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3D-MAD: A Full Reference Stereoscopic Image
Quality Estimator Based on Binocular Lightness
and Contrast Perception

Yi Zhang and Damon M. Chandler, Senior Member, IEEE

Abstract— Algorithms for a stereoscopic image quality
assessment (IQA) aim to estimate the qualities of 3D images
in a manner that agrees with human judgments. The modern
stereoscopic IQA algorithms often apply 2D IQA algorithms
on stereoscopic views, disparity maps, and/or cyclopean images,
to yield an overall quality estimate based on the properties
of the human visual system. This paper presents an extension
of our previous 2D most apparent distortion (MAD) algorithm
to a 3D version (3D-MAD) to evaluate 3D image quality. The
3D-MAD operates via two main stages, which estimate perceived
quality degradation due to 1) distortion of the monocular views
and 2) distortion of the cyclopean view. In the first stage, the
conventional MAD algorithm is applied on the two monocular
views, and then the combined binocular quality is estimated via
a weighted sum of the two estimates, where the weights are
determined based on a block-based contrast measure. In the
second stage, intermediate maps corresponding to the lightness
distance and the pixel-based contrast are generated based on a
multipathway contrast gain-control model. Then, the cyclopean
view quality is estimated by measuring the statistical-difference-
based features obtained from the reference stereopair and the
distorted stereopair, respectively. Finally, the estimates obtained
from the two stages are combined to yield an overall quality
score of the stereoscopic image. Tests on various 3D image quality
databases demonstrate that our algorithm significantly improves
upon many other state-of-the-art 2D/3D IQA algorithms.

Index Terms—Full reference, stereoscopic image quality,
contrast gain-control, binocular combination.

I. INTRODUCTION
A. Background

HE rapid development of digital image processing
technology has encouraged tremendous research in the
field of 2D image quality assessment (IQA), and noticeable
progress has been made on developing various full reference,
reduced reference, and no reference 2D IQA algorithms
(see [2]-[4] for reviews). Stereoscopic IQA, however, has been
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relatively less explored, partially due to the difficulty in
viewing commercially available 3D content, as well as issues
surrounding visual discomfort and fatigue after long-term
stereoscopic viewing [5]. However, in recent years, 3D media
has increased in popularity and availability, and applications
may range from entertainment (e.g., 3D television, 3D cinema,
and 3D games) to more specialized purposes (e.g., 3D remote
education, 3D robot navigation, and 3D medical imagery).
As a result, there is a need for IQA algorithms that can assess
the quality of stereoscopic/3D imagery.

A stereoscopic image contains two slightly different views,
each of which is projected separately onto the human retina.
When a stereoscopic image is viewed by a human subject, the
human visual system (HVS) does not examine the left view
and right view individually; instead, complex binocular fusion
and rivalry processes between the two views operate to yield
a merged 3D mental view. This merged mental view depends
not only on the disparities of individual stimulus elements, but
also on the geometrical relation of different parts of the pattern
presented to each eye [6]. Therefore, the quality of a 3D image
is affected not only by the degradation level of each individual
left and right view, but also by the experience of binocular
visual perception. A 3D QA algorithm, however, cannot access
this merged single view. Thus, assessing the perceived quality
of a stereoscopic image can be quite challenging if only the
two stereoscopic views are available.

The 3D QA task can be easier when the left and right
views are equally distorted (also called symmetrically distorted
stimuli). One technique is to simply apply 2D QA methods on
both stereoscopic views independently and then combine the
two scores to yield an overall quality estimate (e.g., [7]-[10]).
The other technique is to employ both the stereopairs and the
depth/disparity information (e.g., [11], [12]), assuming that the
HYVS also uses binocular depth/disparity information to judge
the 3D image quality. However, two important points need
to be considered. First, since the ground truth depth/disparity
maps are not always available, these models can operate
based only on the estimated maps. Thus, the accuracy of the
depth/disparity estimate algorithm employed may substantially
affect the performance. Second, the depth/disparity informa-
tion may have no correlation with the 3D perceived quality.
This latter point has been confirmed by Kaptein et al. [13]
who ran subjective experiments using blurred images with
the same objects at different depths; Kaptein et al. found
that the depth level in a 3D display does not influence
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Right view

MAD;=119.12; C,=0.043; W, =0.177

Fig. 1. Two demonstrative asymmetrically distorted stereoscopic images from the LIVE 3D image database [28] that have high quality on the left view and low
quality on the right view. Note that C;, and Cg represent the averaged block-based contrast value for the left and right views, respectively; Wy and Wx denote
their corresponding weights computed through Egs. (4) and (5). “MAD” denotes a quality score computed by averaging MAD; and MADg. “2D-MAD” is

computed through Eq. (6).

the perceived image quality. Also in [14], Goldmann and
Ebrahimi have demonstrated a similar shortcoming when
applying 2D QA algorithms for 3D QA.

Despite these difficulties, the two aforementioned
techniques can still achieve fairly good quality predictions of
symmetrically distorted stereoscopic images. However, if the
two stereoscopic views contain different amounts and/or
types of distortions (also called asymmetrically distorted
stimuli), these algorithms perform much less effectively.
Asymmetrically distorted stimuli can make the stereoscopic
IQA problem much more challenging primarily because the
merged mental view changes depending on the distributions of
the distortion. To demonstrate, Figure 1 shows two distorted
stereoscopic images that contain similar high-quality images
for the left view, and low-quality images for the right
view. As reported by subjects, for the white noise image,
they perceive a merged view that looks more like the
right-view image, whereas for the Gaussian blurred image,
the perceived merged view looks more like the left-view
image. Thus, effectively modeling the HVS’s binocular
perceptual mechanisms when asymmetrically distorted views
are presented to the two eyes is essential to enhance the
performance of a 3D QA algorithm.

According to [15], binocular vision is a complex visual
process that involves both binocular fusion and binocular
rivalry that coexist at the same point in space and time.
Binocular rivalry inevitably occurs whenever visual stimuli are
presented, even if the two stimuli are identical. In regards to
the precedence of the two processes, Blake and Boothroyd [16]
stated that

“The binocular visual system first seeks to
establish correspondence between image features
contained in the two monocular views. Failure to
establish such correspondence leads to binocular
suppression, an effective means for eliminating
diplopia and/or confusion. When correspondence
is established, however, binocular fusion takes
precedence over the suppression. Only those
monocular features with no interocular counterpart
participate in the rivalry process [16].”

To study these two properties of binocular vision, other
vision studies (e.g., [17]-[27]) have used unnatural stimuli
(or simulated data) with highly controllable parameters, and
their results can indeed offer some basic insights. However,
it remains unclear how the results of such controlled studies
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should be used for 3D QA because the findings have never
tested on real natural images.

For QA of stereoscopic images that contain asymmetrically
distorted stimuli, a recent technique has been employed, which
attempts to model the 3D QA behavior of the HVS based on
binocular fusion and rivalry properties. Approaches based on
this technique often apply 2D QA methods on the so-called
cyclopean view, a single mental image of a scene created in
the brain by combining the two images received from the
two eyes. These approaches assume that the HVS perceives
2D degradation after they are combined in the cyclopean view,
and thus it is meaningful to measure 2D artifacts on the
cyclopean view as an estimate of the 3D quality degradation
level. In [29], the cyclopean image was defined as the average
of the left image and the disparity-compensated right image.
More recently in [30], the cyclopean image was synthesized by
using a linear model proposed in [31], in which the coefficients
of the linear model are computed based on the local Gabor
filter energy. Although a better prediction performance was
observed compared with the two aforementioned techniques,
which partially demonstrates the effectiveness of the cyclopean
3D QA model, the performance on symmetrically distorted
stereopairs is actually not as high as expected (see Table III).
Also, issues concerning how the cyclopean image is
formulated in the brain, and how the HVS judges quality based
on this cyclopean image, remain to be further explored.

Beyond these aforementioned techniques, no strong
baseline or core principle has been reported to point out
the nature of the stereoscopic IQA problem, and these
techniques are only roughly distinguished from each other
based on the type and/or the amount of information they
extract from 3D images. In fact, some recently developed
2D IQA algorithms can achieve impressive predictive
performance on most stereoscopic image databases that
contain symmetrically distorted stimuli when these algorithms
are only applied on the two stereoscopic views and then
averaged (see Table III). Thus, we argue that a core principle
of 3D QA algorithm design should be to improve the algorithm
performance on both symmetrically and asymmetrically
distorted stereoscopic images. Under this principle, we further
argue that a grand challenge confronted by current 3D QA
research is to more accurately model the QA behavior of
the HVS in binocular vision especially when asymmetrically
distorted stimuli are presented, which is also the most
fundamental driving force of this work. Unfortunately, as noted
by Moorthy et al. in [28], no current 3D QA algorithms has
achieved prediction performance better than (or in most cases,
even as good as) 2D QA algorithms applied to the individual
stereopairs.

