database tests. In addition, most of
these algorithms except [12] were initially developed to work with
singly-distorted stereoscopic images, and not with multiply-distorted
stereoscopic images.

To remove the dependence on human subjective ratings, a number
of ‘‘opinion-unaware’’ approaches have been presented, which perform
the SIQM task by using quality-aware measures/models (e.g., [15–
23]). These methods often follow a similar pipeline that collapses
quality-aware features to the corresponding quality score via various
pooling strategies. However, without analyzing/modeling the binocu-
lar fusion/rivalry properties of the HVS in stereoscopic vision, these
approaches often suffer from relatively weak QM performance when
different dataset images are tested.

1.2. Motivation

In light of the aforementioned limitations, we suggest that a better
approach would be to build a model that (1) can learn from distorted
stereoscopic images in order to provide accurate measurements of
quality on various multiply/singly distorted stereoscopic images, but
(2) requires no training on human subjective ratings. In our previous
work, we presented one such model [24] which operated by indirectly
measuring quality via distortion parameter estimation. However, in
our attempt to remove the dependence on training data, that model
ultimately proved quite lacking from the machine-learning perspective.
In particular, both the features and the distortion parameter estimation
framework were hand-crafted, making it difficult to select the optimal
feature/model combination. Furthermore, the cyclopean view used to
predict the 3D-vision distortion parameters1 was computed based on a
rather complicated binocular model, an inaccurate disparity map, and
relatively weak SVM models. Thus, two natural questions arise: (1) is it
possible to learn the non-handcrafted features/models that are needed
to estimate the distortion parameters and thus the quality measure-
ments of stereopairs, and (2) can the 3D-vision distortion parameters
be estimated without explicitly computing the cyclopean view?

We answer the first question with the assistance of a deep convo-
lution neural network (CNN). Specifically, we propose a four-branch
fusion-and-excitation network (FFENet) which predicts four distortion
parameters of the multiply and singly distorted 2D images correspond-
ing to four common distortion types: white noise, Gaussian blur, JPEG
compression, and JPEG2000 compression. As shown in Fig. 2, the
fusion of different network branches represents the joint effect of dif-
ferent distortions, and the excitation operation applied on each branch
represents the influence of multiple distortions on the distortion param-
eter estimation of each individual distortion type. Subsequently, the
four distortion parameter values are fed into a multilayer perceptron
(MLP) which classifies the distortion into one of three categories. Given
the fact that different distortion types may display similar distortion
artifacts, and the fact that the same distortion parameter can cause
images of different sizes to have different image quality measurement

1 Here, the equivalent 3D-vision distortion parameters are defined as the
istortion parameters that would give rise to the same level of distortion if it
ere possible to directly distort the merged 3D mental view.
2

(IQM) scores (as demonstrated in Fig. 3), a QM-oriented method was
proposed to adjust/modify the recorded distortion parameter values
such that the training labels can be more reasonable and consequently
the network can be more effectively trained.

We answer the second question by conducting a subjective exper-
iment to find a mapping function between the 2D and 3D distortion
parameter values. The assumption is that in stereoscopic vision, the
strength of the perceived 3D distortion depends more on the distortion
types/levels of the two views and less on the image content. Specifi-
cally, in the test, subjects were presented by stereoscopic images that
had been asymmetrically distorted with different distortion types and
amounts. The subjects were asked to adjust a slider in the graphical
user interface such that the generated 2D distorted image reflected
a perceptually equivalent amount of distortion as that perceived in
the 3D image (see Fig. 8). As a result, the ground-truth distortion
parameters which reflect distortion levels in stereoscopic vision can be
obtained, and these data can be used to train machine-learning models
to predict 3D-vision distortion parameters without explicitly computing
the cyclopean view.

1.3. Proposal and contributions

Based on the aforementioned points, we present in this paper an
efficient SIQM method, called CNN-based stereoscopic image quality es-
timator (CNN-SIQE), to blindly measure the qualities of both singly-
distorted stereoscopic images (SDSIs) and multiply-distorted stereo-
scopic images (MDSIs). Our method consists of the three stages as
illustrated in Fig. 1. First, an FFENet followed by an MLP is employed
to predict the distortion parameters as well as the distortion label
of each monocular view. Each distortion parameter is mapped into a
quality score, and the four scores are adaptively combined based on
the distortion label to produce an overall quality measurement of each
monocular view. Second, SVR models are trained to predict the equiv-
alent distortion parameters corresponding to stereoscopic vision, based
on which the cyclopean view quality is estimated. In the third stage,
the quality measurements of the two monocular views are adaptively
combined, followed by the incorporation of the cyclopean view quality,
and this yields the final measurement of the stereoscopic image quality.

Compared with existing approaches, our method has several dis-
tinctive properties. First, compared with all other NR SIQM models,
our work is the first to incorporate results from a subjective test to
explicitly model the binocular fusion/rivalry properties of the HVS in
stereoscopic vision. Second, compared with all other opinion-unaware
SIQM works, our method does not require hand-crafted features, but
rather uses a CNN to automatically learn the optimal features. Third,
compared with all opinion-aware CNN-based SIQM techniques, our
method predicts distortion parameters instead of MOS/DMOS scores
such that consistently strong performance can be achieved on both
singly- and multiply-distorted images using a consistent set of network
parameters. Finally, compared with [24], our method is much faster
and can still maintain excellent QM performance. We summarize the
main contributions of this work as follows:

(1) We present a deep-learning-based opinion-unaware NR 2D IQM
model that operates by predicting distortion parameters instead
of human subjective ratings, thus allowing the QM of both
multiply distorted and singly distorted images. In addition, we
propose a QM-oriented method to allow more effective training.

(2) We present a method to predict the 3D-vision distortion pa-
rameters without the need to compute the cyclopean view,
thus avoiding the complex computation and potential errors in
binocular vision modeling.

(3) We present a new strategy which adaptively combines the qual-
ity measurements of the stereopair by considering the impact of

different distortion types on the overall 3D image quality.
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Fig. 1. A block diagram of the proposed CNN-SIQE method. CNN-SIQE first employs FFENet, MLP, and BINet to perform distortion parameter estimation and distortion identification,
based on which the qualities of the two monocular views (i.e., S𝐿 and S𝑅) are measured. Then, in the second stage, the estimated distortion parameters are fed into the data-driven
cyclopean model built upon a subjective test for 3D-vision distortion parameter estimation, based on which the cyclopean view quality (i.e., S𝑐𝑦𝑐 ) is measured. Finally, all quality
measurements are adaptively combined to yield the final 3D image quality estimate. Note that MLP is used for WN, WN+GB/JPEG/JP2K, and GB/JPEG/JP2K identification; BINet
is used for GB and JP2K identification.
This paper is organized as follows. Section 2 briefly reviews the cur-
rent NR SIQM approaches. Section 3 describes details of the proposed
CNN-SIQE method. Section 4 analyzes the QM performance of CNN-
SIQE on various stereoscopic image datasets. General conclusions are
provided in Section 5.

2. Related work

Existing techniques for NR SIQM can be roughly classified into two
groups, based on whether or not human subjective ratings of stereo-
scopic images are required. We refer to those techniques that require
subjective ratings as opinion-aware SIQM approaches. Those techniques
that do not require subjective ratings are referred to as opinion-unaware
SIQM approaches. Here, we briefly review these related works.

2.1. Opinion-aware NR SIQM approaches

As stated in Section 1, most existing SIQM methods that trained
regression models or deep neural networks on distorted 3D images with
MOS/DMOS values are opinion-aware NR SIQM approaches. These
methods can be further classified into two sub-types: (1) those that use
hand-crafted features, and (2) those based on deep learning.

The methods based on hand-crafted features operate by mapping
quality-aware features to a quality estimate using regression models
such as SVR, k-nearest neighbor (KNN), and random forest regression.
The features are often extracted based on modeling the natural scene
statistics (NSS) or the properties of the HVS in stereoscopic vision. For
example, Chen et al. [2] extracted both 2D BRISQUE [16] features and
3D NSS-based features; the 2D features were taken from a synthesized
cyclopean image, whereas the 3D features were obtained from the
estimated disparity and uncertainty maps. Su et al. [25] extracted
wavelet-domain features from a convergent cyclopean image based
on bivariate density and correlation NSS models. Shao et al. [26]
formulated the stereoscopic quality prediction as a combination of a
feature prior and a feature distribution. The feature prior was charac-
terized by using SVR, and the feature distribution was implemented via
sparsity regularization. Zhou et al. [4] utilized the complementary local
patterns of the binocular energy response and the binocular rivalry
response as the quality-aware features, which were mapped to quality
3

scores through KNN-based machine learning. Later, Zhou et al. [6]
proposed another NR SIQM method based on a binocular combination
and extreme learning machine. The various quality-aware features were
extracted from the two binocular combinations of stimuli based on local
binary pattern operators. Fang et al. [27] extracted features to train
an SVM-based quality model; the features used included statistical in-
tensity, depth, and structure. Liu et al. [28] extracted color/luminance
features to quantify the monocular quality perception, and summa-
tion/difference features to quantify the binocular quality perception.
Moreover, by considering the impacts of viewport, user behavior, and
stereoscopic perception on the HVS, Qi et al. [29] proposed a viewport-
perception-based blind stereoscopic omnidirectional IQM method using
random forest regression.

The deep-network-based methods often train a neural network
model that directly maps the stereoscopic image to an associated
quality score, in which case the quality-aware features are automat-
ically extracted by the different network layers. Different methods
usually have different network architectures/inputs. For example, Shao
et al. [3] trained two separate 2D deep neural networks for the
monocular and cyclopean images, respectively, and in the testing stage
the quality scores predicted by the two networks were combined based
on different weighting schemes. Fang et al. [11] designed a Siamese
Network to extract the high-level semantic features from stereopairs
to simulate the information extraction process in the brain. Then,
the features of both views were combined followed by convolutional
operations to imitate the information interaction process in the HVS.
Chai et al. [30] proposed a monocular/binocular-interaction-oriented
three-channel network to estimate the quality of stereoscopic omni-
directional images. Shen et al. [31] proposed a global feature fusion
sub-network and local feature enhancement sub-network to extract
features from the fused and single views to estimate the visual quality
of stereoscopic images. Yang et al. [32] proposed a segmented stacked
auto-encoder to model the visual perception route from the eyes to
the frontal lobe. Zhou et al. [10] proposed an end-to-end dual-stream
interactive network for QM of stereoscopic images. By using a pre-
trained model, Sim et al. [13] extracted binocular semantic features
and manually-designed binocular quality-aware features to address
the problem of limited SIQM dataset size. There are also some other
deep-network-based works such as [5,9,33,34].
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However, these opinion-aware SIQM techniques suffer from an
inevitable limitation in robustness. Due to the diversity of distortion
types/levels in different datasets, training on one dataset’s images can-
not alway guarantee decent QM performance on other datasets. Thus,
the limited number of existing 3D image quality datasets significantly
restricts the wider application of these kinds of methods.

2.2. Opinion-unaware NR SIQM approaches

To overcome the potential limitation of the aforementioned opinion-
aware methods, opinion-unaware methods, which require no training
on human subjective ratings, have been proposed. These NR SIQM
approaches usually operate by using one of three techniques: (1) col-
lapsing feature values to quality scores based on empirical rules, ex-
perimental results, or quality lookup tables; (2) measuring the quality
difference between the distorted image and the pristine images in
some feature space; and (3) training regression models on a specific
measurement that is representative of the image quality.

