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Abstract— Image restoration (IR) via deep learning has been
vigorously studied in recent years. However, due to the ill-posed
nature of the problem, it is challenging to recover the high-quality
image details from a single distorted input especially when
images are corrupted by multiple distortions. In this paper,
we propose a multi-stage IR approach for progressive restoration
of multi-degraded images via transferring similar edges/textures
from the reference image. Our method, called a Reference-based
Image Restoration Transformer (Ref-IRT), operates via three
main stages. In the first stage, a cascaded U-Transformer network
is employed to perform the preliminary recovery of the image.
The proposed network consists of two U-Transformer architec-
tures connected by feature fusion of the encoders and decoders,
and the residual image is estimated by each U-Transformer in an
easy-to-hard and coarse-to-fine fashion to gradually recover the
high-quality image. The second and third stages perform texture
transfer from a reference image to the preliminarily-recovered
target image to further enhance the restoration performance.
To this end, a quality-degradation-restoration method is pro-
posed for more accurate content/texture matching between the
reference and target images, and a texture transfer/reconstruction
network is employed to map the transferred features to the high-
quality image. Experimental results tested on three benchmark
datasets demonstrate the effectiveness of our model as compared
with other state-of-the-art multi-degraded IR methods. Our code
and dataset are available at https://vinelab.jp/refmdir/.

Index Terms— Image restoration, U-transformer, transposed
attention, texture transfer.

I. INTRODUCTION

A. Background

IMAGE restoration (IR) which aims to recover a clean
image from its degraded version is a classic and funda-

mental problem in image processing and computer vision.
Typical examples of image degradation include noise, blur,
ringing, blocking, rain, snow, haze, etc. These degradations
not only harm the quality of the user experience, but also
have a negative impact on various computer vision applications
that take the degraded images as input. Thus, IR has been
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extensively studied over the last several decades, and numerous
IR techniques have been proposed.

Since IR is typically an ill-posed inverse problem that has
infinite feasible solutions, previous model-based methods often
employ image priors to restrict the solution space to that of the
optimal high-quality natural images. Successful image priors
include the total variation prior (e.g., [1]), sparse representation
prior (e.g., [2], [3]), low-rank prior (e.g., [4], [5]), and non-
local self-similarity prior (e.g., [6], [7]), etc. Some approaches
(e.g., [8], [9], [10], etc.) employ more than one image prior
for effective restoration. However, designing such handcrafted
priors is non-trivial, and one image prior that works for a
certain distortion type may not be able to work for others.
In comparison, convolutional neural network (CNN) based
methods that learn more general priors from large-scale data
have gained attention in recent years, and have now become
the mainstream solution to IR.

One way to improve the performance of the CNN-based
IR methods is to design more powerful and effective net-
work models. Thus, considerable effort has been made to
optimize the network architecture. Starting from the first image
super-resolution network (i.e., SRCNN [11]) that consists of
only three convolution layers, numerous network modules
and functional units have been developed including residual
learning [12], dilated/deformable convolution [13], [14], dense
connection [15], encoder-decoders [16], generative adversar-
ial models [17], recurrent/recursive network [18], [19], etc.
Though effective, the CNN-based model still suffers from two
important issues. One is the limited receptive field due to the
fixed convolution kernel size, and the other one is the weak
adaptiveness and flexibility to different image contents due to
the static kernel weights at inference. Both issues ultimately
prevent further improvement of the CNN-based methods in
solving the IR problem.

To overcome these limitations, the non-local operation [20]
and self-attention (SA) mechanism [21] were developed, both
of which allow distant pixels to contribute to the response at
a given position based on pixel/patch similarity. Although the
two methods are highly effective in capturing long-range pixel
interactions, their computational complexities grow quadrati-
cally with image size, which prevent their wider applications
on high-resolution images. To reduce the computational cost of
SA, the window partition mechanism was introduced, leading
to the Swin Transformer [22] architecture which has been
widely used in many computer vision tasks such as image
classification [23], [24], detection [25], [26], fusion [27],
[28], segmentation [29], [30], and restoration [31]. Meanwhile,
the transposed attention [32] was developed which applies
SA across the channel dimension rather than the spatial
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Fig. 1. An example of applying the retrained Restormer [33] model vs. our
method on a multi-degraded image generated from one of the pristine images
(006_0.png) in the CUFED5 dataset [34]. (a) Distorted image; (b) reference
image; (c) restored image output by Restormer; (d) restored image output by
the proposed method.

dimension to exploit the interdependencies between chan-
nel maps. Recently, the convolution layers in U-Net [16]
were replaced by the multi-Dconv head transposed attention
modules, resulting in an efficient Transformer model (i.e.,
Restormer [33]) for high-resolution IR.

B. Motivation
Despite the development of these various modules for IR,

there remains one major limitation: most existing methods
were only designed and trained to deal with images con-
taminated by a single distortion type at a fixed distortion
level. Because images can be degraded by many unknown
factors during the image acquisition, compression, transmis-
sion, reception, and display stages, an effective multi-degraded
image restoration (MDIR) method is desirable. Although some
research toward the MDIR problem is beginning to be reported
(e.g., [35], [36], [37], [38], [39]), their performances are
relatively weak due partly to the pure CNN-based architec-
tures being adopted. One potential solution is to train the
advanced single-image IR networks (e.g., [33]) that mitigate
the shortcomings of CNN via a Transformer-based architecture
on multi-degraded images to obtain a decent MDIR model
(a strategy also adopted in this work). However, as we have
found, these retrained models do not perform sufficiently well
[as shown in Figure 1(c)], which might be attributed to the fact
that single-image IR has reached its upper-bound performance
on multi-degraded images even with the most advanced deep
learning techniques due to the irreversible nature of the image
degradation process.