B. Motivation

Based on the aforementioned points, the main motivation
of our proposed approach is to develop a technique that more
effectively models the binocular rivalry and fusion behaviors
of the HVS, which occur during QA of stereoscopic images.
Towards this end, we adopt in our work two main strategies:
(1) a contrast-weighting strategy, and (2) a cyclopean-feature-
image strategy.
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The first strategy, motivated by both the theoretical analysis
in [31]-[34] and the practical 3D-viewing experiences reported
by subjects, aims at balancing the roles of each stereoscopic
view in determining the overall 3D image quality. According
to [31]-[34], the monocular stimulus with higher contrast
often receives enhanced predominance and shorter duration
of suppression in human visual perception. If the contrasts
of the stimuli presented to both eyes are equally high, then
each stimulus remains suppressed for shorter periods of time
and, consequently, the two stimuli alternate in dominance more
rapidly. Thus, we believe that the quality of a monocular
scene with higher contrast can play a more dominant role in
determining the HVS’s judgment of 3D image quality.

As demonstrated in Figure 1, the two distorted stereoscopic
images contain similar quality degradation levels in each of
the two corresponding views. However, the differential mean
opinion scores (DMOS values) indicate that the stereoscopic
image containing the Gaussian blurred right view has better
perceived quality than the stereoscopic image containing the
white noise in the right view. Please note that, in general,
the relative perceived quality between an image containing
Gaussian blurring vs. white noise will also depend on the
degree of distortion in each image. The reason for these
subjective ratings is that, for the white noise image, the
HVS judges quality based mainly on the right view which has
higher contrast because of the noise; while for the Gaussian
blurred image, the left view plays a more important role,
since the right view has relatively lower contrast due to the
blurring. Thus, the proposed method of combining the quality
estimates of both views via contrast-based weighting can
predict the qualities of these two images quite well, whereas
the conventional approach that only averages the two quality
scores cannot.

The second strategy, motivated by the recent multi-
pathway contrast gain-control model (MCM) [35], [36]
and the cyclopean-image-based 3D QA approach proposed
in [29] and [30], is employed to more effectively model
the binocular fusion and binocular rivalry properties of
the HVS especially for asymmetrically distorted stimuli.
As mentioned in Section I-A, the HVS judges stereoscopic
image quality based on a merged 3D mental view; this
fact makes the 3D QA task much more challenging for an
algorithm. The cyclopean image can be used as a replacement
of this merged view; however, the complex QA behavior
of the HVS in binocular vision makes the simple linear
model [30] less effective in cyclopean image computation.
Thus, we employ the MCM to account for the three interocular
contrast gain-control mechanisms to better model the binocular
perception of image quality in the HVS.

To incorporate the MCM in 3D QA work, we propose
a feature-based MCM [see Eq. (12)]. Specifically, we
propose two different types of quality-related features (light-
ness distance and pixel-based contrast) and build three types of
corresponding cyclopean feature images' (cyclopean images
of the global/local lightness distance and pixel-based contrast)

Here, we use the term “cyclopean feature image” to distinguish from the
term “cyclopean image” that deals only with the image luminance.



ZHANG AND CHANDLER: 3D-MAD: FR STEREOSCOPIC IMAGE QUALITY ESTIMATOR

Left view

Reference

Distorted

Reference

Distorted

Close-ups

3813

(@

Cyclopean local lightness distance

Cyclopean pixel-based contrast

(b)

Fig. 2. Demonstrative cyclopean feature images corresponding to the lightness distance and pixel-based contrast (b) computed from the reference and distorted
stereopairs (a) in the the LIVE 3D image database [28]. The close-ups show some dissimilar regions between the cyclopean feature images.

by using the MCM, which is also improved by incorporating
new parameters to adaptively indicate the different dominant
roles of the two eyes in 3D vision. We then quantify distortions
contained in these computed cyclopean feature images as a
measurement of the 3D image quality by using the statistical-
difference-based features, which are combined via support
vector machine learning. As shown in Figure 2, the three
cyclopean feature images [Figure 2(b)] computed from the
reference and distorted stereopairs [Figure 2(a)] exhibit con-
siderable dissimilarities between the reference and distorted
stereoscopic images, and some dissimilar regions are clearly
visible in the close-ups.

There are two reasons to employ these features
[see Egs. (7)-(9)] instead of the absolute luminance values to

estimate image quality. First, the MCM provides only a model
for how stimulus contrast is combined in binocular vision;
thus, it cannot be used directly with a (luminance) image.
Also, it is important to note that the MCM was designed
only for modeling unnatural stimuli with highly controllable
parameters, and not for natural images. Thus, to extend the
MCM to work for 3D QA for natural images, we utilize the
lightness distance and pixel-based contrast feature maps as
various representations of the perceived contrast.

Second, it is evident that no current models can fully model
binocular vision. Hence, it is more reasonable to use multiple
features to comprehensively measure the distortions, just as
the fact that human use multiple cues to judge image quality.
This has been demonstrated in Table I, in which we compared
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TABLE 1

PERFORMANCE COMPARISON OF USING FEATURES VS. ABSOLUTE
LUMINANCE TO PREDICT STEREOSCOPIC IMAGE QUALITY. NOTE THAT

FOR BOTH OPTIONS, WE USE THE SAME MCM PARAMETERS TO
COMPUTE THE CYCLOPEAN IMAGES (DENOTED BY “Cyc-LUMINANCE”)

AND CYCLOPEAN FEATURE IMAGES (DENOTED BY “Cyc-MAD”),

AND THE SAME 2D LIVE IMAGE DATABASE [37]
FOR MODEL TRAINING

LIVE3D Phase I | LIVE3D Phase 1T
Approach CcC SROCC CcC SROCC
Cyc-MAD 0.944 0.937 0.921 0.915
Cyc-luminance | 0.944 0.937 0.894 0.885

the quality predictive performance of using the proposed three
features vs. the absolute luminance. (In Table I, we used the
same MCM parameters to compute the cyclopean image and
the cyclopean feature images, and we also used the same
2D LIVE image database [37] for model training. For a
fair comparison, we do not consider the 2D-MAD quality
estimate on stereopairs, and only use the quality degradation
measurements of the cyclopean images/feature images as the
overall quality estimate of the stereoscopic image.) As shown
in Table I, the two options can achieve almost equal perfor-
mance when testing on the LIVE 3D Phase I database [28]
which contains symmetrically distorted stimuli. However,
when testing on the LIVE 3D Phase II database [28], which
also contains asymmetrically distorted stimuli, the proposed
strategy that employs the three quality-related features can
achieve much better performance than that which employs the
luminance only. This result also demonstrates the effectiveness
of the proposed features and models for QA of asymmetrically
distorted stereoscopic images.

C. Proposal and Contributions

Motivated by the points in Section I-B, in this paper,
we extend our previous 2D MAD algorithm [1] to address the
3D IQA problem via two main stages corresponding to the
two proposed strategies. The first stage estimates perceived
quality degradation due to 2D monocular scene artifacts. This
stage operates by first directly applying the MAD algorithm
on two separated stereoscopic views (left and right views)
of the reference and distorted images, respectively. Then, the
left- and right-image quality scores are linearly combined
using weights that are computed as the average of the
normalized block-based contrast value of each stereopair. The
second stage of the algorithm estimates perceived quality
degradation due to cyclopean view artifacts. This stage
operates by measuring local statistical differences between
the reference and distorted cyclopean lightness-distance and
pixel-based-contrast feature images. All of these cyclopean
feature images are disparity-compensated and are synthesized
by using stereopairs following a multipathway contrast
gain-control model. Finally, the quality measurements obtained
from the two stages are combined to yield an overall estimate
of the perceived 3D quality degradation. As we will
demonstrate, these two stages together allow 3D-MAD to
achieve good predictive performance on both symmetrically
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and asymmetrically distorted stereoscopic images across
various databases.

The main contributions of this work are as follows. First,
we tackle the aforementioned challenge confronted by current
3D QA research by presenting two strategies to enhance the
quality predictive performance on asymmetrically distorted
stereoscopic images: the contrast-weighting strategy and the
cyclopean-feature-image strategy, both of which allow the
proposed method to take into account different contributions
of the left and right views towards the overall 3D quality.
As we will demonstrate, the former strategy improves upon
the conventional averaged-approach [29] (when comparing
2D-MAD results with MAD), and the latter strategy improves
upon the previous linear cyclopean image model [31] (when
comparing Cyc-MAD results with Chen’s method [30]), and
the combined strategies allows 3D-MAD to achieve better
performance on most 3D image databases. Also, the training
process employed in Section III-B3 has demonstrated a way
to predict 3D image quality by referring to the distortion
information of 2D images. This contribution suggests that if
appropriate features and models are utilized, the 2D image
and 3D image can have some properties in common in the
feature space. Finally, to the best of our knowledge and
based on the test databases used in our work, 3D-MAD is
currently the first 3D full reference (FR) IQA algorithm
that can achieve competitive or even better performance than
2D FR IQA methods applied on stereopairs.