For example, in [15], the perceptual quality of a stereoscopic image
was measured by using the local blurriness, blockiness, and visual
saliency information. In [17], the multivariate Gaussian distribution
(MGD) was employed to model the features extracted from the distorted
and pristine image patches, and the Mahalanobis distance computed
between the two sets of MGD parameters was adopted as the quality
measurement. In [18], the phase-tuned quality lookup (PTQL) and
phase-tuned visual codebook (PTVC) were constructed from the binoc-
ular energy responses, and the quality of a test image was obtained
by averaging the largest quality values of all image patches, where
the PTQL and PTVC were searched to determine the quality of the
image patch. In [19], local receptive fields and global receptive fields
learned from the reference and distorted stereoscopic images were
used to construct local quality and global quality lookup tables. The
quality of a test image was obtained by searching for the optimal
receptive field indexes in the learned local and global lookup tables.
In [20], view-specific feature and quality dictionaries were learned
from a category-deviation database such that a semantic framework
between the source feature domain and the target quality domain could
be established. Then, the stereoscopic image quality was measured
based on the classification probability given by the LC-KSVD classifi-
cation framework. In [21], the modality specific dictionaries and the
corresponding projection matrices were learned from a singly-distorted
training dataset to predict the quality of MDSIs based on the recon-
struction errors. In [22], a multimodal sparse representation framework
was established to map the feature space to quality space for the
phase and amplitude components. The quality of a MDSI was estimated
by a multi-stage pooling scheme using multi-modal quality pooling,
feature pooling, binocular pooling, and phase–amplitude quality pool-
ing. In [24], distortion parameters corresponding to the monocular
and cyclopean views were estimated by two-layer classification and
regression models, from which the qualities of stereoscopic images were
measured.

Admittedly, these opinion-unaware methods are effective in releas-
ing SIQM models from the dependence on existing 3D image quality
datasets. However, because these methods largely employ handcrafted
features as quality indicators, there is still room for improvement
(e.g., by using deep learning). In addition, these methods often employ
empirical rules/equations to compute the stereoscopic image quality,
but to the best of our knowledge, none of them have used psychophysics
to investigate what the human visual system actually sees/perceives
in binocular vision, particularly when asymmetrically-distorted stere-
opairs are presented. Thus, how distortion artifacts affect binocular
visual quality is still an open question.

In the following section, we describe our new opinion-unaware
SIQM method which differs from the existing methods in two ways: (1)
instead of using handcrafted features, we take a deep-learning approach
4

for feature extraction; consequently, our method simultaneously offers
the advantage of being database-independent and benefits from the
power of deep learning; (2) instead of relying on empirical rules, we
use a data-driven cyclopean model created based on the results of a
subjective test for statistical modeling of the HVS’s binocular behavior
in the QM task. Owing to the more flexible representation of image
quality (i.e., distortion parameters), our model is capable of handling
both MDSIs and SDSIs.

3. Algorithm

Our proposed CNN-SIQE method assumes that the QM task of a 3D
scene can be achieved by estimating the quality of each monocular
view followed by a strategic combination of these per-view qualities.
We acknowledge that there is a wide range of distortions that can
degrade image quality; however, we follow many of the previous works
that only four distortion types and their combinations are considered:
white noise (WN), Gaussian blur (GB), JPEG compression (JPEG), and
JPEG2000 compression (JP2K), all of which are commonly encoun-
tered in daily life. For example, in image acquisition, noise can be
introduced due to the different light conditions and imaging device per-
formances; blur can be introduced by motion of the subject and camera
shaking/defocus. In image transmission and storage, JPEG/JPEG2000
compression is often required due to the limited bandwidth and capac-
ity of the devices. Moreover, these distortion types were selected, in
part, due to ease of modeling: the intensity of each individual distortion
can be roughly described by a single parameter. In other words, image
quality often displays a high correlation with the corresponding dis-
tortion parameters (see Fig. 6 and Table 7). Thus, the aforementioned
combination can be achieved in two ways: (1) directly combine quality
scores computed from distortion parameter values; and (2) combine
distortion parameter values first and then compute the quality score.
Accordingly, these two combination strategies give rise to the three
main stages of CNN-SIQE as illustrated in Fig. 1: (1) CNN-based QM of
the monocular views; (2) data-driven QM of the cyclopean view; and
(3) a stage to combine the quality measurements from (1) and (2). Note
that the three stages have to be performed sequentially, since the latter
stage requires the information derived from the former stage to operate.
The details of each stage are provided in the following subsections.

3.1. CNN-based QM of monocular view

3.1.1. Network architecture
As shown in Fig. 2, the proposed FFENet consists of four parallel

branches, each of which contains several convolution layers and fully-
connected (FC) layers to predict distortion parameters corresponding to
the four distortion types. Since we are dealing with multiply-distorted
images, the feature maps in different branches are fused (averaged)
to model the joint effect of different distortion types in the multiple-
distortion scenario. In addition, because of this joint effect, two images
with different perceived qualities can share the same distortion param-
eter value corresponding to certain distortion types. Thus, to model the
influence of multiple distortions on distortion parameter estimation of
an individual distortion type, we next employ an excitation operation
which analyzes the fused feature maps by convolution layers and then
concatenates them back to each corresponding branch. This fusion-and-
excitation block (FEB) is repeated three times, and the output feature
map channels are 128, 256, and 512, respectively. Note that each
FEB contains only two groups of the fused features because only two
multiple-distortion scenarios (i.e., JP2K+WN and GB+JPEG+WN) were
considered.

To enable a scalar output representing different distortion parame-
ter values, the output feature maps of the third FEB in each branch are
collapsed into a single vector through average pooling. These vectors
are then passed through a number of FC layers in a similar fusion-and-

excitation fashion to produce the final distortion parameter estimate.
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Fig. 2. Network architecture of FFENet and MLP. Note that ‘‘𝐶1 ’’ denotes a channel concatenation of two feature maps/vectors; ‘‘𝐶2 ’’ denotes concatenation of two 𝑊 ×𝐻 × 𝐶
fused feature/vector maps followed by a 1 × 1 convolution/FC layer to yield another 𝑊 × 𝐻 × 𝐶 feature map/vector, which is then concatenated with the third 𝑊 × 𝐻 × 𝐶
feature map/vector coming from the corresponding branch. Also note that FFENet predicts 𝜎𝐺 instead of �̄�𝐺 .
Note that one distortion type may occur in two or more multiple-
distortion scenarios (e.g., white noise occurs in both GB+JPEG+WN
and JP2K+WN images). For this case, in each FEB, the different fused
feature maps corresponding to different multiple-distortion scenarios
are first concatenated and then transferred (by a 1 × 1 convolution
layer) to have the same number of feature channels as that in the
corresponding branch before being concatenated. The same methodol-
ogy is applied to the FC layer; here, the convolution operation applied
on feature maps is replaced by a linear projection applied on feature
vectors. Fig. 2 shows the dimensions of each layer’s output assuming
an input image patch of 128 × 128 pixels.

After predicting the four distortion parameters, we classify the
image distortion into one of three categories via a MLP: (1) WN only,
(2) WN + GB/JPEG/JP2K, and (3) GB/JPEG/JP2K. As shown in Fig. 2,
the MLP consists of one input layer, three hidden layers, and one
output layer. The input layer contains four units corresponding to
the four distortion parameter values. Each hidden layer contains 64
units, each of which is connected to the previous layer through a dot
product between the input vector and its weight vector, and then with
the addition of a bias. The output layer computes the weighted sum
(denoted by 𝑧𝑘 for unit 𝑘) of the 64 units in the previous hidden layer,
and the state of unit 𝑘 (denoted by 𝜎𝑘) is computed via a softmax
function given by

𝜎𝑘 =
exp(𝑧𝑘)

∑𝑚
𝑘=1 exp(𝑧𝑘)

, 𝑘 = 1, 2,… , 𝑚 (1)

where 𝑚 = 3 denotes the three categories. Consequently, the MLP has
three output values, each of which represents the probability that the
input belongs to each of the three classes. As we will show later, the
classification label predicted by the MLP will be used for QM of both
the monocular views and the cyclopean view.

3.1.2. Training data generation
To train the FFENet and MLP, training data has to be generated.

To this end, the same approach as in [24] was adopted to add sin-
gle/multiple distortions to 270 pristine 2D images, among which 150
images were collected from the Berkeley segmentation database [35],
45 from the Waterloo exploration database [36], 45 from the left view
of the stereoscopic images adopted in [37], and 30 were taken by
using our own camera. While generating the distorted versions of these
images, the following four distortion parameters were recorded: (1) the
standard deviation 𝜎𝐺 of the Gaussian blurring filter, (2) the compres-
sion quality factor 𝑄 for the JPEG compression, (3) the compression
ratio 𝑅 of the JPEG2000 compression, and (4) the variance 𝜎𝑁 of the
white noise. To model these parameters more effectively, a logarithm
is applied as follows:

�̄� = ln
(

1 + 𝜎
)

(2)
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𝐺 𝐺
Table 1
Detailed information of the generated training dataset. Note that 𝐿1 denotes the ground-
truth classification labels assigned to each distorted patch for training MLP, and 𝐿2
denotes the ground-truth classification labels for training BINet.

Distortion type Distortion level # Image # Patch 𝐿1 𝐿2

GB 10 2700 30 930 2 0
JPEG 10 2700 30 930 2 0
JP2K 10 2700 30 930 2 1
WN 10 2700 30 930 0 0
JP2K+WN 30 1350 25 920 1 1
GB+JPEG+WN 294 13 230 111 720 1 0

�̄� = ln
(

1 + 80 ⋅ (𝑄∕80)1.5
)

(3)

�̄� = ln
(

1 + 103 ⋅
(

𝑅∕103
)2) (4)

�̄�𝑁 = ln
(

1 + 103 ⋅ 𝜎𝑁
)

. (5)

Notice that the logarithm is used to bring the four distortion pa-
rameter values to approximately the same range, as well as to allow
a more linear correlation between the distortion parameter change
and the image quality variation. Also notice that FFENet predicts 𝜎𝐺
instead of �̄�𝐺, the latter of which is mainly used for polynomial curve
fitting as shown in Fig. 6. For multiple distortions, we followed [38]
to first perform Gaussian blurring, then perform JPEG/JPEG2000 com-
pression, and then add the white noise. After generating the multiply
and singly distorted images, non-overlapping 128 × 128-pixel patches
were extracted. Consequently, we extracted in total 261,360 image
patches along with their distortion parameters (the same as those of
the distorted images) and labels (denoted by 𝐿1 and 𝐿2) as the training
data. The details of these data are summarized in Table 1, and are
available at https://vinelab.jp/cnnsiqe/.