Motivated by the recent image super-resolution (SR) works
(e.g., [40], [41], [42], [43]) that utilize an external refer-
ence image to help super-resolve the low-resolution image,
it is reasonable to believe that the perceived quality of a
multi-degraded image can also be enhanced if a reference
image with similar content is given. In this way, the side
information from the reference image can be transferred to
the distorted image to help restore the edge/texture/structure
information lost in the degradation process. Of course, a key
requirement of this approach is the ability to perform accurate
content/texture matching between the distorted and reference
images. For image SR, the similar content can be found
by simply downsampling and upsampling the high-resolution
reference image before the dense patch matching is applied.
However, as demonstrated later in Table I, this method cannot
be used for restoration of multi-degraded images because
distortion artifacts can make the matching process much more
difficult even if the two images share a high degree of
similarity [as shown in Figure 1 (a) and (b)]. Thus, in this
paper, we propose a three-stage framework for reference-based
MDIR; the main idea is to perform dense patch matching on

Fig. 2. A block diagram of the proposed Ref-IRT model. Note that the
distorted image ID is progressively restored via three main stages. The first
stage performs preliminary restoration; the second primary restoration stage
improves the IR performance based on edge/texture matching and transferring
between the reference and distorted images; and the third stage performs the
final restoration to further enhance the restored image quality.

two moderate-quality images with similar distortion artifacts:
one image is the preliminarily/primarily-recovered distorted
image and the other image is the reference image that has been
subjected to the same quality-degradation-restoration process.
As demonstrated in Figure 1 (d), the proposed reference-based
IR method can add more details to the edges/textures of the
image and can thus significantly improve the perceived quality.

C. Proposal and Contributions

Based on the abovementioned points, in this paper, we pro-
pose a new MDIR model called a Reference-based Image
Restoration Transformer (Ref-IRT) to restore images simul-
taneously corrupted by three distortion types: Gaussian blur,
white noise, and JPEG compression. As shown in Figure 2,
Ref-IRT operates via three main stages:

The first stage (marked by green) employs a cascaded
U-Transformer network (CUTNet) to perform the preliminary
restoration. Unlike [33] that employs only one U-Transformer
network to predict the residual, our model consists of two
U-Transformer modules, which sequentially predict the resid-
ual in an easy-to-hard and coarse-to-fine manner.

The second stage (marked by blue) performs the pri-
mary restoration by transferring similar edges/textures from
the reference image IR to the preliminarily-recovered image
I1 to further improve its perceived quality. To this end,
a multiple-distortion parameter estimation network (MPENet)
was developed to predict the three distortion parameters
(σ̂G , σ̂N , Q̂), which are used to add the same amounts
of the three distortions to the reference image. Then, the
quality-degraded reference image IR0 is processed by the same
CUTNet to obtain a quality-restored reference image IR1.
Subsequently, I1, IR1, and IR are fed into the texture matching,
transfer, and reconstruction (TMTR) model-I to obtain the
primarily-recovered image I2.

The third stage (marked by orange) performs the final
restoration by transferring more similar edges/textures from
IR to I2. To this end, IR1 is first processed by the TMTR
model-I to obtain the quality-improved reference image IR2,
which, along with I2 and IR , are then fed into the TMTR
model-II to obtain the final output I3. Since I2 and IR2 are of
better quality than I1 and IR1, more accurate patch matching
can be made between I2 and IR2, which ultimately results in
a quality-enhanced image I3.

The main contributions of this work are as follows:
1) We present a reference-based MDIR model which for

the first time utilizes an external reference image to help
restore the perceived quality of multi-degraded images.
To this end, we propose a three-stage IR pipeline that
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can be theoretically generalized to images corrupted by
any distortion types and at any distortion levels.

2) We propose a cascaded U-Transformer network to per-
form restoration on multi-degraded images. Different
from existing MDIR works, our model progressively
estimates the residual image in an easy-to-hard and
coarse-to-fine manner, which allows less weight being
assigned to the easy/coarse prediction network and more
weight to the hard/fine prediction network. As a result,
better restoration performance is realized with a rela-
tively smaller number of network parameters.

3) We design a texture matching, transfer and reconstruc-
tion network for further enhancement of the restored
image quality by using the edge/texture/structure infor-
mation extracted from the reference image. To this end,
we present a quality-degradation-restoration method for
more accurate content/texture matching between the
target distorted and reference images. Furthermore,
we incorporate the dual-window mechanism within the
transposed attention network to maximize the restoration
capacity of the U-Transformer network.

4) We contribute a new XJTU-referenced image restoration
(XRIR) dataset to evaluate the performance of the exist-
ing reference-based IR methods. The proposed dataset
contains 200 high-resolution pristine images each of
which has a corresponding reference. This dataset could
also be used as a benchmark for performance evalua-
tion of the other reference-based computer vision/image
processing algorithms such as reference-based image
super-resolution.

The rest of the paper is organized as follows. Section II
reviews the existing MDIR methods and the reference-based
IR approaches. Section III describes details of the proposed
Ref-IRT model. In Section IV, we evaluate the performance
of Ref-IRT on various multi-degraded image datasets. Experi-
mental results show that with a comparable number of network
parameters, floating point operations, and running time, Ref-
IRT outperforms most existing MDIR methods in terms of
four objective quality measures, and can possibly be extended
to handle real-world distortions. General conclusions are pre-
sented in Section V.