This paper is organized as follows: Section II provides a
brief review of current 3D QA algorithms. In Section III,
we describe details of the proposed 3D-MAD algorithm.
In Section IV, we analyze and discuss the performance of the
proposed algorithm on various 3D image quality databases.
General conclusions are presented in Section V.

II. PREVIOUS WORK

In this section, we provide a brief review of current
3D QA algorithms. As mentioned in Section I, a stereoscopic
image may contain either symmetrically or asymmetrically
distorted stimuli. The complex QA behavior of the HVS
in viewing symmetrically and asymmetrically distorted
stereopairs has given rise to a variety of simple or sophisticated
3D QA techniques. Based on the type and/or the amount
of information extracted from stereoscopic images, these
techniques approximately fall into one of the three categories:
(1) those that apply 2D QA methods separately on each view
of the stereoscopic image, and then combine the two scores
into an overall quality score; (2) those that take into account
the depth information and apply 2D QA methods on both stere-
opairs and the estimated disparity map; and (3) those that take
into account the binocular visual properties of HVS and apply
2D QA methods on the cyclopean images and/or stereopairs.

A. Stereopair-Based IQA

As stated in Section I, the most straightforward way to
estimate the quality of a 3D image is to directly apply
2D QA algorithms on each individual view, and then combine
the scores into one quality measurement.
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For instance, Campisi et al. [10] applied four
IQA algorithms (SSIM [38], UQI [39], C4 [40], and
RRIQA [41]) on stereopairs and combined quality scores via
three approaches: “average” approach, “main eye” approach,
and “visual acuity” approach. Gorley and Holliman [9]
proposed a “Stereo Band Limited Contrast” metric to
estimate 3D image quality based on matched points of
stereopairs delivered by SIFT [42] and RANSAC [43].
Yang et al. [44] estimated 3D image quality based on the
average PSNR of stereopairs, and also based on the absolute
difference in pixel values between the left and right view.
Also, in [7] and [8], three widely accepted 2D QA algorithms
(PSNR [45], SSIM [38], and VQM [46]) were investigated
on their correlation with perceived quality of 3D video.

B. Algorithms Based on Stereopair and Depth Information

Another technique commonly used in 3D QA is to apply
2D QA methods on estimated disparity maps and to possibly
combine this information with 2D QA estimates of the stere-
opairs. For instance, Benoit ef al. [12] applied 2D QA methods
(SSIM [38], C4 [40]) on the left and right views independently,
and the 3D image quality was computed by combining the
two quality scores with an estimate of disparity map distortion.
You et al. [11] investigated the capabilities of some
2D IQA algorithms for stereoscopic IQA and found that
applying SSIM on stereopairs combined with a mean absolute
difference to compute the disparity map distortion always
yields the best performance within all possible combinations
considered in the paper. Hwang and Wu [47] designed a visual
attention and depth-assisted stereo image quality model, which
consists of three main components: a stereo attention predictor,
a depth variation predictor, and a stereo distortion predictor.
Xing et al. [48] proposed a perceptual quality estimator
which operates based on three main factors (crosstalk level,
camera baseline, and scene content) contributing to crosstalk
perception in evaluating quality levels of stereoscopic
presentations; the quality score of this approach is computed
as the average of the SSIM-weighted disparity map.

There are also some researchers who have employed
stereo depth information for stereo video quality assess-
ment (3D VQA). Although these works address video quality
assessment, they still demonstrate a correlation between depth
information and visual quality. For example, Ha and Kim [49]
used the disparity information (estimated via a horizontal
block matching algorithm [50]) to evaluate stereoscopic video
quality by taking into account four factors: temporal variance,
disparity variation in intra-frames, disparity variation in inter-
frames, and the disparity distribution of frame boundary areas.
Tikanmaki et al. [S1] proposed a 3D VQA algorithm by
applying PSNR [45] and VSSIM [52] on color and depth
sequences. Hewage et al. [8] proposed a reduced-reference
quality assessment approach for 3D depth map transmission
using extracted edge information and PSNR [45] to assess
video quality. Boev et al. [53] proposed a compound
FR 3D VQA algorithm composed of a monoscopic quality
component and stereoscopic quality component. The former
assesses the monoscopic perceived distortions and the latter
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assesses the perceived degradation of the perceptual disparity
maps as well as of the cyclopean images.

C. Algorithms Based on Binocular Fusion and Rivalry

A third type of 3D QA technique has been recently
developed, which incorporates information regarding various
binocular artifacts, visual masking effects, and monocular
visual properties, all of which may affect the quality of a
3D image. In [54], Ko et al. introduced a binocular percep-
tion model called the structural distortion parameter (SDP)
to control the three components of SSIM to obtain an
overall quality index. Similar work can be seen in [55].
In [56], Wang et al. presented a 3D IQA algorithm based on
binocular spatial sensitivity (BSS), which considers binocular
fusion and rivalry properties. The BSS module is implemented
in corresponding and non-corresponding regions according
to the disparity map generated by disparity matching.
In [57], Qi et al. suggested that binocular vision is sensitive to
the structure of low-level features and the discrepancy between
the two views of the stereoscopic image pair. Thus, the phase
congruency and saliency maps are employed to compose a
feature map, and then a local matching function is employed
to weight the discrepancy between the two feature maps to
estimate image quality.

Other 3D QA algorithms combine two views into one
cyclopean view and the quality of the stereoscopic image is
determined by analyzing this integrated image. For example,
Bensalma and Larabi [58] developed a “Binocular Energy
Quality Metric,” which first simulates the binocular visual
signal by modeling simple and complex cells; the quality
is then estimated based on the difference of the associated
binocular energy. Maalouf and Larabi [29] applied a multi-
spectral wavelet decomposition to the cyclopean image, and
then used the contrast sensitivity coefficients of the cyclopean
image, together with disparity maps, for quality assessment.
Chen et al. [30] applied MS-SSIM [59] on the cyclopean
image which was generated by using a linear model, where
the model weights are computed from the normalized Gabor
filter magnitude responses. Lin and Wu [60] utilized the
binocular combination and the binocular frequency integration
as the bases for measuring the quality of a stereoscopic image.
Shao et al. [61] measured the binocular energy-response
similarity between the original and distorted 3D image by
using components of binocular energy and binocular just
noticeable difference (BIND), and then the two evaluation
results are nonlinearly combined to estimate the 3D image
quality. Also, in [62], Shao et al. classified the stereoscopic
images into non-corresponding, binocular fusion, and
binocular suppression regions; these regions are then
evaluated separately via the BIND to estimate the quality.

In the following sections, we describe our dual-strategy-
based 3D IQA algorithm, 3D-MAD, which employs adaptive
left/right weighting, cyclopean feature images, and machine
learning to estimate stereoscopic image quality.

III. ALGORITHM

The proposed 3D-MAD algorithm is based on the
assumption that the overall quality of a 3D scene is
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Fig. 3. Block diagram of the first stage of our algorithm, which applies
2D MAD on stereopairs.

a combination of 2D monocular scene quality and
3D binocular-based cyclopean scene quality. Thus, 3D-MAD
operates via two main stages: (1) 2D-MAD-based quality
estimate on stereopairs, and (2) MCM-based quality estimate
on cyclopean feature images. Then, the two quality estimates
are combined through a geometric mean to yield a single value
that represents the overall perceived quality degradation of the
stereoscopic image. The following subsections provide details
for each stage.

A. 2D-MAD on Stereopairs

In the 2D-MAD-based QA stage, the conventional
MAD algorithm [1] is applied on the stereopairs (i.e., the left
and right view images) to estimate the perceived distortion
corresponding to each monocular view, but with different
trained parameters. Then, the overall 2D-MAD quality is
computed as a weighted sum of both stereopair distortion
measures, where the weights are computed based on the
normalized block-based contrast. The block diagram of this
stage is shown in Figure 3.

The MAD algorithm consists of two separate strategies:
(1) a detection-based strategy, which computes the perceived
distortion due to visual detection (denoted by dgerect)
and (2) an appearance-based strategy, which computes the
perceived distortion due to visual appearance degradation
(denoted by duppear). The final MAD quality measurement
is a weighted geometric mean given by

1—
MAD = (dgerec)” x (dappear) a, (D

where o € [0,1] serves to adaptively combine the
two strategies based on the overall level of distortion:

1

o= : 2

1+ B x (ddetecl‘)ﬂ2
In the original MAD algorithm, two parameters
(1 = 0.467 and p» = 0.130) and five scale-specific

weights (wg = 0.5, 0.75, 1, 5, and 6) were all obtained
after training on the AS57 image database [63] (see [1] for a
complete description of the MAD algorithm). However, the
AS57 image database contains only 57 images (3 reference
images and 54 distorted images), which is a small dataset
that might be insufficient for training. Thus, to obtain more
reasonable estimations of these parameters as well as to
further improve the algorithm performance, we train on the
2D LIVE image database [37], which yields the following
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trained parameters: f; = 0.369, > = 0.153, w; = 0.75, 1.25,
0.5, 4, and 7 for s € {1, 2, 3, 4, 5}, respectively.