It is important to note that two problems occur when determining
the ground-truth distortion parameters of an image. First, different
from [24], the blur parameter for a JPEG2000-compressed image can-
not be zero, and likewise the JPEG2000 parameter for a Gaussian
blur image cannot be one. The reason is that both Gaussian blur and
JPEG2000-compressed images will display blurring artifacts. In [24],
each regression model was trained to predict only one distortion param-
eter on the corresponding distorted images. However, in this work, the
FFENet is trained to predict four distortion parameters at the same time
on all distorted patches. Since it is the manifested/displayed distortion
artifact that determines the network output, a network can easily
get confused if it were forced to output different values for images
with the same/similar amount of distortion artifact. In other words,
it is inappropriate to say that a JPEG2000-compressed image is not
blurred. Thus, equivalent parameter values have to be calculated for

https://vinelab.jp/cnnsiqe/
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Fig. 3. VIF scores computed for Gaussian blur and JPEG2000-compressed images
generated from the different scales of the pristine image shown in Fig. 5(a). The
horizontal and vertical axes denote, respectively, the distortion parameter values, and
the corresponding VIF scores. ‘‘𝑠 = 𝑥’’ denotes that the rescaled image is 𝑥 times of its
original size; ‘‘𝑠 = 1.0’’ denotes the original-size image.

Fig. 4. An illustration of computing the equivalent blur parameter for a
JPEG2000-compressed image.

the two distortion types such that the network can be trained more
effectively. Second, the same distortion parameter may give rise to
different quality estimates for an image resized to different scaling
factors (as demonstrated in Fig. 3), and thus it may be difficult to
draw an accurate monotonic mapping function which maps distortion
parameter values to quality scores. Thus, the training data have to be
made that the same distortion parameter value produces images with
approximately the same objective IQM scores.

To solve these two problems, in this paper we propose a QM-
oriented method which computes equivalent distortion parameters
based on objective IQM methods. Specifically, for the first problem, an
equivalent distortion parameter implies that its corresponding distorted
image shares the same IQM score as the image under question. For
example, to compute the equivalent blur parameter of a JPEG2000-
compressed image in Fig. 4(a), we first compute the VIF [39] scores for
the same-content Gaussian blurred images generated with various blur
parameters. As shown in Fig. 4(b), these data can be fitted by a polyno-
mial curve from which the polynomial coefficients can be calculated.
Then, we compute the VIF score of the JPEG2000-compressed image,
and find a point on the curve that has the same/closest VIF score value.
The corresponding x-axis value of that point is the estimated equivalent
blur parameter.

For solving the second problem, a similar QM-oriented method
is adopted. For example, as shown in Fig. 5, given a JPEG2000-
compressed image 𝐼1 generated from the pristine image 𝐼 with �̄� =
6.266, the equivalent JPEG2000 parameter can be calculated as follows.
First, we rescale 𝐼1 to 𝐼2 [ Fig. 5(e)] and compute its VIF score
by referring to the similarly resized reference image 𝐼0 [ Fig. 5(c)]
obtained from 𝐼 . In this paper, bicubic interpolation is used to rescale
an image until the minimum of the height and width is 512 pixels. Next,
a number of JPEG2000-compressed images are generated from 𝐼0 with
different JPEG2000 parameters �̄�𝑖 and meanwhile the corresponding
VIF scores are saved. These data can be fitted by a polynomial curve [
Fig. 5(d)] from which the polynomial coefficients can be calculated.
Finally, the point on the curve with the same/closest VIF score is
found, and its corresponding x-axis value is the computed equivalent
6

Fig. 5. An illustration of computing the equivalent JPEG2000 parameter for a
large-sized JPEG2000-compressed image.

JPEG2000 parameter for 𝐼2. Note that image patches are also extracted
from 𝐼2 for training, not from 𝐼1.

3.1.3. Quality mapping and combination
Armed with the trained FFENet and MLP, we can now possibly pre-

dict the distortion parameters and use those parameters to measure the
quality of each monocular view. For distortion parameter estimation,
we first extract the Y -channel (luminance) of the test RGB image and
divide it into 128 × 128-pixel patches with 64-pixel overlap. Then,
these patches are fed into the FFENet to obtain their four distortion
parameters. Since our goal is to predict distortion parameters of the
whole image, a pooling operation is applied to collapse all parameter
values into a scalar. Motivated by [40], we use image patches with
sharp edges/textures for pooling, and the local standard deviation
(LSD) is employed to measure the local sharpness which is given by

𝜎(𝑖, 𝑗) =

√

√

√

√

𝐾
∑

𝑘=−𝐾

𝐿
∑

𝑙=−𝐿
𝜔𝑘,𝑙(𝐼𝑘,𝑙(𝑖, 𝑗) − 𝜇(𝑖, 𝑗))2, (6)

where 𝐼(𝑖, 𝑗) is the (grayscale) image; 𝜔𝑘,𝑙 is a circularly-symmetric
2D Gaussian weighting function with a standard deviation of 1.5 and
rescaled to unit volume; 𝐼𝑘,𝑙(𝑖, 𝑗) = 𝐼(𝑖+𝑘, 𝑗+ 𝑙) denotes the local image
pixel value; 𝜇(𝑖, 𝑗) denotes the weighted sum of 𝐼𝑘,𝑙(𝑖, 𝑗) computed by

𝜇(𝑖, 𝑗) =
𝐾
∑

𝑘=−𝐾

𝐿
∑

𝑙=−𝐿
𝜔𝑘,𝑙𝐼𝑘,𝑙(𝑖, 𝑗), (7)

where we set 𝐾 = 𝐿 = 5 by following [41].
In this paper, image patches with the top 25% largest LSD values

were selected. Let 𝜉𝑝𝑚 and 𝜁𝑝𝑛 (𝑚 = 1, 2, 3, 4; 𝑛 = 0, 1, 2) denote,
respectively, the four distortion parameters predicted by the FFENet
and the three probabilities predicted by MLP for each patch 𝑝. The
distortion parameters and the classification label of the overall image
are computed by

𝜉𝑚 = 1
𝑁𝑝

𝑁𝑝
∑

𝑝=1
𝜉𝑝𝑚 (8)

𝑙1 = arg max
𝑛

⎛

⎜

⎜

⎝

1
𝑁𝑝

𝑁𝑝
∑

𝑝=1
𝜁𝑝𝑛
⎞

⎟

⎟

⎠

, (9)

where 𝑁𝑝 denotes the total number of selected patches.
For quality evaluation, the VIF [39] algorithm is first employed to

measure the qualities of the generated distorted training images. Then
for each distortion type, we convert distortion parameters into quality
scores based on modeling the shape of scatter plots of the distortion
parameter values versus VIF quality scores (see Fig. 6). As shown in
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Fig. 6. Scatter plots showing how VIF quality scores change for different distortion parameter values. Observe that different trends emerge for different distortion types. For each
scatter plot, the horizontal and vertical axes represent, respectively, the distortion parameter value, and the corresponding VIF quality score computed from the distorted image
regenerated by using that parameter value.
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Table 2
Values of polynomial and Laplacian distribution parameters for fitting the four curves
in Fig. 6.

𝜆1 𝜆2 𝜆3 𝜆4
GB 1.0117 3.3485 × 10−1 6.4174 × 10−1 −3.4143 × 10−2

JPEG 1.3007 × 10−3 −8.5939 × 10−4 1.7473 × 10−1 3.5380 × 10−2

JP2K 1.2269 −7.0408 × 10−1 2.1899 −3.7466 × 10−3

WN 1.0006 −1.1771 × 10−2 2.8117 −5.8794 × 10−2

Table 3
Values of polynomial parameters for fitting the four curves in Fig. 7.

𝜆1 𝜆2 𝜆3 𝜆4
GB 1.1920 −1.2030 8.6122 × 10−1 −4.6376 × 10−2

JPEG 1.9831 −2.6949 1.7567 −1.8692 × 10−1

JP2K 1.4828 −1.5964 1.0707 −7.5016 × 10−2

WN 9.6335 × 10−1 −8.4899 × 10−1 7.9886 × 10−1 −3.0893 × 10−2

Fig. 6, the scatter plot shape of the JPEG compression can be modeled
by a polynomial curve defined as

𝑦 = 𝜆1 ⋅ 𝑥
3 + 𝜆2 ⋅ 𝑥

2 + 𝜆3 ⋅ 𝑥 + 𝜆4. (10)

For the other three distortion types, their scatter plot shapes are mod-
eled by a single-sided Laplacian distribution curve defined as

𝑦 = 𝜆1 ⋅ 𝑒
− (𝑥−𝜆2)𝜆3 + 𝜆4. (11)

or both equations, 𝜆𝑖 (𝑖 = 1, 2, 3, 4) denotes the curve parameters, and
heir fitted values for each distortion type are provided in Table 2.

As mentioned previously, training images with large sizes have to be
escaled in order that the same distortion parameter value will produce
istorted images with approximately the same VIF quality score. Like-
ise, the training patches are extracted from the rescaled image with

he equivalent distortion parameters recorded for supervised learning.
ccordingly, a large-sized test image also needs to be rescaled in the

esting stage. As shown in Fig. 5(b)(e), when an image is rescaled,
he VIF score also changes. In other words, the VIF scores mapped by
qs. (10) and (11) represent the qualities of the rescaled image, if the
mage is of a large size. Thus, for a large-sized input, the mapped VIF
cores have to be modified before the quality-combination stage.

Admittedly, the VIF score relationship between a resized distorted
mage and its original version largely depends on the scaling factor.
o simplify the problem, we only consider a limited number of the
caling factors in this work. Specifically, for images with large sizes
n the training dataset, the VIF quality scores are computed for both
he original and rescaled versions. Accordingly, the scatter plots of
IF scores corresponding to each distortion type are shown in Fig. 7,
herein the x and y axes denote the VIF scores calculated for the

escaled and the original-sized images, respectively. Again, each scatter
lot can be modeled by the polynomial curve defined in Eq. (10), and
he fitted parameter values are provided in Table 3.

After mapping distortion parameters to corresponding VIF scores,
7

e combine these scores to generate an overall quality measurement. 𝑅
or this combination, we employ the most-apparent-distortion strat-
gy [24]. Specifically, let VIF𝐺, VIF𝑄, VIF𝑅, and VIF𝑁 denote the
apped qualities for Gaussian blur, JPEG compression, JPEG2000 com-
ression, and white noise, respectively. Then, the quality degradation
denoted by D𝐺, D𝑄, D𝑅, and D𝑁 , respectively) for each of the four
istortion types is computed via

D𝐺 = 1 − VIF𝐺 (12)

D𝑄 = 1 − VIF𝑄 (13)

D𝑅 = 1 − VIF𝑅 (14)

D𝑁 = 1 − VIF𝑁 . (15)

Notice that the estimated distortion parameter values are clipped
o certain ranges.2 before applying Eqs. (10) and (11) to ensure that

the mapped VIF scores are reasonable. The final quality measurement
of each monocular view (denoted by S𝐿 and S𝑅 for the left and right
views, respectively) is then given by

S𝐿(𝑅) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D𝑁 , 𝑙1 = 0

D𝛾
1 × D1−𝛾

2 , 𝑙1 = 1

max
(

D𝐺𝑅,D𝑄
)

× 𝜌min
(

D𝐺𝑅 ,D𝑄

)

, 𝑙1 = 2

(16)

where 𝑙1 denotes the classification labels predicted by the MLP; D𝐺𝑅
enotes the average value of D𝐺 and D𝑅; and D1 and D2 represent the

two quality measurements computed under different noise conditions.
Specifically, D1 is computed assuming that images are corrupted by a
mall amount of noise, and D2 is computed assuming that the noise
orruption is severe in which case the blurring/compression artifacts
re to some extent visually masked. Accordingly, we compute the two
uality measurements by:

D1 = 𝑑1 × 𝜌𝑑2 (17)

D2 = max
(

D𝐺𝑅𝑄 − 𝛽,D𝑁
)

× 𝜌min
(

D𝐺𝑅𝑄−𝛽,D𝑁

)

(18)

where 𝑑1 and 𝑑2 denote the first and second largest values of D𝐺𝑅,
𝑄, and D𝑁 ; and D𝐺𝑅𝑄 denotes the larger value of D𝐺𝑅 and D𝑄. The
arameter 𝛽 attempts to account for the visual masking caused by the
oise; the parameter 𝜌 attempts to take into account the impact of the
econd-most-apparent distortion; and the parameter 𝛾, which controls
he influence of D1 vs. D2, is determined by �̄�𝑁 as follows:

= 𝐴∕[1 + 𝑒𝑡1(�̄�𝑁−𝑡2)] + 𝐵. (19)

e set the following parameter values: 𝜌 = 1.2, 𝛽 = 0.3, 𝐴 = 1.5, 𝐵 = 0,
𝑡1 = 1.5, and 𝑡2 = 0.5 such that the best performance can be achieved
across different 3D image datasets.