II. RELATED WORK

In this section, we provide a brief review of the existing
MDIR methods and the reference-based IR methods, which
are closely related to the proposed algorithm.

A. MDIR Methods
Most existing MDIR methods take the advantage of the

power of deep learning, and attempt to build a deep CNN
model which directly maps the multi-degraded image to the
clean one. Different methods mainly differ in the network
architectures being used and the degradation model being con-
sidered. Starting from the first RL-Restore model [44] which
was designed to address the sequentially-applied multiple
distortions, a number of MDIR networks have been proposed.
For example, Suganuma et al. [36] presented an operation-wise
attention network (OWAN); Huang et al. [38] presented
a high-order form of OWAN (HOWAN); Liu et al. [35]
presented a recurrent multi-branch network (RMBN). By con-
sidering different distortion types on different image areas,

Kim et al. [37] presented a mixture of experts with a param-
eter sharing (MEPS) network, and Li et al. [45] presented
the feature disentanglement and aggregation modules. Later,
Shin et al. [39] presented the distortion information-guided
network, which jointly considers the sequentially-applied and
spatially-varying multiple distortions. In addition, to further
take into account the diverse degradations in real-world
images, Zhang et al. [46] proposed the BSRGAN framework
which was trained on images corrupted by a practical degra-
dation model. Although these MDIR methods are effective,
the limits imposed by using only the distorted images and
the CNN architectures suggest that their performances still
have room for further enhancement especially when images
are highly degraded.

B. Reference-Based IR Methods
To further improve the IR performance, other approaches

have used reference images to help restore the target image.
Based on the different restoration tasks being addressed, these
reference-based IR methods mainly cover two branches: image
super-resolution (SR) and inpainting.

For reference-based image SR, great efforts have been
spent on (1) finding the accurate correspondence between
the low-resolution (LR) and reference images, and (2) trans-
ferring the most relevant features from the reference image
to the LR image to produce the visually favorable high-
resolution (HR) image. For example, the attention mechanism
was used in [40] which formulated the LR and reference
images as queries and keys in a Transformer. In [47], the
cross-scale warping was proposed to perform the non-rigid
image transformation, and FlowNetS [48] was adopted to
generate the multi-scale correspondence between the LR and
HR images. In [49], the conditional variational auto-encoder
was proposed to learn explicit distributions from the reference
images. In [41], a coarse-to-fine correspondence matching
scheme was proposed to speed up the matching process, and
the distribution of the reference features was remapped in a
spatially adaptive manner such that the algorithm is robust to
reference images with different color and luminance distribu-
tions. In [42], the contrastive correspondence network and a
teacher-student correlation distillation method were proposed
to handle the transformation gap and the resolution gap,
respectively. Recently, the deformable attention Transformer
was proposed in [43] which extracted image transformation
insensitive features for texture matching. Other similar works
can be found in [34], [50], and [51], etc.

For reference-based image inpainting, the primary chal-
lenge is to precisely place the pixels from the reference
image into the hole (missing) region in the target image.
To address this challenge, Zhou et al. [52] proposed a
multi-homography transformed fusion pipeline to obtain the
multiple transformations of the source image, each of which
aligns a specific region to the target image; Liu et al. [53]
proposed a reference-based encoder-decoder network to jointly
fill image holes, where the features of the target and reference
images are aligned and fused by a feature alignment module;
Zhao et al. [54] proposed a principled approach which fills the
hole region by explicitly estimating the camera positions and
geometry of the 3D scene from two limited views. Besides the
aforementioned general image SR/inpainting algorithms, there
are also some other literatures (e.g., [55], [56]) that utilized
the reference settings for face image restoration/enhancement.
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Fig. 3. Network architecture of the proposed CUTNet, which employs a cascaded U-Transformer architecture composed of Transformer blocks (TB) to
overcome the limitations of CNN. To cascade the two U-Transformers, the decoder features of the first module are concatenated to the same-scale encoder
features of the latter module after going through gate residual blocks (GRB) whose architecture is shown in the right inset.

Although these reference-based image SR and inpainting
methods are effective, they cannot be directly applied to
the reference-based MDIR task, because quality degradations
can significantly prevent accurate content/texture matching
between the reference and distorted images. In the following
section, we describe our proposed multi-stage progressive
restoration model which relies on a quality-degradation-
restoration method to encourage similar amounts of distortion
artifacts in the reference and distorted images, and thus leads
to a more effective texture matching and transferring process,
ultimately resulting in restored images of improved visual
quality.

III. ALGORITHM

In this section, we describe the details of building and
training the proposed Ref-IRT model. As shown in Figure 2,
Ref-IRT progressively restores an image via three main stages:
(1) preliminary restoration via a cascaded U-Transformer
network; (2) primary restoration based on texture matching and
transfer; and (3) final restoration for more elegant edge/texture
reconstruction. We describe detailed network architectures of
each stage in the following subsections.