With these newly-trained parameters, we apply MAD to
each view of the stereoscopic image by assuming that the
3D quality is influenced by 2D content, and that the local
masking which comes from the two visual paths is also
observed. As we advocated in Section I, the perceived quality
of a 3D image is determined largely by the quality of the
monocular view with higher contrast. If the contrasts perceived
by both eyes are the same, then we assume that the quality
of both visual signals are of equal significance. Therefore, we
weight each MAD score by using block-based contrast maps.

Specifically, a block-based contrast map for an image is
computed in the lightness domain by first dividing the image
into blocks of 16x16 pixels (with 75% overlap between
neighboring blocks), and then measuring the root mean
squared contrast of each block.

C) =a(b)/u®) 3)

where u (b) represents the average luminance value of block b,
and & (b) represents the minimum standard deviation among
the four 8x8 subblock within b (see Appendix A in [1]).

For both the reference and distorted stereopairs, we first
compute their block-based contrast maps denoted as Czef ,
C;ef , Ci”, and C%S’, respectively. Here, “ref” denotes the
reference stereoscopic image; “dst” denotes the distorted
stereoscopic image; “L” and “R” denote the left and right view
of each stereopair. The normalized weights of the distorted
stereopairs are then computed via

Wi = (Cf/Cely @)
Wr = (C3/CRTy 5)

where C is the mean value of C, and y = 2 is a factor that
is aimed to emphasize higher contrast values (see the online
supplement at http://vision.okstate.edu/3dmad/ for experiment
results based on different y values.). Note that the computed
block-based contrast may vary even for the reference stere-
opairs; thus, we normalized the contrast of each distorted view
by dividing by the contrast of each corresponding reference
view to ensure that the weight difference for a stereopair is
produced by only the distortion, and not by the image content.
Finally, the 2D-MAD score is given by

MAD,
100

Wi - exp( ) + Wg -exp(=5 ©)
Wi + Wgr

where MAD; and MADp denote the MAD quality scores of

the left and right views of the distorted stereoscopic image,

respectively. The division by 100 simply brings the two values

(MAD; and MADg) into an approximate range of [0, 1].

MADR)
S _ 00
2D-MAD = )

B. MCM-Based Cyclopean 10A

In the second stage, the appearance-based strategy
(which has been used in [1]) is applied to compute the
statistical difference between the reference and distorted
stereoscopic images by using the cyclopean lightness
distance and pixel-based contrast maps. These cyclopean
feature images are synthesized by using stereopairs and an
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Fig. 4. Block diagram of MCM-based cyclopean IQA.
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estimated disparity map based on a multipathway contrast
gain-control model [35], [36]. Figure 4 shows a block diagram
of this stage.

1) Feature Maps: We propose to use the lightness distance
and pixel-based contrast as our algorithm’s raw inputs for
cyclopean-based quality assessment. In [64], we demonstrated
that lightness distance can be a useful feature for detecting
main subjects in photos. Here, we use maps of both local
and global versions of that feature for estimating quality. The
global lightness distance measures how much the lightness
of each pixel differs from the average lightness of the whole
image. The local lightness distance measures how much the
lightness of each pixel differs from the average lightness of a
local area around that pixel. As a third feature map, we use the
pixel-based contrast; larger pixel-based contrast values often
indicate edges or sharper regions in an image. These three
features are computed via

Ay =L G,y = Ly, )
f2(x’y) = |L>‘< (-xay)_LE (x’y) s (8)
Ay = —2 &Y ©)
i L’g x,+K

where L* denotes the lightness component in the Commission
Internationale de i’ Eclairage (CIE) 1976 (L*, a*, b*) color
space (CIELAB); I:}‘ denotes the average lightness value for
the whole image I; L% (x,y) denotes the average lightness
value of a 9x9 block centered around pixel (x,y); and
K =0.001 is a small constant that prevents division by zero.

2) MCM-Based Cyclopean Feature Maps: Given the
lightness distance and pixel-based contrast maps for each view
of the reference and distorted stereoscopic image, we build
disparity-compensated cyclopean maps corresponding to these
two types of features. First, we compute a disparity map
of the reference stereopairs (denoted by D) by using the
segment-based stereo-matching approach proposed in [65].
Then, the cyclopean feature image is synthesized based on

3817

the MCM [35], [36], which assumes that each eye exerts
contrast gain control not only on the other eye’s visual signal,
but also on the incoming gain control signal from the other
eye, with both effects in proportion to the eye’s own total
contrast energy.

Specificallyy, MCM employs three gain-control mecha-
nisms: (1) attenuation of signal contrast in the non-dominant
eye; (2) stronger direct inhibition from the dominant eye;
and (3) stronger indirect inhibition from the dominant eye to
the gain control signal coming from the non-dominant eye.
Let C; and Cg denote the scene contrast presented to the left
and right eye, respectively. By assuming that the left eye is the
dominant eye, after contrast gain control, the signal strengths
perceived by the two eyes are modeled as:

1
Cp=Cr——g—, Ch=1Cr (10)
1+ 1+E§EL I+ lof:ELR
where € = pCI}i1 and eg = p(nCg)"'. The parameter p

is the contrast gain-control efficiency; # is used to model
contrast attenuation in right eye; a and f are used to model
the stronger inhibition to the right eye from the left eye; and
y1 is the transducer nonlinearity in the gain-control pathway.
According to [36], the perceived contrast of the cyclopean
image is given by

( ! 72 ) 72775
C={Co———) +|nCr—G&— , (1)
1+ 1+E§EL 1+ lofeLR

where 7y, is the transducer nonlinearity for the power
summation used in the binocular contrast combination.

Motivated by [36], we employ an MCM-based technique
to compute the cyclopean feature images based on two
assumptions. First, we assume that both eyes will contribute
equally when the reference stereopairs are viewed. Second,
when the distorted stereopairs are viewed, the eye that
receives the signal with the higher contrast will dominate.
Based on these two assumptions, we compute the perceived
cyclopean lightness distance and pixel-based contrast images
for each pixel (x,y) by using Eq. (12), as shown at the
bottom of this page, where Cp(i = 1,2,3) denotes the
computed cyclopean lightness distance and pixel-based
contrast image; d.,, = D(x,y) denotes an estimated
disparity index in D; e€r(x,y) = p[nCrL(x,y)]”! and
€r(x,y) = plyrCr(x,y)]”'; and Cr and Cgr denote the
block-based contrast value computed via Eq. (3) for the left
and right view of a stereo image, respectively.

We set the following parameter values by referring to the
experiment results provided in [66]: y; = 1.5; p = 10. For the
reference stereopairs, we set n; = nr = 1, which indicates

eg(x—dx,y,y)

(’7Lfi,L(x —dy,y,y)

72 72775
1 1
1 + ”Rﬁ,R(-xa y)l aer (x,y)
T s G—dr.y T Trerty

Crx,y)=

1
V2 7279,
nL 1R
1+ eg(x—dx,y,y) + 1+ aey (x,y)
I+fep (x—dx,y.y) T+eg(x,y)

, ((=1,2,3) (12)




3818

that there is no contrast attenuation coming from the other
(non-dominant) eye. For the distorted stereopairs, the dominant
eye is first determined by comparing the averaged block-based
contrast of the two views (i.e., C; and Cg). If the left
eye dominates (i.e., Cr > C_'R), then we set nr = 1 and
nr = 0.9. Otherwise, we set 7, = 0.9 and g = 1 to
indicate the dominant role of the right eye. Note that the value
of 0.9 was also selected by referring to [66]. Additionally,
for simplicity we set y» = 0.5 and a = S = 1, which
correspond to supra-linear summation and equal inhibition
between the two eyes. We have found that changing y, does
not affect the algorithm performance significantly (see the
online supplement at http://vision.okstate.edu/3dmad/).

3) Compute Statistical Differences: Based on the cyclopean
feature images computed from the lightness distance and
pixel-based contrast maps, we estimate quality by using local
statistical differences between the cyclopean feature images
for the reference and distorted stereopairs by the local standard
deviation, skewness, and kurtosis. This approach of comparing
local statistics was shown in [1] to be highly effective for quan-
tifying the appearances of suprathreshold distortions. Here,
we propose an alternative approach to map these statistical
differences to image quality.

Specifically, in [1], quality is assessed based on a statistical
difference map, which is computed by linearly combining
the three statistics of the log-Gabor subbands at five scales
(s ef{1,2,3,4, 5}) and four orientations (o € {1, 2, 3, 4}):

n(b) = ZZ wsllogs (b) — a5 (B)| + 21c1 (b)
s=1 o=1
— BB + K B) — kBB (13)

where o ,,(b), ¢5,0(b), and x4 ,(b) denote, respectively, the
standard deviation, skewness, and kurtosis computed for
a 16x16 block b (with 75% overlap between blocks) in the
log-Gabor subband corresponding to scale s and orientation o.
The scale-specific weights (ws; = 0.5, 0.75, 1, 5, and 6) were
obtained through training on the A57 database [63], which also
accounts for the HVS’s preference for coarse scales over fine
scales. Finally, the statistical difference map is collapsed into a
single scalar that represents the perceived quality degradation
of the image.

