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ABSTRACT

In this paper, we propose a new method for blind/no-reference image quality assessment based on the log-
derivative statistics of natural scenes. The new method, called DErivative Statistics-based Image QUality Eval-
uator (DESIQUE), extracts image quality-related statistical features at two image scales in both the spatial and
frequency domains, upon which a two-stage framework is employed to evaluate image quality. In the spatial
domain, normalized luminance values of an image are modeled in two ways: point-wise based statistics for sin-
gle pixel values and pairwise-based log-derivative statistics for the relationship of pixel pairs. In the frequency
domain, log-Gabor filters are used to extract the high frequency component of an image, which is also modeled
by the log-derivative statistics. All of these statistics are characterized by a generalized Gaussian distribution
model, the parameters of which form the underlying features of the proposed method. Experiment results show
that DESIQUE not only leads to considerable performance improvements, but also maintains high computational
efficiency.
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1. INTRODUCTION

In recent years, image quality assessment (IQA) has become an important issue in many fields and applications
such as image acquisition, transmission, compression, restoration and enhancement. As the ultimate consumers,
humans can easily give subjective scores to measure the qualities of images they observe. However, it is a
challenging work to embed such a mechanism into an image processing system whose goal is to maximize visual
quality at a given cost. Therefore, an automatic quality measurement method that can give scores to images in
a meaningful agreement with subjective judgment of human being is needed.

While full-reference (FR) and reduced-reference (RR) IQA algorithms provide a useful and effective way to
evaluate quality of distorted images, in many cases however, the reference image or even the partial information
of images are unknown, in which case a no-reference (NR) IQA algorithm is desired. NR IQA algorithms can be
further classified into distortion-specific and non-distortion-specific, based on the prior knowledge of the distortion
type. Most existing NR IQA methods are distortion-specific, assuming that the distortion type is known, such as
the white noise and blurring (e.g., Refs. 1–4), JPEG/JPEG2000 (e.g., Refs. 5–16). This underlying assumption
limits the application domain of these algorithms. Non-distortion-specific algorithms do not consider the prior
knowledge of distortion type, but instead they give quality scores assuming that image to be evaluated has a same
distortion type as those in the training database. These methods usually involve machine learning techniques,
where distinct features related to image quality are extracted to train learning models and then these models
are used to evaluate the quality of testing images.

In this paper, we propose a non-distortion-specific IQA method, called DErivative Statistics-based Image
QUality Evaluator (DESIQUE), which extracts log-derivative statistics of natural images in both the spatial
and frequency domain. In the spatial domain, normalized luminance coefficients are modeled in two ways:
(1) point-wise based statistics for single pixel values (following Ref. 17), and (2) pairwise-based log-derivative
statistics for the relationship of pixel pairs. In the frequency domain, log-derivative statistics are applied to the
magnitudes of log-Gabor filter band coefficients to characterize the distribution of the high spatial frequencies
at two orientations (horizontal and vertical). All the statistics extracted can be characterized by a generalized
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Gaussian distribution (GGD) model which has been used before to model the subband statistics of natural images
in IQA.18,19 The DESIQUE analyzes images over two scales and captures 64 features in total (32 features for
each scale) to predict the image quality using the two-stage framework from Refs. 17 and 19. We show that the
proposed method correlates highly with human subjective assessment of image qualities on many databases.

This paper is organized as follows. In Section 2 we review the previous work in non-distortion-specific NR
IQA algorithms. In Section 3 we provide detailed descriptions on how the log-derivative statistics based features
are extracted, upon which image quality is evaluated. We present experiment results on different image database
and evaluate the performance of different algorithms in Section 4 and finally give conclusions of the paper in
Section 5.

2. PREVIOUS WORK

Most present-day NR IQA algorithms are distortion-specific which assume that the distortion type is known,
and only determine severity. In comparison, the non-distortion-specific NR IQA algorithms are more useful in
practice, however more difficult to develop, resulting in fewer researchers working in this area. These algorithms
often assume that examples with the same or similar distortion types are available, and thus by mapping the
test image with example ones in the feature space, the distortion types as well as the qualities of the test images
can be assessed. The non-distortion-specific NR IQA approaches usually follow one of the following two trends:
(1) training/learning based approach and (2) natural scene statistics (NSS) based approach.