2 In this paper, we set �̄�𝐺 = max
(

0.4, ln
[

1 + max
(

0, 𝜎𝐺
)])

, �̄� = min
(

4.5, �̄�
)

,
̄ = max

(

0.001, �̄�
)

, and �̄� = max
(

0, �̄�
)

according to Fig. 6.
𝑁 𝑁
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Fig. 7. Scatter plots of VIF score values computed for the original versus the rescaled distorted images. For each scatter plot, the horizontal and vertical axes represent VIF scores
computed for the rescaled and the original-sized distorted images, respectively.
Fig. 8. A GUI for conducting the human subjective experiment. The left table on the
interface shows the selected 3D-vision distortion parameters, and the right table shows
the ground-truth distortion parameters of the left and right views.

3.2. Data-driven QM of cyclopean view

As mentioned previously, humans judge the quality of a stereo-
scopic image based, in part, on the merged 3D mental view formed
after the binocular fusion and rivalry. In our previous work [24], we
attempted to model this binocular visual behavior via a complicated
multi-pathway contrast gain-control model used to compute the cyclo-
pean view, whose distortion parameters were then estimated based on
training SVM models using only symmetrically-distorted 3D images.
Due to the potential errors introduced in the estimated disparity map,
the inaccuracy of the MCM, and the difference between the training
and testing data, the cyclopean model proposed in [24] can perform
poorly at times. Hence in this work, we propose a new data-driven
method which directly predicts 3D-vision distortion parameters without
explicitly computing the cyclopean view.

3.2.1. 3D-vision distortion parameter estimation
Our method to predict the 3D-vision distortion parameters is based

on the assumption that in stereoscopic vision, the strength of the
perceived 3D distortion depends more on the distortion types and
the distortion levels of the two monocular views than it does on
the image contents, especially when images are asymmetrically dis-
torted. Asymmetrically distorted images give rise to discomfort due
to binocular rivalry, and this discomfort plays a much bigger role
than image-content-based effects (e.g., masking) in determining the
perceived quality. Thus, a regression model can be trained for the
specific distortion type which maps the two distortion levels of the two
views to a single parameter representing the 3D-vision distortion level.
To obtain the training data, we designed a psychophysical experiment,
in which subjects were presented with asymmetrically-distorted stereo-
scopic images and were asked to choose a value by which a 2D image
8

generated to have the same image content was perceived to contain a
visually equivalent amount of distortion as that being perceived in the
3D view. For each distortion type, we selected eight distortion levels,
and assumed that the right view had an equal/better quality than the
left view. Consequently, for each distortion type of each pristine 3D
image, a total of 45 asymmetrically-distorted versions were generated.

The GUI for the experiment is shown in Fig. 8. Moving the slider
will generate images with different distortion levels. The ‘‘Previous’’
and ‘‘Next’’ buttons allow the subject to double-check the results. When
the ‘‘Record’’ button is clicked, the results are saved. Note that the
ground-truth distortion parameters of the left and right views are
always presented to the subject during the test. This information is
necessary because, when images are less distorted, it becomes difficult
for subjects to perceive the minor distortion level change, thus giving
rise to inconsistent scores.

The experiment was conducted on distorted versions of nine pristine
3D images captured by a FUJIFILM 3D digital camera. To simplify
the experiment, we used only asymmetrically-distorted images, and
by default the left view was always distorted to a greater extent
than the right view. Ten different distortion levels were randomly
applied to the two monocular views, which gave rise to 45 distorted
versions for each pristine 3D image. The distortion intensity ranged
from just noticeable to severely visibly degraded (in which case the
image’s structures/contents were severely destroyed) in an effort to
make the resulting model robust to a wide range of distortion severities.
Consequently, 405 ground-truth 3D-vision parameters were generated
for each of the three distortions: Gaussian blur, JPEG2000 compres-
sion, and white noise. Note that the experiment was not conducted
for JPEG-compressed images because, as we have found, blocking
artifacts always dominate the overall 3D quality; thus, for an asym-
metrically JPEG-compressed image, the 3D-vision JPEG parameter is
simply computed by

�̄�𝑐𝑦𝑐 = min
(

�̄�𝐿, �̄�𝑅
)

+ ln
(

1 + |

|

�̄�𝐿 − �̄�𝑅
|

|

)

, (20)

where �̄�𝐿 and �̄�𝑅 denote the estimated JPEG parameters for the left
and right views, respectively.

During the test, both 2D and 3D images were displayed on a single
24-inch 3D monitor (ASUS VG248QE), and NVIDIA 3D vision-2 wireless
glasses were used for stereoscopic viewing. The subject was allowed to
pause/stop/resume the test as needed without losing the results, in an
effort to reduce potential fatigue. The obtained 405 training data3 were
then used to train an SVR model based on the 𝜖-SVR [42] approach.

Specifically, given the training data (𝐱1, 𝑦1),… , (𝐱𝑙 , 𝑦𝑙) where 𝐱𝑙 ∈ R2

and 𝑦 ∈ R, 𝜖-SVR aims to find a function 𝑓 (𝐱) that has at most 𝜖
deviation from the desired target 𝑦. Usually 𝑓 (𝐱) takes the following
form

𝑓 (𝐱) = ⟨𝑤,𝜙(𝐱)⟩ + 𝑏, (21)

3 Available at https://vinelab.jp/cnnsiqe/. Each training data sample actu-
ally contains three values corresponding to the distortion parameters of the
left, right, and cyclopean views, respectively. The former two values are the
features, and the third value is the label.

https://vinelab.jp/cnnsiqe/
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where 𝜙(𝐱) is a non-linear projection which maps the data to the high-
imensional feature space; 𝑤 is the weight vector, and 𝑏 is the bias.

Computing 𝑓 (𝐱) is equivalent to solving the following optimization
problem:

min
𝑤,𝑏,𝜉,𝜉∗

1
2
‖𝑤‖

2 + 𝐶
𝑙

∑

𝑖=1

(

𝜉𝑖 + 𝜉∗𝑖
)

subject to
⎧

⎪

⎨

⎪

⎩

𝑦𝑖 − ⟨𝑤,𝜙(𝐱𝑖)⟩ − 𝑏 ≤ 𝜖 + 𝜉𝑖
⟨𝑤,𝜙(𝐱𝑖)⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉∗𝑖

𝜉𝑖, 𝜉∗𝑖 ≥ 0

(22)

where 𝜉𝑖 and 𝜉∗𝑖 are the slack variables; 𝐶 > 0 determines the trade-
off between the flatness of 𝑓 and the amount up to which deviations
larger than 𝜖 are tolerated. By introducing a dual set of variables to
construct the Lagrange function from both the objective function and
the corresponding constraints, the solution of Eq. (22) can be finally
obtained:

𝑓 (𝐱) =
𝑙

∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

⋅𝐾
(

𝐱𝑖, 𝐱
)

+ 𝑏, (23)

where 𝐾(𝐱𝐢, 𝐱) = 𝜙(𝐱𝐢)𝑇𝜙(𝐱) is a kernel function; 𝛼𝑖 and 𝛼∗𝑖 are the
Lagrange multipliers; and 𝑏 is computed by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏 = 𝑦𝑗 −
𝑙

∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

⋅𝐾
(

𝐱𝑖, 𝐱𝑗
)

− 𝜖 𝑓𝑜𝑟 𝛼𝑗 ∈ (0, 𝐶)

𝑏 = 𝑦𝑗 −
𝑙

∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

⋅𝐾
(

𝐱𝑖, 𝐱𝑗
)

+ 𝜖 𝑓𝑜𝑟 𝛼∗𝑗 ∈ (0, 𝐶)
(24)

Consequently, for each of the three distortion types, we obtain
an SVR model, which will be later used to predict the corresponding
3D-vision distortion parameter which is given by

𝑢𝑚 = SVR𝑚
[

𝐯𝑚
]

=
𝑙𝑚
∑

𝑖=1

(

𝛼𝑚𝑖
− 𝛼∗𝑚𝑖

)

⋅𝐾𝑚

(

𝐱𝐦𝐢
, 𝐯𝑚

)

+ 𝑏𝑚, (25)

where 𝐯𝑚 ∈ R2 denotes the parameter values estimated for the two
monocular views for each distortion type; and 𝑚 = 1, 2, 3 denotes the
three SVR models.

3.2.2. Quality measurement of cyclopean view
With the predicted 3D-vision distortion parameters, it is now possi-

ble to measure the quality of the cyclopean view. Although the same
most-apparent-distortion strategy can be applied, an important issue
raised by 3D vision has to be addressed. In Section 3.1.3, D𝐺𝑅 is set
as the average of D𝐺 and D𝑅, which means that the blurring artifact
introduced by either Gaussian blur distortion or JPEG2000 compression
will indiscriminately cause quality degradation. However, this assump-
tion does not hold for the 3D-vision case, because the two distortion
types, if applied only to a single monocular view, will have different
impacts on the overall 3D image quality. For example, consider two
asymmetrically-distorted 3D images both of which have the same high-
quality left views, but the right view of one image is corrupted by
Gaussian blur and the other by JPEG2000 compression. According to
Section 3.1.2, if the two right views have the same or similar blur
and JPEG2000 parameters, their 3D-vision parameters should also be
the same or similar. However, in reality, the perceived quality of the
JPEG2000-compressed image is much lower than that of the Gaussian
blur image, because the blurring can be suppressed by the high-quality
view while ringing artifacts cannot due to the additive information
introduced to the image content.

Based on the above observations, it seems to be necessary to first
identify the distortion type leading to the perception of blur in the
cyclopean view such that a more appropriate strategy of modeling
the 3D-vision quality-judging behavior of the HVS can be adopted.
To this end, we propose a blur identification network (BINet), whose
architecture is shown in Table 4. The network generally follows a
9

Table 4
An architecture of the proposed blur identification network.