Instead of using the Eq. (13), we propose to train the
three statistical difference values by using support vector
machine (SVM) learning. Specifically, we decompose the
cyclopean feature images of the reference and distorted stere-
opairs by using log-Gabor filters at five scales and four
orientations, and then compute three statistical difference maps
for each scale. This first step is given by

N, (b) = Z e (b) - (14)
where ¢ represents the three statistics (o, ¢, and k).

Next, we collapse each statistical difference map into a
single scalar, which is given by

- 1 :
s = | &5 gbz
=[5 T

5)
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TABLE 11
PERFORMANCE COMPARISON OF USING DIFFERENT FEATURES/FEATURE
COMBINATIONS TO PREDICT STEREOSCOPIC IMAGE QUALITY. NOTE
THAT FOR THIS COMPARISON, WE DO NOT CONSIDER THE 2D-MAD
QUALITY ESTIMATE ON STEREOPAIRS, AND ONLY USE THE QUALITY
DEGRADATION MEASUREMENTS OF THE CORRESPONDING CYCLOPEAN
FEATURE IMAGES AS THE FINAL QUALITY ESTIMATE OF THE

STEREOSCOPIC IMAGE

LIVE3D Phase I | LIVE3D Phase II
Cyclopean features CC SROCC CC SROCC
Global lightness distance (f1) | 0.944 0.938 0.888 0.877
Local lightness distance (f2) 0.937 0.927 0.893 0.889
Lightness distance (f1 + f2) 0.948 0.939 0.899 0.891
Pixel-based contrast (f3) 0.909 0.903 0.886 0.879
All (f1 + f2+ f3) 0.944 0.937 0.921 0.915

where By, denotes the total number of blocks within
one statistical difference map (¢) at a specific scale s
(s € {1,2,3,4,5}). Thus, for one distorted cyclopean feature
image, we compute a vector of 15 statistical-difference-based
features denoted by

v = [01, 02, 03, 04, 05,G1, 2, $3, C4, §5, K1, K2, K3, K4, K5].
(16)

Given the feature vectors extracted from the cyclopean
feature images, we then map each vector into a quality score
by using the trained SVM regression models. Specifically,
we trained our models on the 2D LIVE image quality
database [37], which contains 779 distorted images with five
types of distortions: Gaussian blurring, additive white noise,
JPEG compression, JPEG2000 compression, and fast fading.
For each 2D image, we extracted the same type of features.
The only difference is that these statistical-difference-based
features were extracted from feature maps corresponding to
one single reference/distorted image, and not the cyclopean
images. We used the LIBSVM package [67] to implement
the training. To improve predictive performance, optimal
radial basis function kernel parameters were used for the
SVM regression.

Note that the SVM-based approach is applied only to
the lightness distance (local and global) cyclopean images,
resulting into two computed feature vectors, vy and vy,;
the two corresponding quality degradation scores are denoted
by Sy and Sy, respectively. The reason for using only the
lightness distance maps is based on several observations. First,
the lightness distance map of the two views can be combined
(via the MCM model) to effectively predict 3D image quality
when a symmetrically-distorted 3D image is viewed.
By training on a 2D image database, it is assumed that
the given 3D image has symmetrically distorted stimuli, and
therefore its quality is equally determined by the quality of
each stereoscopic view. Thus, training the lightness distance
statistical features on LIVE [37] works quite well for those
images that contain symmetrically distorted stimuli, but it is
less effective on asymmetrically distorted images, because the
overall quality of these images are more determined by the
visual signal that has higher contrast (as shown in Table II).
Thus, as mentioned previously, we additionally employ
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the pixel-based contrast statistical features to improve the
performance of 3D-MAD on asymmetrically distorted images.
In this case, we have found that the 2D LIVE image database
is less effective at training these contrast features, possibly
due to the different characteristics that the HVS uses when
judging the quality of a 2D image vs. an asymmetrically
distorted 3D image.

In this work, we adopt a similar strategy as in [1] to
solve this problem. Specifically, we first decompose the
cyclopean pixel-based contrast images by using the middle
radial frequency (third scale) log-Gabor filters, and then
compute the statistical difference map via:

4
7 (0) = D o3 (0) — a3 B)] + 2165 (0) — <55 (b)]
o=1
ref dst
+ I3, (b) — x5, (D)1, a7
where o, ¢, and k denote the three statistics. The third scale
of the log-Gabor subbands are utilized because we found
that distortions in the cyclopean pixel-based contrast images
are more representative and distinguishable in the middle-

level frequency range. The final quality degradation score of
perceived contrast (denoted by Sg,) is then given by

1
Sp = [E D s (b)z]
b

where B denotes the total number of blocks within the
pixel-based contrast statistical difference map.

Finally, based on all three scores (Sy,, Sp,, Sf;), we compute
the MCM-based cyclopean feature image quality degradation
score (denoted by Scyc-map) as
Sa+Sp

10
Note that Sy, and Sy, are obtained through training on the
2D LIVE image database (that has DMOS values
approximately between 0 and 100) and then testing using the
cyclopean feature images. Thus, both values approximately
range from O to 100. The Sy, value is obtained directly by
analyzing the cyclopean pixel-based contrast images and
approximately ranges from 0 to 10. The division by 10
in Eq. (19) was chosen simply to bring the three values
(Sf» Sy, and Sy;) on approximately the same scale.

1
2
s

(18)

Scyc-MAD = + 5. (19)

C. 3D-MAD Quality Estimate

Given both the 2D-MAD-based score from the stereopairs
and the MCM-based score from the three cyclopean feature
images, the final stage of 3D-MAD is to combine these
scores into an overall perceived distortion estimate (denoted by
S3zp-map) for the stereoscopic image. Specifically, S3p-pap
is computed as a product of Syp-pap and Scye-pmap, which
is given by

S3p-MAD = S2D-MAD X SCyc-MAD.- (20)
Smaller values of S3p-pap denote predictions of better
stereoscopic image quality. A value of S3p-yap = 0

indicates that the distorted stereoscopic image is equal in
quality to the reference image.
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IV. RESULTS AND ANALYSIS

In this section, we analyze 3D-MAD’s ability to predict
stereoscopic image quality. For this task, we test 3D-MAD on
three publicly available 3D image databases: (1) the LIVE 3D
image database [28], (2) the MCL-3D image database [68],
and (3) the IRCCyN/IVC 3D image database [12].

A. Stereoscopic Image Quality Databases

The LIVE 3D image quality database [28], from the
University of Texas at Austin, USA, was constructed in
two phases. Phase I contains 20 original images and
365 symmetrically distorted stereopairs corresponding to
five distortion types: Gaussian blurring (GBLUR), additive
white noise (WN), JPEG compression (JPEG), JPEG2000
compression (JP2K), and simulated packet-loss of transmit-
ted JPEG2000-compressed images, which is also known as
fast fading (FF). Phase II contains eight original images
and 360 distorted stereopairs, with the same five distortion
types. For each distortion type, every original stereopair was
processed to create three symmetric distorted stereopairs and
six asymmetric distorted stereopairs. Both phases contain the
ground truth depth/disparity information for every reference
image and the associated DMOS values for distorted images.

The MCL-3D image quality database [68], from the
University of Southern California, USA, contains
693 symmetrically distorted stereopairs and associated
mean opinion score (MOS) values. One-third of the images
in the database are of resolution 1024 x728, and two-thirds
are of resolution 1920x 1080. Nine image-plus-depth sources
were first selected, and a depth-image-based rendering
technique was used to render stereopairs. Four levels of
distortions were applied to either the texture image or the
depth image before stereoscopic image rendering, which
include Gaussian blur, additive white noise, down-sampling
blur (SBLUR), JPEG compression, JPEG2000 compression
and transmission error (TERROR). The distortion caused by
imperfect rendering was also examined.

The IRCCyN/IVC 3D image database [12], from the
University of Nantes, France, contains six original images,
15 symmetrically distorted versions of each original image,
and subjective ratings of quality for each distorted image
(DMOS value) obtained by averaging 14 subjective scores.
Three types of distortions are included: JPEG compression,
JPEG2000 compression, and blurring (BLUR); each distortion
type has five different degradation levels. Note that there
are two types of blurred images: Gaussian filtered images
and re-sampled images (see [12]). The database contains
96 stereopairs, but without depth and disparity information.