A. Preliminary Restoration

The first stage of Ref-IRT performs the preliminary restora-
tion on the distorted image such that similar edges/textures can
be possibly and more accurately found in the reference image.
Theoretically, any existing IR network can be retrained and
used in this stage. However, we do notice that a more effective
IR model will definitely benefit the restoration process in the
subsequent stages. Motivated by [33] that stacks a number
of Transformer blocks (TBs) into a U-Net shape to achieve
the state-of-the-art IR performance, we propose a cascaded
U-Transformer architecture that progressively approximates
the residual image in an easy-to-hard and coarse-to-fine man-
ner. Since different numbers of TBs were assigned to the two
U-Transformer modules due to the different levels of residual-
prediction accuracy, the network parameters of our model can
be significantly reduced as compared with [33] while still
achieving better/competitive performance.

The network architecture of CUTNet is illustrated in
Figure 3, in which “GRB” denotes the gate residual block
whose architecture is shown on the right side of the figure.
For each U-Transformer module, two convolution layers with

3 × 3-pixel filter size and one-pixel zero padding are first
applied to obtain the low-level feature embeddings. Then,
these shallow features are processed by a four-level encoder-
decoder, in which each level contains multiple Transformer
blocks, all of which share the same architecture as that in [33].
Given an input of H ×W ×3 pixels, the number of TBs and the
dimension of the output features in each level are illustrated
in Figure 3. Instead of using pixel unshuffle/shuffle to perform
feature downsampling/upsampling as adopted in [33], we use
bilinear interpolation followed by a 1 × 1 convolution layer
to more flexibly downsample/upsample the feature maps to
the desired channels. Finally, in the decoder, the convolution
layer (with the same filter size and number of padding pixels)
maps the H ×W ×48-pixel feature maps to the residual image
ri ∈ RH×W×3 (i = 1, 2).

To cascade the two U-Transformer modules, the decoder
features of the first module are concatenated to the same-scale
encoder features of the latter module after going through the
GRB. As shown in Figure 3, the encoder feature fenc is
re-calibrated by the gate-weight generated from the restored
image Ir1 such that the less informative features are suppressed
and the more useful information is propagated. Instead of
simply passing the output of one module to the other, each
U-Transformer in our model has its own input (i.e., the
distorted image ID) and output (i.e., Ir1/Ir2), and the network
is trained to minimize the loss between the ground-truth and
the outputs of both modules [see Eqs. (15), (16)]. In this way,
the residual image r2 output by the second U-Transformer
module can be viewed as a fine error compared with the coarse
error r1 in the first module if adding r1 to the final output.
Such a progressive residual learning and feature propagation
mechanism can be generalized to operate multiple times in
the case that the network contains multiple U-Transformer
modules, i.e., Ir = ID +r1+r2+· · ·+rn . However, as we have
found, using two U-Transformer modules is sufficient to reach
a satisfactory restoration performance without a significant
increase in the number of network parameters. After this
stage, the preliminarily-recovered image will be continuously
processed in the second stage to further improve its quality,
which is described in the next subsection.

B. Primary Restoration
The second primary restoration stage aims to improve the

restoration performance by transferring similar edges/textures
from a reference image to the distorted image to help recover
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Fig. 4. Network architecture of the proposed MPENet, which estimates the three distortion parameters from the distorted image’s luminance channel. MPENet
employs the cascaded MJFE architecture, and each MJFE block uses the convolution, fusion, and concatenation operations to capture the characteristic features
of the distortions and their intensities. The distortion parameters are then estimated by feeding the output features of the last MJFE block to the average
pooling layer followed by the DPE block. Note that we use σ̂G , σ̂N , Q̂ in the figure to denote the distortion parameters estimated by MPENet, and σ̃G , σ̃N ,
Q̃ in Eqs. (1)-(3) to indicate the ground truth.

the lost information. The key to this stage is to perform an
accurate content/texture matching between the reference and
the distorted images. Since a preliminarily-recovered image
is not as perfect as the reference, and the distortion artifacts
can significantly hinder the matching process, we propose a
quality-degradation-restoration method to allow the reference
image to display a similar level of distortion as the distorted
image.

Specifically, a CNN model is first employed to predict
the distortion parameters of the original multi-degraded
image, based on which the same amounts of the multiple
distortions are added to the reference image. Then, the
quality-degraded reference image is processed by the same
CUTNet model in Section III-A, and matching is conducted
on the two preliminarily-recovered images: one preliminarily
recovered image corresponds to the distorted image and
the other preliminarily recovered image corresponds to
the quality-degraded reference image. Finally, the fine
edges/textures from the original reference image are
transferred to the preliminarily-recovered distorted image to
improve its perceived quality. The details of these steps are as
follows:

1) Distortion Parameter Estimation: As in [44], the syn-
thesized multi-degraded images are assumed to contain three
distortion types: Gaussian blur, white noise, and JPEG
compression. Specifically, given a pristine image, the blur
distortion was first added by applying the image with a
Gaussian filter whose standard deviation σG was randomly
selected from the range [0, 10]. Then, the noise distortion
was generated by adding each location on the R, G, B planes
of the image by a value randomly sampled from zero-mean
normal distributions whose variances σ 2

N fall into the range[(
0

255

)2
,
(

55
255

)2
]

. Finally, the JPEG compression distortion

was introduced by quantizing the discrete cosine transform
(DCT) coefficients based on a quantization table whose values
are determined by a quality parameter Q (i.e., the scaling level
of compression) which ranges from 10 to 90.