2.1 Training/Learning Based NR IQA Method

Training/learning-based NR IQA approaches often rely on a large number of features that are designed to
capture relevant factors that affect image quality. Then different regression techniques such as support vector
machine (SVM) and neural network are employed to learn the mapping from feature space to image quality. For
example, Tong et al.20 proposed to learn from the training examples which contain both the high and low quality
classes. Then a binary classifier is built, upon which quality of an un-labeled image is denoted by the extent
to which it belongs to these two classes. Tang et al.21 proposed a learning-based blind image quality (LBIQ)
measure that combines and incorporates numerous low-level image quality features stemming from natural image
measures and texture statistics with a regression algorithm, which is able to correlate the underlying structure
of distorted images with perceptual image quality without need of a reference image. Li et al.22 developed a
general regression neural network (GRNN) based NR method, which assess image quality by approximating a
function relationship between features and subjective mean opinion scores using GRNN. Ye and Doermann23,24

proposed a block based NR IQA method which uses a visual codebook for feature space quantization. Then
image quality is evaluated by learning mappings from the quantization feature space to image quality scores
using either example-based method or support vector machine.

2.2 NSS Based NR IQA Method

NSS-based NR IQA approaches usually contain two stages which require some training: (1) distortion identifi-
cation followed by (2) distortion-specific quality assessment. Once trained, the framework does not require any
knowledge of the distortion and the framework is modular in that it can be extended to any number of distor-
tions. Different NSS-based NR algorithms often have different features extracted and different training methods
applied. The most state-of-art NSS-based NR algorithms are: (1) BIQI;25 (2) BLIINDS-II;26 (3) DIIVINE19 and
(4) BRISQUE.17

BIQI, the blind image quality index, is a wavelet-based NR IQA method which extracts image features by
modeling the wavelet subband coefficients based on GGD. It operates on wavelet transform with three scales
and three orientations using Daubechies 9/7 wavelet basis, and a number of 18 features are extracted for each
image. DIIVINE improves upon BIQI by using a steerable pyramid wavelet transform with two scales and six
orientations, and a total number of 88 features are extracted based on the statistical properties of the multi-scale,
multi-orientation wavelet subbands. BLIINDS-II measures image quality based on the discrete cosine transform
(DCT) coefficients of image patches. It derives a generalized NSS-based model for local DCT coefficients and
transforms the model parameters into features used for perceptual image quality score prediction, which correlates
highly with human subjective judgment.
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BRISQUE is another NSS-based NR IQA method which operates in the spatial domain. The underlying
features used derive from the empirical distribution of locally normalized luminance and products of locally
normalized luminance under a spatial NSS model. No transform (e.g., DCT, wavelet, etc) is required, distin-
guishing it from previous NR IQA approaches. It operates on two image scales and for each scale, 18 features are
extracted. Despite its simplicity, this algorithm has shown a much higher performance than the previous ones
and even challenges FR IQA methods. It also has a very low computational complexity, making it well suited
for real time applications. So far, it is the best-performing NSS-based NR IQA methods developed.

3. ALGORITHM

The proposed DESIQUE algorithm is based on the assumption that some derivative-based statistical properties
of natural images in both the spatial and frequency domains will vary significantly in the presence of distortions,
rendering them un-natural, and that by characterizing this un-naturalness, image quality can be evaluated.
DESIQUE employs the same two-stage framework used in DIIVINE and BRISQUE: (1) distortion identification
followed by (2) distortion-specific quality assessment, and extracts log-derivative based statistic features in the
spatial and frequency domains using five derivative types. Finally, these features are used by the aforementioned
two-stage framework to estimate image quality. In this section, we will provide details for each steps.

3.1 Log-Derivative Statistics

Derivative statistics of natural images were first studied in Ref. 27, in which difference of gray level values in
digital images between one pixel and its neighboring pixels was considered as its derivatives. Motivated by
the work in Refs. 17 and 28, derivatives between pairs of pixels can have five orientations: horizontal, vertical,
main-diagonal and secondary-diagonal, and combined-diagonal.

Here, to efficiently model natural images/image subbands by using the distribution of derivative statistics,
we first compute the logarithm of each pixel value to create new images/image subbands J by

J(i, j) = log[I(i, j) +K] (1)

where K is a small constant that prevents I(i, j) to be zero. Then, we compute the five types of log-derivatives:

D1 : ▽xJ(i, j) = J(i, j + 1)− J(i, j) (2)

D2 : ▽yJ(i, j) = J(i+ 1, j)− J(i, j) (3)

D3 : ▽xyJ(i, j) = J(i+ 1, j + 1)− J(i, j) (4)

D4 : ▽yxJ(i, j) = J(i+ 1, j − 1)− J(i, j) (5)

D5 : ▽x▽yJ(i, j) = J(i, j) + J(i+ 1, j + 1)− J(i, j + 1)− J(i+ 1, j) (6)

In the following sections, we will show that histogram distributions of these five types of log-derivative
statistics are effective in modeling natural images — their profiles change significantly in the presence of different
distortions, and these changes are used to estimate quality.