B. Algorithms and Performance Measures

We compared 3D-MAD with seven other 3D IQA
algorithms: an SSIM-based stereo IQA model proposed by
Benoit et al. [12], an SDP-based method proposed
by Ko et al. [54], a BSS weighted method proposed by
Wang et al. [56], the cyclopean MS-SSIM proposed by
Chen et al. [30], the frequency-integrated PSNR (FI-PSNR)
proposed by Lin and Wu [60], the BJND-based method
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TABLE III
OVERALL PERFORMANCES OF 3D-MAD AND OTHER 2D/3D IQA ALGORITHMS ON THE LIVE, MCL, AND IRCCyN/IVC 3D IMAGE DATABASES.
ITALICIZED ENTRIES DENOTE 2D ALGORITHMS. RESULTS OF THE BEST-PERFORMING 3D IQA ALGORITHM ARE BOLDED

SSIM ~ MS-SSIM VIF MAD You Benoit Wang Ko Chen Lin Shao 2D-MAD  Cyc-MAD  3D-MAD
CcC LIVE (Phase I) | 0.872 0.926 0.925 0.942 0.895 0.915 0.888 0.910 0.917 0.864 0.932 0.945 0.944 0.951
LIVE (Phase II) | 0.801 0.778 0.840 0.854 0.729 0.812 0.817 0.760 0.906 0.658 0.836 0.901 0.921 0.927
MCL | 0.883 0.915 0.856 0.931 0.837 0.871 0.890 0.893 0.881 0.870 0.848 0.942 0.912 0.934
IRCCyN/IVC | 0.736 0.802 0.798 0.802 0.745 0.820 0.725 0.742 0.689 0.695 0.716 0.824 0.878 0.864
Average | 0.851 0.877 0.866 0.907 0.819 0.864 0.862 0.855 0.884 0.806 0.858 0.925 0.920 0.932
SROCC  LIVE (Phase I) | 0.876 0.922 0.920 0.939 0.896 0911 0.890 0.907 0.916 0.856 0.927 0.942 0.937 0.944
LIVE (Phase 1) | 0.792 0.772 0.817 0.842 0.681 0.806 0.805 0.756 0.901 0.638 0.819 0.890 0.915 0.924
MCL | 0.893 0.925 0.858 0.931 0.851 0.874 0.901 0.903 0.884 0.869 0.853 0.942 0.917 0.939
IRCCyN/IVC | 0.691 0.716 0.706 0.772 0.743 0.791 0.678 0.662 0.673 0.636 0.648 0.811 0.866 0.853
Average | 0.852 0.874 0.854 0.902 0.814 0.862 0.861 0.853 0.883 0.794 0.851 0.921 0.919 0.931
RMSE LIVE (Phase I) | 8.033 6.193 6.228 5.498 7.312 6.633 7.536 6.804 6.550 8.242 5.941 5.365 5.406 5.052
LIVE (Phase 1) | 6.757 7.096 6.132 5.869 7.727 6.582 6.502 7.341 4.767 8.496 6.196 4.889 4.393 4.220
MCL | 1.221 1.051 1.345 0.953 1.424 1.277 1.185 1.172 1.230 1.285 1.380 0.874 1.065 0.930
IRCCyN/IVC | 14.936 13.172 13299 13176 | 14719 12,639 15.191 14.792 15998 15.860  15.408 12.503 10.578 11.118
Average | 5.126 4.567 4.476 4.049 5.262 4.618 4.940 4933 4336 5.692 4.566 3.698 3.552 3.395

proposed by Shao et al. [62], and a 3D IQA approach proposed
by You et al. [11], in which the quality of each stereo-
scopic image was computed based on various combinations of
2D quality estimates on stereopairs and disparity maps. Note
that for the methods by You et al. and by Benoit et al., the
combinations leading to the best performances are presented.
Specifically, for You et al.’s method, the quality of each
stereopair was estimated by SSIM [38] and the quality of the
disparity map was estimated via a mean absolute difference;
the overall stereoscopic image quality was then computed via
a “global combination,” in which the optimum parameters
were determined by the Levenberg-Marquardt algorithm. For
Benoit ef al.’s method, a local SSIM map weighted by the
Euclidean-distance-based local disparity distortion measure
was employed to estimate the quality of each stereoscopic
view, and the final quality estimate was the average of the
two views. For both algorithms, the same stereo matching
algorithm [69] was used to create the disparity maps.

We also list the results of four 2D IQA algorithms for
reference: SSIM [38], MS-SSIM [59], VIF [70], and MAD [1]
(the original 2D version). For these 2D IQA algorithms, the
predicted quality of a stereoscopic image was taken to be the
average quality predicted from the left and right views.

Before evaluating the performance of a particular quality
assessment method on a particular database, we applied
a logistic transform to bring the prediction values on the
same scales as the DMOS values. The logistic transform
recommended by Video Quality Experts Group [71] is a
four-parameter sigmoid given by

f) =

71— 102

+ 172,
1 4 exp( :

——5 21

[74]
where x denotes the raw predicted score, and where 71, 72,
73, and 74 are free parameters selected to provide the best
fit of the predicted scores to the MOS/DMOS values. Three
criteria were used to measure the prediction monotonicity
and prediction accuracy of each algorithm: (1) the Spearman
Rank-Order Correlation Coefficient (SROCC), (2) the Pearson
Linear Correlation Coefficient (CC), and (3) the Root Mean
Square Error (RMSE) after non-linear regression. Note that the
logistic transform in Eq. (21) will affect only CC and RMSE,
not SROCC.

C. Overall Performance

The overall testing results on the LIVE, MCL, and
IRCCyN/IVC 3D image databases are shown in Table III
in terms of CC, SROCC, and RMSE. Also included are the
testing results of the first and the second stage of 3D-MAD
(denoted by ‘“2D-MAD” and “Cyc-MAD,” respectively) for
comparison. Italicized entries denote 2D IQA algorithms.
The results of the best-performing 3D IQA algorithm in
each case are bolded. As recommended in [68], we tested
648 stereoscopic images in the MCL-3D database, which
cover six types of distortions applied to the texture image,
the depth image, and both, respectively. Also note that the
MCL-3D image pairs are of large size, which may require dif-
ferent parameter settings in the disparity estimation algorithm
(compared with those for LIVE and IRCCyN/IVC). Thus, we
rescaled’ the images to 1/2 (for 1024x728 images)
or 1/3 (for 1920x 1080 images) of the original size before
testing in order to use consistent parameter settings, as well
as to save computational time.

From Table III, observe that 3D-MAD outperforms all
the other 2D/3D IQA algorithms in terms of all three
performance criteria on all databases. Specifically, on the
LIVE Phase I and MCL-3D databases, which contain
symmetrically distorted stimuli, all IQA algorithms perform
quite well, and there seems to be less performance difference
between 2D and 3D methods. However, these 2D-based IQA
algorithms generally perform worse on the LIVE Phase II
database, which partially contains asymmetrically distorted
stimuli. The reason for this performance drop is that these
algorithms estimate the quality of each stereopair without
taking into account the depth/disparity information. To demon-
strate this latter assertion, Table IV shows the CC, SROCC,
and RMSE values of all these algorithms tested on separated
subsets of symmetrically and asymmetrically distorted images
in the LIVE Phase II database. Observe from Table IV that
3D-MAD improves upon the performance of the original MAD
algorithm, most notably on asymmetrically distorted images.

In comparison, the 3D-based IQA algorithms take
into account the stereo depth/disparity information,

2In this paper, we used bicubic interpolation to rescale the images; the output
pixel value is a weighted average of pixels in the nearest 4 x 4 neighborhood.
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TABLE IV
PERFORMANCE OF 3D-MAD AND OTHER IQA ALGORITHMS ON
SYMMETRICALLY AND ASYMMETRICALLY DISTORTED STIMULI IN THE
LIVE PHASE Il DATABASE. ITALICIZED ENTRIES DENOTE 2D
ALGORITHMS. RESULTS OF THE BEST-PERFORMING
3D IQA ALGORITHM ARE BOLDED

Symmetric Asymmetric
Metric CC__SROCC__RMSE | CC___SROCC__RMSE
SSIM [38] 0839 0825 6950 | 0.760 0736  6.658
MS-SSIM [59] | 0.927 0915 5990 | 0.694  0.677  7.589
VIF [70] 0.920 0914 5291 | 0771 0731  6.5I3
MAD [1] 0936 0.934 4687 | 0783 0.756 6379
You [11] 0911 0898  7.28 | 0.659  0.604  8.009
Benoit [12] 0921 0910 5712 | 0746 0732 6976
Wang [56] 0.868  0.861 6364 | 0768 0736 6570
Ko [54] 0896 0886 6558 | 0.679  0.669  7.703
Chen [30] 0937 0925 4429 | 0.875  0.854 4927
Lin [60] 0816 0811 8467 | 0588 0549 8510
Shao [62] 0931 0936 5187 | 0762 0739  6.644
3D-MAD 0954 0947 3900 | 0.903  0.895 4371
and/or binocular HVS properties, and thus these

algorithms should achieve better performance than 2D-based
IQA methods. However, the performances of the methods by
You et al. and Benoit et al. depend largely on the accuracy of
the stereo-matching algorithm used to compute the disparity
maps, and they are also influenced by the fact that 2D QA
of the disparity maps may not always coincide with human
judgments of quality on stereoscopic images. Although
Wang et al., Ko et al.,, and Lin et al. used properties of
binocular vision, their methods are still based on weighting
two quality scores obtained by applying 2D QA methods
(e.g., SSIM and PSNR) on both views. Shao et al.’s method
is also based on combining the quality scores obtained from
the left and right views, but the combination strategy varies
according to different image regions (non-corresponding
region, binocular suppression region, and binocular fusion
region). Since more efficient features are employed, this
method performs quite well on the LIVE Phase I database,
but the performance is not that high for the other databases.
Chen et al.’s method models binocular rivalry and estimates
quality based on a cyclopean image, and thus achieves
better performance than the other six algorithms on the
LIVE Phase II database. On the IRCCyN/IVC 3D image
database, Benoit et al.’s method and 3D-MAD perform best.