Layer Kernel size Stride Padding Output size

Conv+BN+ReLU 7 × 7 1 3 128 × 128 × 64
Conv+BN+ReLU 5 × 5 1 2 128 × 128 × 64
MaxPool – – – 64 × 64 × 64
Conv+BN+ReLU 3 × 3 1 1 64 × 64 × 64
Conv+BN+ReLU 3 × 3 1 1 64 × 64 × 64
MaxPool – – – 32 × 32 × 64
Conv+BN+ReLU 3 × 3 1 1 32 × 32 × 64
Conv+BN+ReLU 3 × 3 1 1 32 × 32 × 64
MaxPool – – – 16 × 16 × 64
AdaptAvgPool+Flatten – – – 1024 × 1
FC+ReLU – – – 64 × 1
FC+ReLU – – – 64 × 1
FC – – – 2 × 1
Soft-max – – – 2 × 1

similar pipeline as is used in VGG [43] in which an image is first passed
through a stack of convolution (Conv) layers followed by a max-pooling
(MaxPool) layer for feature extraction. Then, the feature maps are flat-
tened after an adaptive average-pooling (AdaptAvgPool) operation, and
the obtained feature vectors are processed by several fully-connected
(FC) layers and a soft-max layer for classification. All convolution layers
use batch normalization (BN) and a rectified linear unit (ReLU) for the
nonlinearity. Apart from the first and second convolution layers that
contain filters of size 7 × 7 and 5 × 5 pixels for large receptive fields, all
other convolution layers use 3 × 3-pixel size filters. For all convolution
perations, we use one pixel stride, and the padding is selected such
hat the spatial resolution is preserved after convolution. The max-
ooling operation is performed over 2 × 2-pixel size windows with a
tride of 2, and the adaptive average-pooling layer pools any feature
ap to 4 × 4 pixels. Given an image patch of 128 × 128-pixel size,

he dimensions of the output feature map of each layer are shown in
able 4. The network is trained on the same 261,360 image patches as

n Section 3.1.2, and their corresponding ground-truth labels are shown
n Table 1. As we will demonstrate in Section 4.6, the use of BINet can
ignificantly improve the QM performance of the algorithm especially
hen asymmetrically-distorted images are presented.

Using the BINet to predict the label of an overall image follows the
ame procedure as that required when using the MLP. Accordingly, we
se the same approach as in Section 3.1.3 to evaluate the overall quality
f the cyclopean view (denoted by S𝑐𝑦𝑐), in which case all variables in
q. (16) are computed based upon 3D-vision distortion parameters. The
nly difference is the computation of D𝐺𝑅, which is given by

𝐺𝑅 =

{

D𝐺 , 𝑙2 = 0

D𝑅, 𝑙2 = 1
(26)

here 𝑙2 denotes the classification label predicted by the BINet. Since
here are two 𝑙2 labels corresponding to the two monocular views, the
abel of the lower-quality view is used as the label of the cyclopean
iew. The same principle is also applied to 𝑙1 in Eq. (16). We set

𝛽 = 0.15 in Eq. (18) to account for the decreased masking effect in 3D
vision. Also, we set DGR = DGR−0.1 in Eq. (16) such that the inaccuracy
of the VIF algorithm is taken into account (see [44] for more details).
For other parameters, the same values as stated in Section 3.1.3 are
adopted.

3.3. CNN-SIQE quality measurement

Given the three quality measurements S𝐿, S𝑅, and S𝑐𝑦𝑐 for the left,
right, and cyclopean views respectively, the final stage of CNN-SIQE
combines them into an overall quality measurement of the stereoscopic
image. First, we combine S𝐿 and S𝑅 by using an adaptive contrast-
weighting strategy. Specifically, we use a similar approach in [24] to
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compute image contrast which is given by
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⎥
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, (27)

where 𝐶𝐿∕𝑅(𝑏) denotes the RMS contrast computed for block 𝑏 (the total
number of blocks is 𝑁𝑏) in the left/right view by using the approach
in [45]; F𝐿∕𝑅(𝑝) denotes the sharpness value computed by applying the
FISH𝑏𝑏 algorithm to image patch 𝑝 in the left/right view (𝑁𝑝 is the total
number of patches). Note that when sharpness is computed, the same
image patches as described in Section 3.1.3 are selected.

Although contrast is an effective measurement to indicate the
weight of the dominant view when images are corrupted by noise/blur,
it does not work for JPEG/JPEG2000 compression. The reason is that,
given a 3D image with one view undistorted and the other view
JPEG/JPEG2000-compressed, the compressed view always dominates
the perception of the overall quality of the image (due to the uncom-
pensated blocking/ringing artifact), but its contrast is always similar
to that of the undistorted view. To emphasize this importance of the
JPEG/JPEG2000-compressed view in the QM process, we suppress the
weight of the other view via a sigmoid function previously defined in
Eq. (19).

Specifically, let 𝑤𝐿∕𝑅 denote the weight of the left/right view; let
𝑙𝐿∕𝑅1 and 𝑙𝐿∕𝑅2 denote the classification labels predicted by the MLP and
the BINet for the left/right views; and let D𝐿∕𝑅

𝑗𝑝𝑔 and D𝐿∕𝑅
𝑗2𝑘 denote the

quality degradations computed from the JPEG/JPEG2000 parameters
via Eqs. (13)–(14) for the left/right views. If 𝑆𝐿 > 𝑆𝑅, then 𝑤𝐿 = �̄�𝐿,
and the weight of the right view is computed by

𝑤𝑅 = �̄�𝑅 ⋅ 𝐶𝑅
1 ⋅ 𝐶𝑅

2 , (28)

where 𝐶𝑅
1 and 𝐶𝑅

2 denote two regularization factors designed for
PEG/JPEG2000 compression and are given by

𝑅
1 =

⎧

⎪

⎨

⎪

⎩

𝐴1∕[1 + 𝑒𝑡1
(

D𝐿
𝑗𝑝𝑔−𝑡

)

] +
(

1 − 𝐴1
)

, 𝑙𝐿1 = 2, 𝑙𝐿2 = 0

1, otherwise
(29)

𝑅
2 =

⎧

⎪

⎨

⎪

⎩

𝐴2∕[1 + 𝑒𝑡2
(

D𝐿
𝑗2𝑘−𝑡

)

] +
(

1 − 𝐴2
)

, 𝑙𝐿2 = 1

1, otherwise.
(30)

imilarly, if 𝑆𝐿 < 𝑆𝑅, then 𝑤𝑅 = �̄�𝑅, and the weight of the left view is
omputed by

𝐿 = �̄�𝐿 ⋅ 𝐶𝐿
1 ⋅ 𝐶𝐿

2 , (31)

here

𝐿
1 =

⎧

⎪

⎨

⎪

⎩

𝐴1∕[1 + 𝑒𝑡1
(

D𝑅
𝑗𝑝𝑔−𝑡

)

] +
(

1 − 𝐴1
)

, 𝑙𝑅1 = 2, 𝑙𝑅2 = 0

1, otherwise
(32)

𝐿
2 =

⎧

⎪

⎨

⎪

⎩

𝐴2∕[1 + 𝑒𝑡2
(

D𝑅
𝑗2𝑘−𝑡

)

] +
(

1 − 𝐴2
)

, 𝑙𝑅2 = 1

1, otherwise.
(33)

ote that the joint condition of 𝑙1 = 2 and 𝑙2 = 0 indicates that
mages are corrupted by blur and/or JPEG-compression distortion;
2 = 1 indicates that images are JPEG2000-compressed. Let S2𝐷 denote
he combined quality measurement obtained from the two monocular
iews; we compute S2𝐷 via

2𝐷 =
𝑤𝐿 ⋅ 𝑆𝐿 +𝑤𝑅 ⋅ 𝑆𝑅

𝑤𝐿 +𝑤𝑅
, (34)

In this paper, we empirically set 𝐴1 = 𝐴2 = 1, 𝑡1 = −30, 𝑡2 = −15, 𝑡 = 0.3
to help achieve the best performance.

The next step is to combine S2𝐷 with S𝑐𝑦𝑐 . Note that the subjec-
tive experiment described in Section 3.2.1 was conducted to investi-
gate the binocular rivalry properties of the HVS in perceiving mainly
10
asymmetrically-distorted stereoscopic images. Thus, we combine S2𝐷
with S𝑐𝑦𝑐 (which is computed based upon the results of the subjective
experiment) only when the distortion levels of the two views are
different. In this paper, the distortion similarity between the two views
is roughly estimated from their quality similarity which is given by

𝑟 =

(

2S𝐿S𝑅
S2𝐿 + S2𝑅

)2

. (35)

Consequently, the overall quality measurement of the stereoscopic
image, which we denote by S3𝐷, is computed by

S3𝐷 =

⎧

⎪

⎨

⎪

⎩

𝑆2𝐷, 𝑟 > 𝑇
√

S2𝐷 × S𝑐𝑦𝑐 , 𝑟 ≤ 𝑇
(36)

where 𝑇 = 0.95 is a threshold to indicate symmetric or asymmetric
distortion. Smaller values of S3𝐷 indicate greater stereoscopic image
quality.

4. Results

In this section, we examine and discuss the ability of CNN-SIQE to
predict the quality ratings from various 3D image datasets. We also
compare the performance of CNN-SIQE with existing SIQM approaches.

4.1. Training

Our CNN-SIQE model contains three neural networks and three SVR
models that need training. The three neural networks are FFENet, MLP,
and BINet; and the three SVR models are used to predict the distortion
parameters of the Gaussian blur, JPEG2000 compression, and white
noise, respectively. As mentioned in Sections 3.1.2 and 3.2.2, all three
networks were trained on the same 261,360 image patches corrupted
by four distortion types and their two combinations as shown in Ta-
ble 1. To train the three SVR models, 405 training data were collected
for each of the three distortion types in the subjective experiment
as mentioned in Section 3.2.1. Training of the three neural networks
was conducted on a remote server with four NVIDIA GeForce RTX
3090 GPUs; all other experiments, including the SVR model training
and database testing, were conducted on a local workstation with an
i9-9900K CPU (8-core, 3.6 GHz) and a GeForce RTX 2080 SUPER GPU.

Specifically, the three networks were trained by using the Adam
[46] optimizer (0.9 and 0.999 were used for the decay rates for the
first/second moment estimates, respectively; the default settings were
used for all other hyperparameters). The network parameters were
initialized with values sampled from a normal distribution 𝑁(1, 0.02).
The initial learning rate was set to 2 × 10−4, and was scaled down by a
factor of 0.9 after each epoch until 10−6. The batch size was set to
100 for training FFENet, 128 for training MLP, and 16 for training
BINet. Note that MLP takes as input the output of FFENet; thus, we
first trained FFENet, and then MLP by freezing the FFENet parameters.
Also note that when training BINet, image patches were randomly and
equally selected from the four ‘‘𝐿2 = 0’’ sets (shown in Table 1), and
the patch numbers of the two classes were also roughly the same to
prevent model bias caused by imbalanced classes. Thus, the training
data corresponding to the ‘‘𝐿2 = 0’’ label were changed dynamically
for every epoch. The L1 loss was used to train FFENet, and the cross-
entropy loss was used to train MLP and BINet. Consequently, it took
about five days to train FFENet for 90 epochs, 11 h to train BINet for
140 epochs, and 12 h to train MLP for 18 epochs before convergence.

For training the three SVR models, the Python version of LIB-
SVM [47] was employed, and the radial basis function kernel was used
as the kernel function. More details about training SVR models can be
found in [47,48].
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Table 5
Overall performances of CNN-SIQE and other IQM methods on the NBU-MDSID, LIVE 3D, and WaterlooIVC 3D datasets.