3.2 Log-Derivative Statistics Based Features

As mentioned in Section 2, recent work has focused on modeling natural scene statistics either in the spatial
domain17 or in a transform domain (e.g., Gabor filters, DCT, wavelets) (see Refs. 19, 25 and 26). However,
the perceptual quality can be influenced by both the spatial and frequency information in an image. Thus, the
proposed DESIQUE features will consist of two parts: (1) the spatial domain features and (2) the frequency
domain features. Figure 1 shows a block diagram illustrating how to extract DESIQUE features in both domains.
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Figure 1. A block diagram on DESIQUE feature extraction. Note that the filter band coefficients will only contain the first
scale of the log-Gabor filter subbands corresponding to the high frequency components of an image. LP means low-pass
filter.

3.2.1 Modeling image statistics in the spatial domain

The features extracted in the spatial domain consists of two types: (1) point-wise based statistics for single
pixel values (same as Ref. 17) and (2) pairwise-based log-derivative statistics for the relationship of pixel pairs.
Specifically, given an image I(i, j), we first compute locally normalized luminance via local mean subtraction
and divisive normalization29 defined as:

Î =
I(i, j)− µ(i, j)

σ(i, j) + C
, (7)

where i ∈ 1, 2, · · · ,M , j ∈ 1, 2, · · · , N are spatial indices; M , N are the image height and width respectively;
C = 1 is a constant that prevents the denominator to be zero. The quantities µ(i, j) and σ(i, j) are defined as

µ(i, j) =

K
∑

k=−K

L
∑

l=−L

ωk,lIk,l(i, j), (8)

σ(i, j) =

√

√

√

√

K
∑

k=−K

L
∑

l=−L

ωk,l(Ik,l(i, j)− µ(i, j)), (9)

where ω = {ωk,l|k = −K, · · · ,K, l = −L, · · · , L} is a 2D circularly-symmetric Gaussian weighting function sam-
pled out to three standard deviations and rescaled to unit volume. As in Ref. 17, we also define K = L = 3.

According to Ref. 17, the mean-subtracted contrast-normalized (MSCN) coefficients Î(i, j) can be modeled
by a zero-mean GGD given by:

f(x;α, σ2) =
α

2βγ(1/α)
exp(−|x|/β)α (10)

where β = σ
√

γ(1/α)
γ(3/α) and γ(x) =

∫

∞

0
tx−1e−tdt(x > 0) is the gamma function. The parameter α controls the

‘shape’ of the distribution and σ2 controls the variance. We estimate the two-parameter GGD model using the
moment-matching based approach proposed in Ref. 30 and these two values form the first set of features in the
spatial domain that will be used to capture image distortion by DESIQUE.

The other set of features we extract in the spatial domain are formed by modeling the relationship of neigh-
boring MSCN coefficient pairs based on log-derivative statistics. We model the relationship between two ad-
jacent MSCN coefficients by using the five types of log-derivatives previously defined by Eqs. (2)-(6). Here
J(i, j) = ln(|Î(i, j)| +K) and K = 0.1 is a constant that prevents Î(i, j) to be zero. Under the Gaussian coef-
ficient model, and assuming the MSCN coefficients are zero mean and unit variance, these log-derivative values
also obey the generalized Gaussian distribution and thus their parameters (α, σ2) can be estimated by using the
method proposed in Ref. 30. These ten parameters form the second part of DESIQUE features extracted in the
spatial domain.
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Figure 2. Reference image sailing2 and its five distorted versions in the LIVE database.31 From left to right : reference
image, Gaussian blur, fast-fading, JPEG2000 compression, JPEG compression and Gaussian white noise.
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Figure 3. Histogram of MSCN coefficients (a) and their five types of log-derivatives statistics (b-f) for each of the five
distorted versions of image sailing2 (shown in Figure 2). Distortions from the LIVE database - JPEG2000 (jp2k) and
JPEG compression (jpeg), Additive white noise (wn), Gaussian blur (blur), and a Rayleigh fast-fading channel simulation
(ff). Notice that the distortions tend to affect the peakness of the characteristic profile observed for the reference images.