Compared with 2D-MAD and Cyc-MAD, observe that the
combined stages either improve or balance the performance
of each individual stage across different 3D image databases.
For example, the combined stages help increase the overall
performance on the LIVE 3D image database, but only
achieve a performance balance on the MCL and IRCCyN/IVC
3D databases. For MCL, 2D-MAD performs better than
Cyc-MAD. For IRCCyN/IVC, 2D-MAD and all other
2D/3D QA algorithms considered here perform less effec-
tively (see Section IV-E for a detailed explanation). Overall,
3D-MAD still performs competitively well, and both stages are
required to achieve a reasonable performance balance when all
three databases are considered.

The last rows of the CC, SROCC, and RMSE results
in Table III show the average CC, SROCC, and RMSE,

3821

80 80
70 | LIVE (Phase I) LIVE (Phase II) @0
60 70
50 60 L/
40 »n °
g g %
=30 =50 s
=P _ °
1 40
0 30 °
10 CC=0.951 €C=0.927
20 20
220 -10 0 10 20 30 40 50 60 70 80 20 30 40 50 60 70 80
Linearized 3D-MAD Linearized 3D-MAD
14 80
MCL IRCCyN/IVC IL‘.
12 70 o (o°
60 g °
10 od¥ 8
. w50 1 °
wn J ]
g 540 o © .. -
6 =] ° e
30 Y (]
@
4 2 °, »® L
2 10 = ® o0
CC=0.934 ° e CC=0.864
0 0
0 3 6 9 12 15 0 10 20 30 40 50 60 70 80
Linearized 3D-MAD Linearized 3D-MAD
Fig. 5. Scatter plots of objective scores predicted by 3D-MAD algorithm

after logistic transform versus subjective scores on different image databases.

where the averages are weighted by the number of distorted
images tested in each database. Also, shown in Figure 5
are scatter-plots of logistic-transformed 3D-MAD quality
predictions vs. subjective ratings (MOS/DMOS) on different
databases. In all graphs, the y-axis denotes the subjective
ratings of the perceived distortions and the x-axis denotes
the predicted quality value transformed via Eq. (21). Despite
the presence of some outliers, the plots are generally
heteroscedastic. In summary, when looking at the overall
performance across databases, 3D-MAD has a better average
performance than other 2D/3D IQA methods.

D. Statistical Significance

A statistical significance test was performed by using an
F-test to quantify whether the numerical difference between
the IQA algorithms’ performances are statistically significant.
The test statistic is the ratio of two algorithms’ residual
variances (errors in predictions), denoted by F = ai /ag.
A smaller residual variance indicates a better prediction.
Values of F > Firiticaw (or F < 1/Fciticar) indicate
that at a given confidence level, method A has significantly
larger (or smaller) residuals than method B, where Fi isicql 1S
computed based on the number of residuals and the confidence
level. Note that if the residuals are not Gaussian, then the
significance test is often inconclusive. In this paper, a formal
test using Jarque-Bera (JB) statistic [72] is used to measure the
Gaussianity of the residuals. A smaller value of the JB statistic
denotes less deviation from Gaussianity, and vice versa.

Table V shows the overall statistical performance of each
3D IQA algorithm on the LIVE, MCL, and IRCCyN/IVC
3D image databases. Each entry is the ratio of the residual
variance of the algorithm in the row to the algorithm in the
column. Bold entries denote that the algorithm in the row has a
statistically smaller residual variance than the algorithm in the
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TABLE V
STATISTICAL SIGNIFICANCE RELATIONSHIPS (RATIO OF RESIDUAL VARIANCE) BETWEEN 3D IQA ALGORITHMS ON THE LIVE, MCL,

AND IRCCyN/IVC 3D IMAGE DATABASES. SEE TEXT FOR DETAILS

You Benoit  Wang Ko Chen Lin Shao  3D-MAD You Benoit  Wang Ko Chen Lin Shao  3D-MAD
LIVE (Phase I) LIVE (Phase II)

You - 1.215 0941 1.155 1246 0.787 1.515 2.095 - 1.378 1412 1108 2.627 0.827 1.555 3.352
Benoit 0.823 - 0.775 0950 1.025 0.648 1.246 1.723 0.726 - 1.025  0.804 1.906 0.600 1.128 2.432
Wang 1.062  1.291 - 1.227 1.324 0.836  1.609 2.225 0.708  0.976 - 0.784 1.860 0.586 1.101 2.373
Ko 0.866  1.052  0.815 - 1.079 0.681 1.312 1.814 0903  1.244  1.275 - 2372 0747 1404 3.026
Chen 0.802 0975 0.755 0.927 - 0.632 1.216 1.681 0.381  0.525  0.538  0.422 - 0.315  0.592 1.276
Lin 1.271 1.544  1.196 1467 1.583 - 1.925 2.661 1.209 1.666  1.707 1.339 3.176 - 1.880 4.053
Shao 0.660  0.802  0.621 0.762 0.823  0.519 - 1.383 0.643 0.886 0908 0712 1.690 0.532 - 2.156
3D-MAD 0477 0580  0.449 0.551 0.595 0376 0.723 - 0.298 0411 0421 0330 0.784 0.247 0.464 -

JBSTAT 3.3 8.2 19.4 6.5 45.6 1.9 2.0 12 9.2 452 8.3 30.5 315 8.8 6.0 0.4

MCL TIRCCyN/IVC

You - 1.243 1444 1477 1342 1229 1.066 2.346 - 1356 0939 0990 0847 0.861 0913 1.753
Benoit 0.804 - 1.162  1.188 1.079 0989  0.857 1.887 0.737 - 0.692 0.730 0.624  0.635 0.673 1.292
Wang 0.692  0.861 - 1.022 0929 0.851 0.738 1.624 1.065  1.445 - 1.055 0902 0917 0972 1.867
Ko 0.677 0.842  0.978 - 0.909  0.832 0.722 1.589 1.010  1.370  0.948 - 0.855 0.870  0.922 1.770
Chen 0.745 0926 1.076  1.100 - 0916  0.794 1.748 1.181  1.602 1.109  1.170 - 1.017  1.078 2.070
Lin 0.814 1012 1.175 1201 1.092 - 0.867 1.909 1.161  1.575  1.090 1.150 0.983 - 1.060 2.035
Shao 0938 1.166 1355 1.385 1.259 1.153 - 2.201 1.096  1.486  1.029 1.085 0.928 0.944 - 1.921
3D-MAD  0.426 0530  0.616 0.629 0.572 0.524 0.454 - 0.571  0.774  0.536  0.565 0.483 0.491 0.521 -

JBSTAT 6.8 1.7 21.1 7.3 28.0 3.8 10.3 5.4 2.0 47.2 6.1 19.2 3.2 79 104 26.7

TABLE VI

SROCC VALUES OF 3D-MAD AND 2D/3D IQA ALGORITHMS ON DIFFERENT TYPES OF DISTORTION ON THE LIVE, MCL,
AND IRCCyN/IVC 3D DATABASES. ITALICIZED ENTRIES DENOTE 2D IQA ALGORITHMS. RESULTS OF THE
BEST-PERFORMING 3D IQA ALGORITHM ARE BOLDED