Chen Lin Shao SOIQE SBM SINQ DCNN StereoQA PADNet BSIQE QAC NIQE ILNIQE SISBLIM BPRI BMPRI M-3D CNN-SIQE

PLCC NBUMD-I 0.915 0.931 0.827 0.807 0.578 0.828 0.755 0.834 0.718 0.640 0.845 0.926 0.708 0.599 0.843 0.900 0.948 0.939
NBUMD-II 0.835 0.832 0.732 0.858 0.425 0.685 0.635 0.675 0.547 0.490 0.724 0.849 0.716 0.479 0.664 0.801 0.900 0.913
LIVE-I 0.930 0.872 0.933 0.799 0.742 0.901 0.866 0.908 0.867 – 0.893 0.858 0.897 0.820 0.894 0.918 0.924 0.926
LIVE-II 0.911 0.655 0.819 0.824 – – – – – 0.723 0.846 0.832 0.784 0.641 0.870 0.848 0.911 0.913
WIVC-I 0.711 0.688 0.833 0.830 0.157 0.419 0.667 0.702 0.492 0.178 0.741 0.776 0.731 0.894 0.783 0.830 0.931 0.949
WIVC-II 0.573 0.578 0.737 0.751 0.035 0.356 0.640 0.643 0.474 0.148 0.702 0.668 0.653 0.802 0.698 0.777 0.908 0.931

Average 0.806 0.754 0.810 0.810 0.314 0.526 0.592 0.624 0.513 0.359 0.789 0.814 0.745 0.705 0.788 0.843 0.919 0.928

SROCC NBUMD-I 0.899 0.917 0.807 0.766 0.671 0.822 0.737 0.835 0.698 0.648 0.855 0.901 0.592 0.706 0.837 0.853 0.934 0.920
NBUMD-II 0.822 0.797 0.721 0.822 0.501 0.676 0.619 0.671 0.522 0.513 0.740 0.840 0.682 0.587 0.675 0.780 0.884 0.889
LIVE-I 0.903 0.830 0.904 0.870 0.738 0.849 0.885 0.873 0.828 – 0.891 0.825 0.870 0.786 0.888 0.892 0.890 0.890
LIVE-II 0.904 0.639 0.797 0.815 – – – – – 0.661 0.828 0.820 0.764 0.528 0.859 0.845 0.903 0.911
WIVC-I 0.626 0.611 0.817 0.783 0.069 0.259 0.472 0.667 0.415 0.148 0.547 0.601 0.696 0.872 0.718 0.808 0.918 0.937
WIVC-II 0.489 0.479 0.721 0.717 0.183 0.150 0.530 0.628 0.387 0.139 0.541 0.515 0.618 0.778 0.660 0.763 0.885 0.929

Average 0.767 0.705 0.791 0.794 0.357 0.451 0.539 0.609 0.471 0.347 0.730 0.745 0.702 0.708 0.769 0.821 0.901 0.913

KROCC NBUMD-I 0.716 0.738 0.608 0.570 0.515 0.607 0.519 0.620 0.489 0.472 0.651 0.718 0.427 0.631 0.631 0.648 0.770 0.745
NBUMD-II 0.634 0.611 0.534 0.637 0.360 0.482 0.440 0.481 0.354 0.357 0.548 0.649 0.488 0.530 0.489 0.586 0.704 0.708
LIVE-I 0.726 0.637 0.734 0.681 0.503 0.657 0.685 0.684 0.623 – 0.704 0.625 0.676 0.589 0.701 0.708 0.707 0.708
LIVE-II 0.731 0.480 0.605 0.651 – – – – – 0.472 0.630 0.612 0.566 0.395 0.661 0.644 0.720 0.732
WIVC-I 0.469 0.458 0.636 0.596 0.062 0.172 0.319 0.483 0.305 0.111 0.393 0.456 0.523 0.706 0.542 0.638 0.764 0.791
WIVC-II 0.346 0.344 0.535 0.527 0.017 0.110 0.369 0.440 0.276 0.099 0.385 0.366 0.451 0.596 0.489 0.592 0.707 0.770

Average 0.597 0.539 0.605 0.608 0.237 0.332 0.388 0.449 0.338 0.248 0.548 0.566 0.520 0.572 0.582 0.634 0.727 0.742

RMSE NBUMD-I 3.860 3.484 5.377 5.658 9.573 5.363 6.282 5.281 6.659 7.356 5.121 3.608 6.765 7.663 5.154 4.174 3.047 3.295
NBUMD-II 6.610 6.669 12.020 6.172 12.020 8.760 9.281 8.872 10.063 10.479 8.294 6.349 8.391 10.552 8.984 7.191 5.251 4.915
LIVE-I 5.723 7.620 5.576 15.532 10.424 6.746 7.774 6.501 7.740 – 6.988 7.979 6.858 8.895 6.974 6.157 5.949 5.884
LIVE-II 4.619 8.452 6.409 6.338 – – – – – 7.724 5.969 6.200 6.942 8.583 5.515 5.923 4.613 4.562
WIVC-I 11.936 12.319 9.397 9.457 16.950 15.405 12.641 12.085 14.777 16.696 11.395 10.704 11.583 7.606 16.968 9.469 6.174 5.352
WIVC-II 16.627 16.556 13.705 13.403 20.286 18.962 15.593 15.544 17.865 20.070 14.459 15.101 15.377 12.116 20.294 12.784 8.488 7.399
,

4.2. Testing

Three datasets which include the NBU-MDSID [21,22], LIVE 3D [49]
and WaterlooIVC 3D [50] datasets were used for QM performance
evaluation. In addition, we generated the forth dataset from the se-
lected 224 pristine images in the Flickr1024 dataset [51] to test the
performance of the three network models (see Section 4.5 for more
details). Each SIQM dataset consists of two phases; we denote them by
NBUMD-I/II, LIVE-I/II, and WIVC-I/II, respectively. Among the six sub-
datasets, NBUMD-I and LIVE3D-I contain only symmetrically-distorted
3D images, while the others contain both symmetrically and asymmet-
rically distorted images. Multiple distortions (i.e., GB+WN+JPEG) are
found in NBU-MDSID, whereas images in LIVE 3D and WaterlooIVC
3D contain only single distortions. All distorted images in NBU-MDSID
were used for testing, while images with the same four distortion types
in LIVE 3D and WaterlooIVC 3D were tested. Consequently, the testing
data used for QM include 270 images from NBUMD-I, 300 images
from NBUMD-II, 285 images from LIVE-I, 288 images from LIVE-II, 258
images from WIVC-I, and 340 images from WIVC-II.

We compared CNN-SIQE with various IQM models. The four full-
reference (FR) IQM models include: the cyclopean MS-SSIM (Cyc-
MS) [52], frequency-integrated PSNR (FI-PSNR) [53], BJND [54], and
SOIQE [55]. The 13 NR IQM models include: the saliency-guided binoc-
ular model (SBM) [56], SINQ [57], deep convolution neural network
(DCNN) [11], StereoQA [10], PADNet [58], BSIQE [13], QAC [59],
NIQE [60], IL-NIQE [61], SISBLIM [62], BPRI [63], BMPRI [64], and
MUSIQUE-3D (denoted by ‘‘M-3D’’ in Tables 5 and 6) [24]. The former
six opinion-aware SIQM methods (i.e., SBM, SINQ, DCNN, StereoQA,
PADNet, and BSIQE) were trained on either Phase I or Phase II of
the LIVE 3D dataset. For the extra opinion-unaware 2D-IQM methods
(i.e., QAC, NIQE, ILNIQE, SISBLIM, BPRI, and BMPRI), we took as
the 3D quality a weighted combination of the quality measurements
computed for the two views, and the weighting/combination strategy
followed the same technique as in [45]. Four criteria including the
Pearson Linear Correlation Coefficient (PLCC), Spearman Rank-Order
Correlation Coefficient (SROCC), Kendall Rank-Order Correlation Co-
efficient (KROCC), and Root Mean Square Error (RMSE) were used
to quantify the performance of each IQM model. Note that a logistic
transform was applied prior to computing these measures, yet only
11

PLCC and RMSE are affected.
Fig. 9. Scatter plots of predicted (after logistic transform) vs. subjective quality ratings
for CNN-SIQE on different 3D image quality datasets.

4.3. Overall performance

The overall performance of CNN-SIQE and other FR/NR IQM meth-
ods are presented in Table 5, in which the average values of
PLCC/SROCC/KROCC were weighted by the numbers of distorted
images tested from each sub-dataset. Due to the different MOS/DMOS
ranges for different datasets, the average RMSE values were not com-
puted. Moreover, because SBM, SINQ, DCNN, StereoQA, and PADNet
were trained on LIVE-II, the testing results of these methods on that
dataset are not presented. The same restriction was used for BSIQE,
which was trained on LIVE-I. The best results achieved by the NR IQM
methods are shown in bold. The best results achieved by the FR IQM
methods are shown in italics and bold.

As shown in Table 5, CNN-SIQE performs quite well in quality
measurement of both MDSIs and SDSIs. The six opinion-aware NR
SIQM methods were trained on singly-distorted images (i.e., LIVE-I/II),
and thus their weak performances on NBUMD-I/II are as expected.
Yet, these methods also perform rather poorly on the WaterlooIVC
3D dataset which contains only singly-distorted stereoscopic images.
This fact indicates that training on one dataset does not guarantee
good performance on other datasets because different datasets vary in
terms of image content, distortion types and levels, and quality-judging
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Table 6
Performances of CNN-SIQE and other IQM methods tested on different distortion types in the LIVE 3D and WaterlooIVC 3D datasets.

Chen Lin Shao SOIQE SBM SINQ DCNN StereoQA PADNet BSIQE QAC NIQE ILNIQE SISBLIM BPRI BMPRI M-3D CNN-SIQE

PLCC LIVE-I WN 0.934 0.907 0.932 0.883 0.541 0.895 0.757 0.895 0.774 – 0.824 0.918 0.918 0.932 0.903 0.941 0.927 0.922
JP2K 0.908 0.838 0.919 0.884 0.864 0.885 0.937 0.931 0.933 – 0.919 0.751 0.854 0.845 0.904 0.917 0.891 0.924
JPEG 0.591 0.208 0.638 0.593 0.369 0.618 0.748 0.605 0.461 – 0.743 0.613 0.580 0.706 0.685 0.588 0.708 0.663
GB 0.929 0.946 0.940 0.864 0.697 0.881 0.877 0.904 0.866 – 0.926 0.915 0.919 0.940 0.790 0.864 0.924 0.903

LIVE-II WN 0.956 0.893 0.799 0.950 – – – – – 0.579 0.706 0.893 0.940 0.788 0.894 0.903 0.927 0.912
JP2K 0.838 0.742 0.793 0.919 – – – – – 0.759 0.788 0.637 0.780 0.548 0.831 0.807 0.857 0.907
JPEG 0.833 0.597 0.780 0.866 – – – – – 0.682 0.844 0.672 0.719 0.812 0.861 0.624 0.862 0.841
GB 0.962 0.584 0.956 0.777 – – – – – 0.909 0.953 0.946 0.931 0.955 0.893 0.926 0.973 0.974

WIVC-I WN 0.775 0.768 0.815 0.863 0.454 0.457 0.459 0.675 0.775 0.789 0.633 0.664 0.829 0.840 0.925 0.892 0.910 0.925
JPEG 0.941 0.970 0.833 0.930 0.623 0.341 0.535 0.781 0.198 0.437 0.596 0.809 0.729 0.879 0.807 0.782 0.883 0.927
GB 0.595 0.668 0.907 0.886 0.331 0.535 0.810 0.817 0.850 0.109 0.775 0.894 0.924 0.929 0.903 0.858 0.966 0.960