To summarize, the parameters used to generate the three
distortion types are (1) the standard deviation σG ∈ [0, 10] for
generating the Gaussian blur, (2) the variance σN ∈ [0, 55

255 ]

for generating the white noise, and (3) the compression quality
factor Q ∈ [10, 90] for the JPEG compression. Instead of pre-
dicting the raw distortion parameters, we predict normalized
values such that the network can be trained more consistently.
Specifically, the target distortion parameter values used to train
MPENet are given by

σ̃G = σG/10 (1)
σ̃N = 255 × σN /55 (2)

Q̃ =

√
Q/10 (3)

where σ̃G , σ̃N , and Q̃ denote, respectively, the normalized
Gaussian blur, white noise, and JPEG-compression distortion
parameters.

The architecture of the proposed MPENet is illustrated in
Figure 4. Specifically, the network takes as input a luminance
(Y-channel) image and outputs three distortion parameters by
using respectively three branches, each of which contains
several convolution layers (Conv) and fully-connected (FC)
layers. To model the joint effect of multiple distortions on
predicting the distortion parameter of an individual distortion
type, the feature maps of different branches are fused (aver-
aged) and concatenated back to the corresponding branch after
being processed by a convolution layer for feature nonlinearity.
For each branch, the concatenated features are first convolved
by filters of 3 × 3-pixel size to contain the half number
of channels, and then downsampled by both the max and
average pooling operations to extract the peak/average feature
values over each non-overlapping 2 × 2-pixel region. These
downsampled features are again concatenated and convolved
to the same number of channels as the previous layer. In this
way, after going through a multiple-distortion joint feature
extraction (MJFE) block, the feature dimensions are changed
from [H, W, C] to [

H
2 , W

2 , C], where H , W , and C denote,
respectively, the height, width, and channel number of the
feature.

To enable the scalar output representing the different dis-
tortion parameter values, the output feature maps in each
branch of the third MJFE block are collapsed into a single
vector through average pooling. The three vectors are then
passed through the distortion parameter estimation (DPE)
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block which contains a number of the FC layers built in a
similar fusion-and-concatenation manner to produce the final
distortion parameter estimate. The only difference is that the
convolution operation applied on feature maps is replaced by
a linear projection applied on feature vectors. Given an image
patch of H × W pixels, the dimension of each layer output is
illustrated in Figure 4.

Since our goal is to predict distortion parameters of the
entire image, MPENet is applied to each 128 × 128-pixel
patch with 64-pixel overlap in the testing stage, and an average
pooling operation is applied to collapse all parameter values
into a scalar. Let ξ̂

p
m (m = 1, 2, 3) denote the three distortion

parameter values predicted by MPENet for each image patch
p. Then, the distortion parameters predicted for the entire
image are given by

ξ̂m =
1

Np

Np∑
p=1

ξ
p

m , (4)

where Np denotes the total number of all the selected patches.
These estimated distortion parameters serve as a guidance for
adding the same level of the distortions to the reference image
by using the same method in [44]. Then, the quality-degraded
reference image is processed by the same CUTNet model
in Section III-A, giving rise to the quality-restored reference
image which will be used for content/texture matching in the
subsequent step.

2) Texture Matching and Transfer: A block diagram of
the texture matching and transfer method is illustrated at
the bottom side of Figure 5, which employs a similar
idea as that being used in many reference-based image
SR works (e.g., [40], [41]). As shown in the figure,
given the preliminarily-recovered distorted image I1, the
quality-restored reference image IR1, and the original refer-
ence image IR , the first step is to perform the content/texture
matching between I1 and IR1. To this end, the pre-trained
VGG19 model [57] is applied to extract the multi-scale deep
features from both images. Then, by calculating patch feature
similarity, the dense patch-wise matching is performed which
aims at finding the most similar patch in IR1 given a specific
patch in I1.

Let fK and fQ denote the deep features extracted by one
convolution layer of VGG19 from IR1 and I1, respectively.
First, the relevance ri, j between the i-th postion in fK and
the j-th position in fQ is computed by

ri, j =

〈
f (i)
K∥∥∥ f (i)
K

∥∥∥ ,
f ( j)
Q∥∥∥ f ( j)
Q

∥∥∥
〉

, (5)

where f (i)
K and f ( j)

Q denote VGG features corresponding to a
3 × 3-pixel patch centered at the i-th position in fK and the
j-th position in fQ ; ⟨·⟩ denotes the cosine similarity. Then,
we compute a hard-attention map P in which the j-th element
p j is given by

p j = arg max
i

(ri, j ). (6)

The value of p j can be viewed as a hard index, which
represents the most relevant patch in IR1 to the j-th patch
in I1. Meanwhile, we also compute the confidence map C in

Fig. 5. Network architecture of the proposed texture matching, transfer, and
reconstruction network. The dense patch-wise matching is first performed
between IR1 and I1 to determine the transferred features ( fT 1, fT 2, fT 3)
of IR , which are then fed into the three-scale U-Transformer-based texture
reconstruction network to produce the texture-enhanced image. Note that
we use the dual-window Transformer block (DTB) whose architecture is
illustrated in the topmost inset to facilitate the reconstruction.

which the j-th element c j is given by

c j = max
i

(ri, j ). (7)

The value of c j represents the relevance/similarity between the
selected patch in IR1 and the j-th patch in I1. Accordingly,
for each patch j in I1, the most relevant patch p j with a
confidence value c j can be found in IR1.