In order to visualize how the aforementioned two statistics of the MSCN coefficients in the spatial domain
vary as a function of distortions, Figure 2 shows one reference image and its five distorted versions from the
LIVE database,31 and Figure 3 plots their corresponding histograms of MSCN coefficients. Notice that both the
point-wise-based statistics and the pairwise-based log-derivative statistics of MSCN coefficients in the spatial
domain change significantly in the presence of different distortions, allowing them to produce efficient features
for evaluating image quality.

3.2.2 Modeling image statistics in the frequency domain

To estimate quality based on frequency-domain statistics, we decompose an image using log-Gabor filter on two
orientations (horizontal and vertical) and use the first layer of the image subband (corresponding to the high
spatial frequency) for analysis. Again we apply the five types of log-derivatives previoiusly defined by Eqs. (2)-(6).
Here J(i, j) = ln(|g(i, j)|+K), |g(i, j)| is the magnitude of the log-Gabor filter subband coefficient and K = 0.1
is a constant that prevents g(i, j) to be zero. Again the coefficients’ log-derivative statistics for each of these
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Figure 4. Histograms of the log-derivative statistics of the filter subband coefficients for one reference image (Image
sailing2 ) and its five distorted versions (shown in Figure 2). D1-D5 correspond to the five log-derivative types defined
by Eqs. (2)-(6). Distortions from the LIVE database - JPEG2000 (jp2k) and JPEG compression (jpeg), Additive white
noise (wn), Gaussian blur (blur), and a Rayleigh fast-fading channel simulation (ff). Notice that the histogram profile
vary significantly in peakness when distortions are presented.

subbands obey the generalized Gaussian distribution. The parameters (α, σ2) estimated yield 20 DESIQUE
features (2 subbands × 5 derivative types × 2 parameters/derivative type) extracted in the frequency domain.

To illustrate how the log-derivative statistics of the filter subband coefficients behave as a function of distor-
tions in the frequency domain, Figure 4 plots their corresponding histograms for a reference image and its five
distorted versions (shown in Figure 2) on horizontal orientation (similar results can also be obtained on vertical
orientation). Notice that the log-derivative statistics of the subband coefficient change profiles significantly in
the presence of different distortions, making them effective features for identifying distortions and measuring
image quality.

Since images are naturally multi-scale and distortions affect image structure across scales, following from
Ref. 17, we extract all spatial and frequency features at two scales: the original image scale and a low pass
filtered and down-sampled (by a factor of 2) scale. Thus a total of 64 features (32 at each scale) are used to
identify distortions and to perform distortion-specific quality assessment.

3.3 Quality Evaluation

Given the 64 features, DESIQUE employs the same two-stage framework used in DIIVINE and BRISQUE: (1)
distortion identification and (2) distortion-specific quality assessment. For the distortion identification stage, a
trained support vector classification (SVC) machine is employed to measure the probability that the distortion
in the distorted images falls into one of the n distortion classes, denoted by ~p, an n-dimensional vector of
probabilities. For the distortion-specific quality assessment stage, support vector regression (SVR) machine with
n trained regression models are employed to map the feature vectors to an associated quality score, denoted by
~q, an n-dimensional vector of estimated qualities obtained from these n trained regression models. Then the
final estimate quality is computed as ~p · ~q.
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4. RESULTS

In this section, the performance of DESIQUE is analyzed in terms of its ability to predict subject ratings of
image quality. To assess its predictive performance, three databases of subjective image quality were used: 1.
the LIVE database31 (used for training), 2. the CSIQ database,32 and 3. the TID database.33

4.1 Training

Once we have these 64 features, a two-stage framework is trained on LIVE31 to measure image quality. First, a
classification model is trained by a Support Vector Classification (SVC) Machine to measure the probability that
each distortion type exist in certain distorted images. Second, for each distortion type, a particular regression
model is trained by the Support Vector Regression (SVR) Machine that will map certain feature vector to the
associated quality score. Like DIIVINE, the classifier does not produce a hard classification, but instead giving
the probability that the input belongs to each classes. Finally, each distortion-specific quality scores are weighted
by the probability of that distortion type presenting in the image to give the final quality score.

4.2 Testing

In order to evaluate the performance of our proposed method, we use the CSIQ and TID databases for testing.
We applied a four-parameter logistic transform to bring predict values on the same scales as the DMOS/MOS
values.

The performance measures used are Spearman rank-order correlation coefficient (SROCC), Pearson linear
correlation coefficient (CC) and root mean square error (RMSE). A value close to 1 for SROCC and CC and 0
for RMSE indicate good performance in terms of correlation with human opinion. We compared DESIQUE with
various FR and NR quality assessment methods for which code is publicly available. The five FR methods were
PSNR,34 SSIM,35 MS-SSIM,36 VIF,37 and MAD.38 The three NR methods were DIIVINE,19 BLIINDS-II,26 and
BRISQUE,17 all of which are NSS-based and trained on LIVE.