SSIM ~ MS-SSIM VIF MAD You Benoit  Wang Ko Chen Lin Shao  3D-MAD
LIVE (Phase I) JP2K | 0.857 0.898 0.902 0925 | 0.884 0.887 0870 0.891 0896 0.839 0.883 0.916
JPEG | 0.436 0.599 0.582  0.736 | 0.547 0.565 0445 0527 0558 0.207 0.599 0.700
WN | 0.938 0.942 0932 0950 | 0929 0939 0939 0933 0948 0928 0.930 0.950
GBLUR | 0.879 0.928 0931 0954 | 0910 0911 0918 0941 0926 0.935 0910 0.942
FF | 0.586 0.735 0.804 0.772 | 0.629  0.683  0.654 0.756 0.688 0.658 0.793 0.833
LIVE (Phase II) JP2K | 0.703 0.817 0.826  0.869 | 0.834  0.842  0.727 0902 0833 0.719 0.788 0.895
JPEG | 0.679 0.827 0.778 0.839 | 0.755 0.839 0.694 0.728 0.840 0.613 0.745 0.866
WN | 0.920 0.947 0.820 0.885 | 0.878 0926 0934 0900 0.955 0907 0.807 0.952
GBLUR | 0.836 0.801 0.950 0924 | 0275 0.766  0.882 0.836 0910 0.711 0.939 0.942
FF | 0.835 0.830 0934 0918 | 0740 0.862 0.865 0811 0.889 0.701 0.935 0.922
MCL JP2K | 0.900 0.928 0.933 0930 | 0919 0927 0904 0897 0902 0919 0.862 0.930
JPEG | 0.885 0.895 0.895 0.885 | 0.803  0.823  0.888 0.898 0.857 0.882 0.888 0.899
WN | 0912 0.928 0.944 0952 | 0.855 0.886 0915 0919 0889 0.859 0.890 0.950
GBLUR | 0912 0.936 0952 0953 | 0.881 0916 0913 0920 0.893 0.895 0.873 0.970
SBLUR | 0.905 0.938 0954 0972 | 0.891 0944 0918 0930 0920 0.954 0.859 0.972
TERROR | 0.891 0.908 0.789 0892 | 0.871 0.842 0.874 0890 0.903 0.815 0.889 0.903
IRCCyN/IVC JP2K | 0.875 0.941 0.924 0965 | 0.820 0947 0910 0857 0.823 0.885 0.802 0.972
JPEG | 0.832 0.968 0.956 0915 | 0.842 0916 0.855 0863 0.775 0.782 0.896 0.918
BLUR | 0.408 0.431 0.321 0535 | 0556 0496 0470 0417 0459 0467 0.321 0.789

column with confidence greater than 95%. Italicized entries
denote that the algorithm in the row has statistically greater
residual variance with the same confidence. Plain text entries
denote that there is statistically no difference between the
residuals of the two predictions. Also contained in Table V are
the JB statistic measures of Gaussianity. Italicized JB entries
denote that the residuals can be deemed Gaussian with 95%
confidence. Larger values of the JB statistic denote larger
deviations from Gaussianity.

As shown in Table V, 3D-MAD is statistically the best-
performing algorithm on the LIVE Phase I, Phase II, and
MCL-3D databases. On the IRCCyN/IVC database, 3D-MAD
has statistically the same performance as Benoit et al.’s
method, which might due to a small number of images being
tested, but is still statistically better than the others. Also,
note that on the LIVE Phase I, Phase II, and MCL-3D data-
bases, 3D-MAD has more Gaussian residuals than most other
algorithms as denoted by the JB statistic. However, on the

IRCCyN/IVC database, 3D-MAD has a relatively higher JB
statistic due to the several outliers (see Figure 5), and thus
the fact that it can still achieve a lower residual variance with
these outliers is noteworthy.

E. Performance on Individual Distortion Types

We also report the performance of 3D-MAD and other
2D/3D IQA algorithms on subsets of the LIVE, MCL, and
IRCCyN/IVC 3D image databases corresponding to each indi-
vidual distortion type. Test results of the five distortion types
in LIVE, the six in MCL, and the three in IRCCyN/IVC are
presented in Table VI in terms of SROCC values. The CC and
RMSE values follow similar trends (see the online supplement
at http://vision.okstate.edu/3dmad/). For the CC and RMSE
evaluation, the same logistic transform was used and the
performance for each distortion type was evaluated based
on extracting the corresponding transformed scores previ-
ously computed when the whole database was considered.
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TABLE VII
RUNTIME REQUIREMENTS (SECONDS/IMAGE) FOR 3D-MAD AND
OTHER 3D IQA METHODS ON DIFFERENT IMAGE SIZES

128128 256x256 512x512 768 x768 10241024
You [11] 0.54+0.03 1.7240.04 7.25+0.25 14.37+0.48 28.53+0.46
Benoit [12] | 0.5540.04 1.72£0.04 7.314+0.12 14.54+0.12 28.91+0.38
Wang [56] 0.324+0.01 1.76+0.02 9.55+0.10 22.74+0.18 51.3840.50
Ko [54] 0.03+0.00  0.063-0.00 0.1840.00 0.3440.00 0.61£0.02
Chen [30] 3.86+0.12  10.29+0.17  37.82+0.24 80.7240.36 145.574+0.73
Lin [60] 0.06+0.02  0.15%0.01 0.6840.01 1.61£0.03 2.92+0.06
Shao [62] 4914+0.51  20.19£2.48  96.21£8.71  257.814£25.80  514.64+77.79
3D-MAD-I 0.2540.01 0.83+0.02 4.0240.03 9.1240.03 17.86+0.13
3D-MAD-II | 0.6330.01 2.69+0.04 13.04+0.08 31.16+0.18 58.01£0.30
3D-MAD 0.884+0.02  3.5240.04 17.063-0.09 40.29+£0.19 75.89+0.31

Bold entries denote the best-performing 3D IQA algorithm
for each distortion type on each database. Italicized entries
denote the 2D IQA algorithms.

As shown in Table VI, 3D-MAD provides better predictions
on most distortion types in comparison to other
3D IQA algorithms. Compared with the 2D IQA algorithm
results (especially the original MAD), however, we observe
that 3D-MAD does not always perform better (and
can even be slightly worse) on certain distortion types
(e.g., JPEG and JPEG2000 compression). This interesting
observation, together with results in Tables III and IV,
might indicate that the simple strategy of averaging the
quality estimates for the two stereoscopic views works for
evaluating degradation levels of certain distortion types
applied symmetrically to each stereopair. However, this
strategy has difficulty in dealing with asymmetrically
distorted stimuli, and also has difficulty in bringing all quality
measures on the same scale when viewing the database as a
whole. Also, note that all 2D/3D IQA algorithms considered
here seem to have relatively worse quality predictions on
blurred images in the IRCCyN/IVC database. The reason is
that these IQA algorithms are insensitive to the resampled
images, which is also considered as a blur distortion in the
IRCCyN/IVC database. In summary, when looking at the
performance on individual distortion types, 3D-MAD is still
the best overall choice to estimate stereoscopic image quality.

FE. Computational Analysis

To determine the computational runtime of each stage in the
3D-MAD algorithm (denoted by 3D-MAD-I and 3D-MAD-II,
respectively), we measured the runtime required to compute
the qualities of 45 images with different sizes (128x128,
256x256, 512x512, 768x768, and 1024x1024). We also
compared the overall computational time of 3D-MAD with
other 3D IQA algorithms on these images. Note that all
of these tests were performed by running unoptimized
MATLAB code on a modern desktop computer
(AMD Phenom II X4 965 Processor at 3.39 GHz, 4 GB RAM,
Windows 7 Pro 64-bit). The results are shown in Table VII in
terms of average seconds per image followed by the standard
deviation.

As shown in Table VII, the second stage of 3D-MAD con-
sumes a much longer time than the first stage. This is due to the
fact that in the second stage, the disparity map of the reference
stereopairs is computed and six cyclopean feature images
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are synthesized. Compared with other 3D IQA algorithms,
3D-MAD is faster than Chen ef al.’s and Shao et al’s
approaches, but is slower than the others, which can be
attributed to the more complex analysis on stereoscopic
images. However, considering 3D-MAD’s improved predictive
performance, we believe that the time cost is justified.

V. CONCLUSION

This paper presented an algorithm to evaluate stereoscopic
image quality, called 3D-MAD, which extends our previous
MAD algorithm from 2D to 3D. The proposed algorithm
operates via two main stages. In the first stage, the original
MAD algorithm is employed to assess the quality of each
stereoscopic view (left view and right view) of a stereoscopic
image, and then the two obtained quality measurements are
linearly combined through two averaged block-based contrast
values (computed from each channel) to quantify the stereopair
image quality degradation. In the second stage, disparity-
compensated cyclopean feature images are synthesized from
the lightness distance maps and the pixel-based contrast map
by using a multipathway contrast gain-control model. Accord-
ingly, three cyclopean feature images are generated from both
the reference and distorted stereopairs, respectively. These
distorted cyclopean feature images are then compared against
the reference cyclopean feature images, and the computed
statistical difference maps/features are employed to predict the
cyclopean feature image quality degradation. Finally, quality
estimates from both the stereopair images and cyclopean
feature images are combined to yield an overall 3D image
quality prediction. We acknowledge that there are many para-
meters available in the underlying models, which could be
a drawback to the implementation of the proposed method.
However, most of these parameters are predetermined (fixed)
by the prior work, and there are only four empirical values
we have selected. Experimental results on various databases
demonstrated that 3D-MAD can achieve better performance
than many other 2D/3D IQA algorithms.
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