Finally, the transferred patch features corresponding to the
j-th patch in I1 is given by

f ( j)
T = c j · f (p j)

V . (8)

where fV denotes VGG features extracted from IR . In our
implementation, the eighth convolution layer in VGG19 is
employed to extract features from I1 and IR1 to compute P
and C; the second, fourth, and eighth convolution layers are
employed to extract features from IR to build the transferred
features. As in [40], the VGG19 network parameters will also
be updated during the training stage such that the more effec-
tive texture features can be extracted. Given I1 ∈ RH×W×3,
then the dimensions of the three transferred features are fT 1 ∈

RH×W×64, fT 2 ∈ R
H
2 ×

W
2 ×128, and fT 3 ∈ R

H
4 ×

W
4 ×256. These

features are then fed into the texture reconstruction network to
produce the texture-enhanced image, which will be described
in the next subsection.

3) Texture Reconstruction: The third step of the primary
restoration stage is to map the transferred features to the
high-quality image. To this end, a three-scale U-Transformer
network was employed whose architecture is illustrated in the
middle part of Figure 5. As shown in the figure, the network
also consists of an encoder and a decoder. The encoder
serves to extract the multi-scale deep features from I1, and
the decoder serves to combine the transferred features with
features of I1 to reconstruct the high-quality image. Different
from the TB-based U-Transformer module in Section III-A,
here we incorporate the shifted-window mechanism [22]
within transposed attention (TA) [33] to build a dual-window
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Fig. 6. Network architecture of the proposed fixed/shifted-window transposed
attention mechanism. The layer-normalized (LN) feature input x is first
processed by three independent projection Transformers, giving rise to the
three features (Qi , Ki , Vi ) which are then split into windows to yield the
window-based features (q j

i , k j
i , v

j
i ). Then, the transposed attention for each

window is computed, and the collection of the attention values are spatially
aligned and concatenated to yield the final output.

Transformer block (DTB), which is more locally adaptive due
to the different attention matrix computed for different local
regions. The network architecture of DTB is illustrated in the
top of Figure 5, and the details of the fixed/shifted-window
transposed attention are provided in Figure 6.

Specifically, given an input x ∈ RH×W×C , three inde-
pendent projection Transformers each of which consists of a
1 × 1-pixel convolution layer followed by a 3 × 3-pixel depth
convolution (Dconv) layer are applied to the layer-normalized
(LN) feature to obtain the three features Qi , Ki , Vi ∈

RH×W×
C
h corresponding to the i-th head with head number

h. These features are then split into H W
w2 windows, where w

denotes the window size. Let q j
i , k j

i , v
j
i ∈ Rw2

×
C
h denote the

j-th window feature of Qi , Ki , and Vi . Then, the transposed
attention for each window is computed by

a j
i = Attn

[
LN

(
x j

)]
= v

j
i · softmax

(
k j

i
T

· q j
i /τ

)
, (9)

where τ is a learnable scaling factor that controls the mag-
nitude of the dot product of k j

i
T

and q j
i before the Softmax

function is applied. Finally, all a j
i are spatially aligned by

the window reverse operation to obtain the i-th head output
ai ∈ RH×W×

C
h , and all ai are then concatenated to obtain the

output of the fixed/shifted-window transposed attention block
a ∈ RH×W×C . Note that half of the heads use a fixed-window
partition and the other half use a shifted-window partition [22].
Consequently, the final output of DTB is formulated as

y = y1 + βW 3
p

{
φ

[
W 2

d W 2
p (L N (y1))

]}
⊙ W 1

d W 1
p (LN (y1)) ,

(10)

where y1 = x+αW 0
pAttn [LN (x)]; W i

p (i = 0, 1, 2, 3) denotes
the weight of each of the four 1 × 1 pixel-wise convolution
layers; W j

d ( j = 1, 2) denotes the weight of each of the two
3 × 3 depth-wise convolution layers; ⊙ denotes element-wise
multiplication; φ denotes the GELU non-linearity; α and β

are two learnable scaling factors.
To utilize the side information from the reference, the

transferred features fT i (i = 1, 2, 3) are respectively con-
nected to the three-scale decoder features through the feature
fusion block, which maps the concatenated features to the

desired channels via two convolution layers: a 1 × 1 pixel-
wise convolution layer and a 3 × 3 depth convolution layer.
As shown in Figure 5, we set the number of DTB in each scale
of the encoder to be two and in the decoder to be four in order
to better emphasize the transferred features. Also, we set the
feature channel number of DTB in the first, second, and third
scales to be 48, 96, and 192, respectively. Accordingly, the
head numbers are set to be 2, 4, and 8 for the corresponding
three scales. Moreover, we use bias in layer norm and a
window size of 12 for all DTBs. The final output of the texture
reconstruction network is formulated as

I2 = I1 + E1, (11)

where E1 denotes the residual image predicted by the TMTR
model in the primary restoration stage.

C. Final Restoration
Although the quality of the preliminarily-recovered image

I1 has improved via the primary restoration stage, the texture
matching in that stage is applied on I1 and IR1, both of which
are of relatively lower quality due to the remaining distortions.
Since distortion artifacts can have a negative impact on the
accuracy of content/texture matching, and consequently on
the effectiveness of the transferred features, we argue that the
restored image can be further enhanced if texture matching
is conducted on I2 and the quality-improved reference image
IR2, both of which display more image details than I1 and IR1.

Accordingly, the same TMTR model used in Section III-B
is applied to IR1 to obtain the quality-improved reference
image IR2. In this case, the input of VGG19 for patch-wise
matching is IR1 only, which means that the self-attention is
performed. Then, another TMTR model is applied on I2, IR2,
and IR , which transfers texture features from IR to I2 based
on the hard-attention map and confidence map computed for
I2 and IR2. Note that the second TMTR model shares the
same network architecture as the first one in Section III-B,
but with different weight/bias values. Accordingly, the output
of the third restoration stage is formulated as

I3 = I2 + E2, (12)

where E2 denotes the residual image predicted by the second
TMTR model. Note that we could theoretically build more
stages to continuously apply TMTR models on I3, I4, and
I5, etc. However, as we have found, the performance does
not change significantly when more than three stages are
applied. Thus, by balancing the performance improvement,
computational cost, and the available hardware, only three
stages are adopted in the final Ref-IRT model.