WIVC-II WN 0.571 0.568 0.757 0.782 0.471 0.337 0.539 0.632 0.601 0.636 0.515 0.404 0.800 0.839 0.749 0.695 0.842 0.900
JPEG 0.819 0.923 0.774 0.908 0.227 0.122 0.520 0.664 0.040 0.473 0.583 0.742 0.695 0.777 0.763 0.706 0.814 0.944
GB 0.292 0.459 0.886 0.777 0.300 0.439 0.820 0.835 0.836 0.009 0.793 0.791 0.834 0.875 0.944 0.878 0.950 0.953

SROCC LIVE-I WN 0.948 0.928 0.930 0.925 0.033 0.910 0.619 0.921 0.698 – 0.855 0.914 0.926 0.931 0.928 0.937 0.935 0.920
JP2K 0.896 0.839 0.883 0.901 0.874 0.819 0.919 0.882 0.865 – 0.917 0.744 0.845 0.853 0.888 0.886 0.869 0.899
JPEG 0.558 0.207 0.611 0.618 0.434 0.561 0.730 0.560 0.370 – 0.701 0.597 0.587 0.678 0.639 0.506 0.673 0.609
GB 0.926 0.935 0.910 0.908 0.792 0.882 0.884 0.901 0.897 – 0.894 0.881 0.885 0.901 0.688 0.764 0.879 0.899

LIVE-II WN 0.955 0.907 0.807 0.963 – – – – – 0.399 0.686 0.895 0.948 0.863 0.904 0.898 0.917 0.915
JP2K 0.833 0.719 0.788 0.915 – – – – – 0.828 0.782 0.632 0.768 0.634 0.843 0.814 0.860 0.924
JPEG 0.840 0.613 0.745 0.833 – – – – – 0.721 0.809 0.637 0.663 0.871 0.851 0.679 0.832 0.837
GB 0.910 0.711 0.939 0.820 – – – – – 0.825 0.846 0.864 0.889 0.900 0.777 0.792 0.877 0.914

WIVC-I WN 0.837 0.784 0.829 0.912 0.489 0.768 0.655 0.867 0.757 0.807 0.873 0.889 0.807 0.805 0.923 0.902 0.898 0.924
JPEG 0.935 0.960 0.828 0.919 0.749 0.290 0.585 0.819 0.052 0.554 0.797 0.861 0.726 0.876 0.839 0.808 0.862 0.911
GB 0.600 0.758 0.924 0.932 0.037 0.268 0.562 0.805 0.851 0.540 0.451 0.935 0.945 0.932 0.869 0.790 0.959 0.960

WIVC-II WN 0.783 0.797 0.799 0.893 0.459 0.721 0.700 0.811 0.619 0.660 0.903 0.834 0.797 0.839 0.812 0.804 0.852 0.934
JPEG 0.859 0.903 0.727 0.875 0.231 0.111 0.649 0.664 0.020 0.529 0.596 0.680 0.651 0.733 0.753 0.701 0.822 0.928
GB 0.312 0.669 0.912 0.823 0.279 0.137 0.591 0.810 0.838 0.277 0.717 0.936 0.883 0.880 0.942 0.891 0.937 0.943

KROCC LIVE-I WN 0.803 0.761 0.775 0.765 0.031 0.735 0.398 0.747 0.473 – 0.646 0.735 0.759 0.767 0.759 0.780 0.778 0.756
JP2K 0.714 0.639 0.696 0.727 0.726 0.610 0.755 0.685 0.675 – 0.747 0.523 0.635 0.665 0.696 0.696 0.686 0.723
JPEG 0.372 0.132 0.445 0.423 0.336 0.388 0.526 0.380 0.249 – 0.499 0.414 0.402 0.480 0.447 0.344 0.476 0.414
GB 0.772 0.786 0.739 0.746 0.648 0.697 0.719 0.727 0.721 – 0.713 0.687 0.705 0.717 0.491 0.578 0.687 0.701

LIVE-II WN 0.815 0.743 0.635 0.833 – – – – – 0.284 0.500 0.714 0.800 0.682 0.728 0.725 0.761 0.743
JP2K 0.642 0.541 0.601 0.752 – – – – – 0.634 0.601 0.437 0.573 0.473 0.664 0.628 0.676 0.758
JPEG 0.636 0.428 0.546 0.638 – – – – – 0.525 0.620 0.457 0.486 0.690 0.656 0.483 0.643 0.640
GB 0.744 0.534 0.789 0.620 – – – – – 0.615 0.626 0.661 0.714 0.716 0.552 0.559 0.689 0.754

WIVC-I WN 0.674 0.602 0.633 0.751 0.343 0.573 0.470 0.692 0.571 0.588 0.701 0.717 0.636 0.640 0.775 0.738 0.723 0.775
JPEG 0.788 0.841 0.659 0.771 0.573 0.198 0.433 0.651 0.041 0.418 0.656 0.720 0.532 0.732 0.694 0.668 0.689 0.762
GB 0.495 0.594 0.760 0.783 0.011 0.140 0.418 0.623 0.661 0.396 0.306 0.787 0.798 0.782 0.695 0.607 0.826 0.821

WIVC-II WN 0.609 0.616 0.636 0.726 0.376 0.526 0.503 0.634 0.439 0.473 0.736 0.656 0.610 0.667 0.679 0.665 0.677 0.791
JPEG 0.662 0.728 0.555 0.705 0.190 0.088 0.494 0.500 0.007 0.382 0.433 0.504 0.479 0.570 0.589 0.539 0.633 0.773
GB 0.226 0.490 0.741 0.635 0.225 0.048 0.429 0.635 0.643 0.175 0.519 0.783 0.708 0.702 0.792 0.718 0.780 0.801
standards. In comparison, the opinion-unaware methods (e.g., NIQE,
BPRI, and BMPRI) seem to be more effective, suggesting that a model
not trained on human subjective ratings might be the best option to
solve the SIQM problem, given the limited quantity of the existing
3D image databases. Compared with MUSIQUE-3D, we observe that
the advantage of CNN-SIQE is not quite impressive when tested on
symmetrically-distorted images (e.g., NBUMD-I and LIVE-I). The reason
is that the proposed human subjective experiment was mainly designed
for modeling the properties of the HVS when asymmetrically-distorted
images are viewed, and thus the trained SVR models do not actually
help when symmetric distortions are present according to Eq. (36).
Despite that, the result is still very competitive and promising, and we
believe that the slight performance drop is justified given the markedly
increased algorithm speed as demonstrated in Table 10.

Fig. 9 shows scatter plots of predicted (after logistic transform) vs.
subjective quality ratings for the proposed CNN-SIQE algorithm on all
six datasets (more visual result comparisons can be viewed in the online
supplement at https://vinelab.jp/cnnsiqe/). In each plot, the horizontal
axis denotes the logistic-transformed quality prediction; the vertical
axis denotes the subjective ratings (DMOS values for NBU-MDSID and
LIVE 3D; MOS values for WaterlooIVC). The scatter plots generally
exhibit homoscedasticity, indicating that the algorithm’s performance is
consistent across different quality levels. In summary, by investigating
the testing results on all dataset images, CNN-SIQE appears to offer
better QM performance over other NR IQM methods.

4.4. Performance on individual distortion type

To evaluate the variation in performance as a function of distortion
12

type, we also report the PLCC, SROCC, and KROCC values of each IQM
method tested on the four individual distortion types in Table 6. Again,
the results of SBM, SINQ, DCNN, StereoQA, and PADNet on LIVE-II,
and the results of BSIQE on LIVE-I are not presented, because the
corresponding dataset images were used for training. Entries shown in
italics denote FR IQM methods. Italicized entries shown in bold denote
the best-performing FR IQM method. Entries shown in bold denote the
best-performing NR IQM method.

Observe from Table 6 that CNN-SIQE provides better or competitive
predictions as compared with other IQM methods on most distor-
tion types. Specifically, compared with FR SIQM methods, observe
that some methods perform quite well on individual distortion types
(e.g., SOIQE on LIVE-II and WIVC-I). However, their weak overall
performances in Table 5 suggest that these methods apparently struggle
to bring all quality measures to the same scale for the whole dataset.
Compared with NR SIQM methods, especially the opinion-aware ap-
proaches, we observe a significant performance improvement on WIVC-
I/II, suggesting that our method has better generalization and ro-
bustness. In particular, compared with MUSIQUE-3D, an equally-good
performance is observed on LIVE-I which contains only symmetrically-
distorted images, and much better results are observed on LIVE-II,
WIVC-I, and WIVC-II, all of which contain both symmetrically and
asymmetrically distorted images. These observations can be attributed
to the same symmetric vs. asymmetric argument described in Sec-
tion 4.3.

To further explore the effectiveness of using distortion parameter
values as indicators of image quality, we report the PLCC, SROCC,
and KROCC values computed between the estimated distortion param-
eters and the MOS/DMOS values in Table 7. Note that in this test,
only singly-distorted images were considered such that the correla-
tion between a specific distortion parameter and the image quality

https://vinelab.jp/cnnsiqe/
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Table 7
Correlation between human subjective ratings and distortion parameters estimated for
the different distortion type images in the LIVE 3D and WaterlooIVC 3D datasets.

2D 3D

PLCC SROCC KROCC PLCC SROCC KROCC

LIVE-I WN 0.925 0.921 0.756 0.921 0.920 0.755
JP2K 0.919 0.891 0.709 0.920 0.892 0.709
JPEG 0.632 0.603 0.412 0.620 0.586 0.401
GB 0.944 0.915 0.747 0.929 0.904 0.719

LIVE-II WN 0.904 0.911 0.737 0.922 0.922 0.757
JP2K 0.896 0.897 0.719 0.925 0.923 0.756
JPEG 0.828 0.849 0.647 0.704 0.745 0.563
GB 0.937 0.879 0.696 0.925 0.924 0.764

WIVC-I WN 0.943 0.939 0.790 0.894 0.875 0.708
JPEG 0.910 0.887 0.710 0.881 0.870 0.683
GB 0.875 0.947 0.805 0.846 0.943 0.800

WIVC-II WN 0.943 0.932 0.792 0.871 0.868 0.691
JPEG 0.911 0.887 0.707 0.881 0.872 0.686
GB 0.858 0.937 0.789 0.814 0.912 0.751

can be easily modeled. In Table 7, entries of ‘‘2D’’ denote the cor-
relation between the MOS/DMOS values and the linearly-combined
2D-distortion parameters, where the weights were computed based on
Eqs. (28) and (31); entries of ‘‘3D’’ denote the correlation between the
MOS/DMOS values and the 3D-vision distortion parameters predicted
by the SVR models. As can be observed, the estimated distortion param-
eters correlate well with human subjective ratings for most distortion
types, following a similar trend as Table 6. These results demon-
strate the rationality and feasibility of measuring the image quality in
terms of distortion parameters. In summary, by investigating the QM
performance on individual distortion types, CNN-SIQE still performs
competitively well.