4.3 Overall Performance

Table 1 shows the performance of DESIQUE and other quality assessment algorithms on the entire set of images
from CSIQ and TID. Also shown in Table 1 are the average performance across database for CC, SROCC and
RMSE. Notice that all these FR IQA algorithms compared are only applied on those four distortion types that
have been trained. The highlighted entries represent the best performance in the database for the particular
database for FR/NR IQA.

Table 1. Overall performances of DESIQUE and other algorithms. Italicized entries denote NR algorithms. Results of
the best-performing FR algorithm are bolded, and results of the best-performing NR algorithm are italicized and bolded.

PSNR SSIM MS-SSIM VIF MAD DIIVINE BLIINDS-II BRISQUE DESIQUE

CC CSIQ 0.9075 0.8510 0.9497 0.9670 0.9738 0.8544 0.9006 0.9235 0.9338

TID 0.8476 0.7358 0.9117 0.9499 0.9469 0.8774 0.8638 0.9066 0.9165

Average 0.8841 0.8060 0.9349 0.9603 0.9633 0.8634 0.8862 0.9169 0.9270

SROCC CSIQ 0.9217 0.8763 0.9528 0.9587 0.9671 0.8284 0.8726 0.9002 0.9179

TID 0.8703 0.7674 0.8966 0.9399 0.9352 0.8910 0.8396 0.8975 0.9129

Average 0.9016 0.8338 0.9309 0.9514 0.9547 0.8528 0.8597 0.8991 0.9159

RMSE CSIQ 0.1187 0.1484 0.0885 0.0720 0.0643 0.1468 0.1228 0.1084 0.1011

TID 0.8400 1.0722 0.6504 0.4951 0.5091 0.7597 0.7977 0.6681 0.6335

Average 0.4002 0.5089 0.3078 0.2371 0.2379 0.3860 0.3862 0.3268 0.3089

From Table 1 it is clear that compared with other NR IQA methods, DESIQUE performs quite well in
correlation with human perception. It improves upon BRISQUE and is superior to DIIVINE and BLIINDS-II.
Further, it even challenges some of the FR IQA methods like PSNR and SSIM. The last rows of the results in
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Table 1 show the average SROCC, CC and RMSE, where the averages are weighted by the number of distorted
images tested in each database. On an average, DESIQUE demonstrates the best NR IQA performance. In
summary, when looking at the overall performance across database, the proposed DESIQUE has a better average
performance than other NR IQA methods.

4.4 Computational Analysis

Having demonstrated that DESIQUE performs well in predicting image quality, now we also show that it has a
low computational complexity. Although DESIQUE extracts features in both the spatial and frequency domains
to evaluate image quality and the number of features (64) is larger than that of BRISQUE (which only has
36 features), it is still quite efficient in computation. To demonstrate, we compared the overall computation
time of DESIQUE with three NR IQA methods (BLIINDS-II, DIIVINE and BRISQUE) on different image size
(256×256, 512×512, 1024×1024, and 1600×1600 pixels). The test was performed on a modern desktop computer
(AMD Phenom II ×4 965 Processor at 3.39 GHz, 4.00 GB RAM, Windows 7 Pro 64-bit, Matlab 7.8.0). Table 2
shows the average runtime of each algorithm in seconds, where the average is taken over 100 trials. Compared
with other NR IQA algorithms, DESIQUE is not only of higher-performance, but also maintains a significant
computational efficiency.

Table 2. Runtime requirements (seconds/image) for four NR IQA methods on different image sizes.

256×256 512×512 1024×1024 1600×1600

BRISQUE 0.167 0.265 0.666 1.431

DESIQUE 0.178 0.479 1.679 3.935

DIIVINE 9.322 24.800 93.176 254.585

BLIINDS-II 23.956 95.242 377.364 >1060

5. CONCLUSION

This paper presented a new algorithm for no-reference image quality assessment (DESIQUE), which operates by
using log-derivative statistics of natural scenes. DESIQUE extracts log-derivative-based statistical features at
two image scales in both the spatial and frequency domains, upon which a two-stage framework is employed to
evaluate quality. We demonstrated that DESIQUE can achieve better performance in predicting image quality
than many other well-known NR IQA methods across various databases. We also showed that DESIQUE is
computationally efficient.
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