D. Loss Function
Based on the three stages of Ref-IRT, we have to sequen-

tially train four network models: the CUTNet, MPENet, and
the two TMTR models in the second and third stages, respec-
tively. The loss function for training MPENet is L1 loss which
is given by

L =

3∑
m=1

∣∣∣ξ̂ p
m − ξ

p
m

∣∣∣ , (13)

where ξ
p

m and ξ̂
p

m denote, respectively, the ground-truth and
predicted distortion parameters for image patch p; m =

1, 2, 3 denotes the three distortion types.
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 12,2024 at 03:13:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: REFERENCE-BASED MULTI-STAGE PROGRESSIVE RESTORATION FOR MULTI-DEGRADED IMAGES 4989

The loss function for training the other networks includes
both the mean square error (MSE) loss and the structural
similarity (SSIM) [58] loss. The overall loss function can be
interpreted as

L = λ · lM SE + lSSI M , (14)

where λ = 103 is a parameter used to adjust the weights of
the two losses.

Specifically, for training CUTNet, the MSE loss is defined
as

lM SE =
1

H W

H W∑
i=1

{
[Ir1(i) − I (i)]2

+ [Ir2(i) − I (i)]2
}

,

(15)

where i is a spatial location index of the image; W and H are
image width and height; Ir1 and Ir2 denote the output images
of the two U-Transformer modules as shown in Figure 3; I
denotes the ground-truth image. The SSIM loss is defined as

lSSI M = 2 − SSIM (I, Ir1) − SSIM (I, Ir2), (16)

where SSIM (I, Irk) (k = 1, 2) denotes the average value of
SSIM (I, Irk) which is computed by

SSIM(I, Irk) =

(
2µI µIrk + C1

) (
2σI σIrk + C2

)(
µ2

I + µ2
Irk

+ C1

) (
σ 2

I + σ 2
Irk

+ C2

) . (17)

Here, µI/Irk and σI/Irk denote, respectively, the local mean and
local standard deviation of I/Irk ; C1 and C2 are two constants
which take the same values as in [58].

For training the two TMTR models, the MSE and SSIM
loss functions are respectively computed by

lM SE =
1

H W

H W∑
i=1

[In(i) − I (i)]2 (18)

lSSI M = 1 − SSIM (I, In) (19)

where In (n = 2, 3) denotes the output images of the second
and third stages of Ref-IRT as shown in Figure 2; the variables
I , i , H , W have the same definitions as in Eq. (15).

IV. EXPERIMENTS

In this section, we evaluate the IR performance of Ref-IRT
on several multi-degraded image datasets. We also compare
the performance of Ref-IRT with the state-of-the-art MDIR
methods.

A. Implementation Details
1) Training Data: The training data consists of 800 images

from the DIV2K dataset [59] and 11,871 image patch pairs
from the CUFED5 training dataset [34]. Each pair in CUFED5
contains a pristine patch and a corresponding reference patch
at the size of 160 × 160 × 3 pixels. The DIV2K dataset was
used to train CUTNet and MPENet, while the CUFED5 dataset
was used to train the two TMTR models. Specifically, for each
pristine image in DIV2K, we used the method described in
Section III-B1 to generate the multi-degraded images at three
different scales (one original scale and two down-sampled
scales), giving rise to 2,400 pristine images as well as their

associated multi-degraded versions. For each of the 2,400
pristine-distorted image pairs, the non-overlapping 128×128-
pixel size patch pairs were created, which were used to train
CUTNet. Note that when generating the distorted images,
we also save the ground-truth distortion parameter values,
which were used as the labels for the distorted patches to
train MPENet. Consequently, we generated in total 189,735
patch pairs from DIV2K.

To train the two TMTR models, multiple distortions were
first added to the 11,871 pristine patches in CUFED5. Since
the patch size is small, every group of 9 patches were
concatenated into a 480 × 480 × 3-pixel size image, which
was then simultaneously contaminated by the three distortion
types at ten different levels, giving rise to 13,190 multi-
degraded images. These 480 × 480 × 3-pixel size images
were then fed into the well-trained CUTNet in the first stage
to produce the preliminarily-recovered images. They were
also fed into the well-trained MPENet to produce the three
estimated distortion parameters, which were used to generate
the same levels of the three distortions to the corresponding
480 × 480 × 3-pixel size reference images created in the same
way as the pristine patch. These quality-degraded reference
images were then processed by the same CUTNet model
to produce the preliminarily-recovered reference images. All
of the preliminarily-recovered distorted patches and reference
patches, and the original reference patches were used to train
the TMTR model. Consequently, a number of 118, 710 ×

3 patches were generated to train each TMTR model. Note that
a similar approach was adopted to generate the training data
for the TMTR model in the third stage. The difference is that
the MPENet was no longer used because there is no need to
generate the quality-degraded reference images. Also, it is the
well-trained TMTR model in the second stage that was applied
to the preliminarily-recovered distorted/reference images to
generate the training patches, not the CUTNet applied to the
distorted and quality-degraded reference images.