4.5. Performance of individual network model

In CNN-SIQE, three network models are employed, among which
MLP and BINet are the classification models, and FFENet is the regres-
sion model. As the ground-truth distortion parameters of the images
in the three IQM datasets (i.e., NBU-MDSID [21,22], LIVE 3D [49],
and WaterlooIVC 3D [50]) are publicly unavailable, we generated our
own dataset to evaluate the performance of the three trained networks.
Specifically, for each of the 224 pristine images selected from the test
and validation sets of the Flickr1024 dataset [51], random distortion
levels corresponding to the six distortion types in Table 1 were applied.
As CNN-SIQE rescales large-size images into a fixed size to reduce the
computational complexity, these 224 pristine images were also rescaled
(if needed) before being distorted in order to avoid the scaling problem
mentioned in Section 3.1.2, and consequently the ground-truth distor-
tion parameters of each image could easily be accessed. Note that in our
experiment the two views of each stereoscopic image share the same
distortion type but different distortion parameter values. Accordingly,
we generated in total 1,344 distorted stereopairs, each of which is
associated with eight distortion parameters and two classification labels
(i.e., 𝐿1 and 𝐿2 in Table 1).

Table 8 shows the performance of the three network models tested
n the 1,344 distorted stereopairs. Entries of MLP and BINet denote
he percentages of images with the distortion type in the row that were
lassified to have labels in the column; and the sum of each row for
LP/BINet equals one. Entries of FFENet denote the SROCC values

omputed between the estimated distortion parameters and the ground-
ruth; each value indicates how accurate the parameter of distortion in
he column can be predicted for the singly/multiply-distorted images
n the row. As can be observed, all network models perform quite well
13

hen images are singly distorted, but less effective when images are
Table 8
Performances of MLP, BINet, and FFENet tested on the 1344 distorted stereopairs
generated from the 224 pristine images in Flickr1024 [51].

Distortion type MLP BINet FFENet

𝐿1 = 0 𝐿1 = 1 𝐿1 = 2 𝐿2 = 0 𝐿2 = 1 GB JPEG JP2K WN

GB 0.000 0.011 0.989 0.998 0.002 0.995 – – –
JPEG 0.016 0.000 0.984 1.000 0.000 – 0.981 – –
JP2K 0.000 0.000 1.000 0.002 0.998 – – 0.972 –
WN 0.989 0.002 0.009 1.000 0.000 – – – 0.990
JP2K+WN 0.487 0.513 0.000 0.449 0.551 – – 0.408 0.932
GB+JPEG+WN 0.225 0.770 0.004 1.000 0.000 0.662 0.575 0.000 0.935

Table 9
Performances of applying different quality-weighting strategies and different stages of
CNN-SIQE to the NBU-MDSID, LIVE 3D, and WaterlooIVC 3D datasets.

S2𝐷(𝑎𝑣𝑔) S2𝐷(𝑐𝑠𝑡) S2𝐷 S3𝐷(𝑤𝑒) S3𝐷(𝑤𝑏) S𝑐𝑦𝑐 S3𝐷

PLCC NBUMD-I 0.940 0.940 0.940 0.915 0.939 0.905 0.939
NBUMD-II 0.931 0.919 0.911 0.913 0.913 0.904 0.913
LIVE-I 0.923 0.923 0.922 0.925 0.926 0.907 0.926
LIVE-II 0.817 0.860 0.881 0.920 0.907 0.914 0.913
WIVC-I 0.812 0.890 0.912 0.949 0.942 0.864 0.949
WIVC-II 0.752 0.871 0.920 0.931 0.922 0.824 0.931

SROCC NBUMD-I 0.920 0.920 0.920 0.896 0.920 0.887 0.920
NBUMD-II 0.889 0.888 0.886 0.887 0.891 0.875 0.889
LIVE-I 0.889 0.889 0.889 0.886 0.889 0.874 0.890
LIVE-II 0.794 0.854 0.876 0.917 0.903 0.908 0.911
WIVC-I 0.807 0.861 0.899 0.930 0.930 0.840 0.937
WIVC-II 0.760 0.854 0.919 0.930 0.921 0.803 0.929

KROCC NBUMD-I 0.745 0.745 0.745 0.710 0.745 0.697 0.745
NBUMD-II 0.713 0.708 0.704 0.704 0.713 0.691 0.708
LIVE-I 0.706 0.706 0.706 0.703 0.708 0.685 0.708
LIVE-II 0.601 0.656 0.681 0.736 0.719 0.731 0.732
WIVC-I 0.625 0.689 0.723 0.783 0.779 0.664 0.791
WIVC-II 0.572 0.681 0.752 0.774 0.758 0.616 0.770

RMSE NBUMD-I 3.271 3.271 3.271 3.868 3.292 4.078 3.295
NBUMD-II 4.375 4.733 4.963 4.899 4.896 5.133 4.916
LIVE-I 5.992 5.966 6.012 5.914 5.884 6.557 5.884
LIVE-II 6.446 5.713 5.299 4.378 4.710 4.539 4.562
WIVC-I 9.914 7.727 6.950 5.351 5.679 8.535 5.352
WIVC-II 13.376 9.964 7.974 7.414 7.851 11.500 7.399

multiply distorted. The results are as expected, because the artifacts
caused by the previously added distortions can be easily destroyed by
the subsequently added distortions. For example, the finally-introduced
noise distortion will make it difficult for the algorithm to detect the
blurring/blocking artifacts, let alone predict their intensities. Yet our
method still seems to be reasonable, as it mimics the properties of
the HVS by analyzing the most apparent distortions, whose classifi-
cation labels and intensity parameters can be well estimated even in
multiple-distortion scenarios.

4.6. Ablation study

We performed an ablation study to analyze the contributions of
different stages in CNN-SIQE, as well as to investigate the effective-
ness of the proposed quality-weighting strategy for the SIQM task.
Accordingly, two extra weighting strategies (i.e., average weighting and
contrast weighting using only Eq. (27) to compute the weight) were
investigated; the QM performances corresponding to the first stage of
CNN-SIQE using the three different weighting strategies are reported
(denoted by S2𝐷(𝑎𝑣𝑔), S2𝐷(𝑐𝑠𝑡), and S2𝐷, respectively). We also report the
QM performance of CNN-SIQE without using BINet [in which case D𝐺𝑅
in Eq. (26) was computed as the average of D𝐺 and D𝑅; denoted by
S3𝐷(𝑤𝑏)], and without using the equivalent blur/JP2K parameters for
training FFENet and MLP [in which case D𝐺𝑅 in Eqs. (16) and (26) were
computed as the maximum value of D𝐺 and D𝑅; denoted by S3𝐷(𝑤𝑒)].
All variant models were tested on the same three datasets, and with
the same parameter settings. Results in terms of PLCC, SROCC, and
KROCC are shown in Table 9, where S𝑐𝑦𝑐 and S3𝐷 denote, respectively,
the second and final stages of CNN-SIQE for reference.

As can be observed, the second stage of CNN-SIQE can significantly
improve the overall SIQM performance when testing on asymmetrically-
distorted images, demonstrating that both stages are crucial. However,
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Table 10
Runtimes in seconds/image for eight NR SIQM algorithms as a function of image size.

180 × 320 360 × 640 540 × 960 1080 × 1920

SBM [56] 0.401 1.028 2.040 7.835
SINQ [57] 0.464 1.955 4.196 18.203
DCNN [11] 0.007 0.012 0.024 0.104
StereoQA [10] 0.009 0.038 0.085 0.336
PADNet [58] – 0.091 0.090 0.095
BSIQE [13] 0.110 0.180 0.300 1.081
MUSIQUE-3D [24] 0.351 1.171 2.504 10.686
CNN-SIQE 0.056 0.257 0.577 0.577

we do observe that when testing on NBUMD-I and LIVE-I, which
contain only symmetrically-distorted images, the second stage of CNN-
SIQE is of little help and may even harm the performance. We suspect
that this finding is due to the fact that the subjective experiment
described in Section 3.2.1 used only asymmetrically-distorted image
data to train the SVM models. Thus, a threshold in Eq. (36) is required
to distinguish between symmetrically and asymmetrically-distorted im-
ages in order to achieve decent performance on both types of distortion.
Comparing with S3𝐷(𝑤𝑏), we conclude that using BINet can help im-
rove the performance of CNN-SIQE especially when asymmetrically-
istorted images are presented. Meanwhile, the performance drop on
BUMD for S3𝐷(𝑤𝑒) seems to indicate that an equivalent blur/JP2K
arameter setting for JP2K/blur images can benefit the training process
specially when multiple distortions are observed. As for the different
uality-weighting strategies, we observe that the proposed adaptive
ontrast-weighting strategy which takes into account both image con-
rast and the characteristics of different distortion types is the best
hoice to help achieve equally-good performance on most datasets.

.7. Computational complexity

In this section, we compare the running time of different NR SIQM
ethods on different-sized images to analyze the computational com-
lexity of the proposed method. Specifically, four different image sizes
ncluding 180×320, 360 × 640, 540×960, and 1080 × 1920 pixels were
sed, and all times were measured by executing unoptimized MATLAB
ode or Python code on the same workstation as described in Sec-
ion 4.1. The average runtime of each algorithm tested for 30 trials are
hown in Table 10. Note that PADNet was applied to image patches of
56 × 256-pixel size, and thus its runtime on 180 × 320-pixel images
s not available.

As shown in Table 10, all CNN-based SIQM models run much faster
han the traditional SVM-based methods, which is as expected due
o the GPU acceleration. Our method runs a bit slower than most of
he other CNN-based methods because of the time needed to compute
he RMS contrast of the two views (whereas in other approaches only
uality scores are predicted by the corresponding network). Note that
he runtime of CNN-SIQE does not change when images become larger
ecause large-sized images are reshaped to a fixed size before being
rocessed. Given the increased QM performance of CNN-SIQE vs. other
NN-based opinion-aware methods, as well as the much increased
unning efficiency as compared with MUSIQUE-3D [24], we believe
hat the time cost can be justified.

. Conclusion

We presented an NR approach for quality measurement of multiply
nd singly distorted stereoscopic images. Our method, called CNN-
IQE, employs (1) an FFENet for distortion parameter estimation of the
wo monocular views, (2) SVR models for distortion parameter estima-
ion of the cyclopean view, and (3) an MLP, BINet, and an adaptive
ontrast-weighting strategy for quality combination and estimation. All
14

f the three strategies give rise to a much faster and effective NR
IQM technique, which demonstrated better and/or highly competitive
erformance in comparison with other methods on various stereoscopic
mage quality datasets.

Yet, despite the effectiveness of CNN-SIQE, there is still room to
urther improve the robustness of our method because its performance
id indeed decrease for some distortion types in some databases. In
act, the issue of robustness commonly exists in the NR SIQM field,
ince different 3D image quality datasets vary significantly in image
ontent, in distortion types/levels, and even in the subjective quality-
ating standards, making it difficult for one algorithm to outperform all
thers on all images/distortion types on all datasets. Also, our current
odel considers only four distortion types and their combinations;
hether or not it can be generalized to work on other distortion types

equires further investigation. Thus, future work might focus on the
evelopment of alternative training strategies and/or adaptive network
rchitectures that could possibly help push SIQM toward achieving
qually competitive performance on all different dataset images. Future
ork could also involve building a more generalized NR SIQM tech-
ique to handle more distortion types (e.g., contrast change and other
eal-world distortions), thus increasing its applicability to a wider range
f usage scenarios.
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