2) Testing Data: To evaluate the performance of Ref-IRT,
we used as testing data the multi-degraded images generated
from the pristine images in three datasets, among which
CUFED5 [34] and WR_SR [42] are two existing datasets, and
the third XRIR dataset is proposed in this paper, where images
were collected from both the Internet and our own camera.
Each dataset consists of the pristine images and the corre-
sponding reference images that share similar contents/textures.
Specifically, the CUFED5 testing dataset contains 126 pristine
images, and each pristine image has five reference images cor-
responding to the five different similarity levels. The WR_SR
and XRIR datasets contain, respectively, 80 and 200 pristine
images, each of which has only one reference image. Sample
pristine-reference image pairs in the proposed XRIR dataset
are shown in Figure 7 (additional details are available in
our online supplement at https://vinelab.jp/refmdir/). Again,
we use the same approach in Section III-B1 to generate the
multi-degraded version of each pristine image in the three
datasets. Note that WR_SR and XRIR contain images of high
resolutions, thus we downsampled the pristine and reference
images in the two datasets to reasonable sizes1 before adding
distortions such that all compared methods can be tested on

1In this paper, given an image whose minimal height/width is larger than
512 pixels, the bicubic downsampling will be applied such that the minimal
length of the height/width of the image are 512 pixels.
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Fig. 7. Sample pristine-reference image pairs in the XRIR dataset.

the GPU without exhausting the memory. Consequently, the
number of test multi-degraded images were 126, 80, 200 for
CUFED5, WR_SR, and XRIR, respectively.

3) Parameter Settings and Network Training: We conducted
all experiments by using the PyTorch framework on a remote
server with an NVIDIA GeForce RTX 3090 GPU. Four
separate models were sequentially trained on 128 × 128-pixel
patches: CUTNet, MPENet, and the two TMTR networks.
During the training, the network parameters were initialized
with values sampled from a normal distribution N (0, 0.02),
and the leaky slopes were initialized to 0.1 for PReLU.
We used Adam optimizer [60] with an initial learning rate
of 2 × 10−4, which was steadily decreased to 10−7 using the
step decay. Specifically, the learning rate was scaled down by a
factor of 0.9 after very epoch when training MPENet, and per
24,000 iterations when training CUTNet and TMTR networks.
In total, the CUTNet was trained with a batch size of 12 for
15 epochs; MPENet was trained with a batch size of 64 for
80 epochs; and each TMTR network was trained with a batch
size of 12 for 40 epochs. Consequently, the whole Ref-IRT
model took about one week to train.

B. Algorithms and Performance Measures

We compared Ref-IRT with several state-of-the-art MDIR
algorithms which include RL-Restore [44], OWAN [36],
HOWAN [38], RMBN [35], and MEPS [37]. We also
compared with DnCNN [61], DuRN [62], MIRNet [63],
COLA-Net [64], SwinIR [31], and Restormer [33], all
of which are state-of-the-art IR methods that can handle
multiple degradations. In addition, we compared with Double-
UNet [65], W-Net [66], and StackUNet [67]. Though initially
designed for image segmentation, these models have similar
network architectures as CUTNet. Finally, we compared with
TTSR [40], RefVAE [49], MASA [41], and DATSR [43],
all of which are reference-based image SR networks. For
fair comparisons, we retrained most of these methods on our
own data by using the same parameter settings except RL-
Restore [44] which was pre-trained on DIV2K [59] using the
same data-generation method. For the four reference-based SR
methods, both the pre-released and the retrained models were
used for testing.

Four criteria were used to measure the performance of
each IR method: (1) peak signal-to-noise ratio (PSNR), (2)

SSIM [58], (3) the learned perceptual image patch similarity
(LPIPS) [68], and (4) the deep image structure and texture
similarity (DISTS) [69], all of which have been widely used in
previous IR studies. PSNR estimates image quality in terms of
noise, while SSIM operates based on similarity measurements
of three elements: luminance, contrast, and structure. Both
LPIPS and DISTS operate by measuring the similarity between
the reference and distorted images in the feature space. Based
on the networks used to extract the deep features, the LPIPS
index employed in this paper has two variants, denoted by
LPIPS_A and LPIPS_V, respectively, which correspond to
employing AlexNet [70] and VGG [57] for feature extraction.
Note that both PSNR and SSIM make local comparisons on
image pixels, while LPIPS and DISTS assess image quality
at the patch level and thus allow more tolerance to texture
resampling. Also note that SSIM was computed based on the
luminance of the image, while the others were applied to
the RGB color images. Higher PSNR/SSIM values and lower
LPIPS/DISTS values indicate better image quality.

C. Overall Quantitative Results

1) Restoration Performance: Table I shows the four per-
formance measures (averaged over all images) of Ref-IRT
and other MDIR algorithms tested on the aforementioned
dataset images simultaneously corrupted by the three distortion
types: Gaussian blur, white noise, and JPEG compression.
Except TTSR, RefVAE, MASA, and DATSR, all other MDIR
algorithms are reference-free, meaning that the reference
image is not required. Also included in Table I are the
PSNR, SSIM, LPIPS, and DISTS values of the original
multi-degraded images as well as the results of the first
and second stages of Ref-IRT (denoted by “Ref-IRT-I” and
“Ref-IRT-II”, respectively) for comparison. In the test, both
Ref-IRT-I and the reference-free MDIR methods were trained
by using the same DIV2K dataset [59] images, while the
others were trained by using the 11,871 pairs of pristine
patches in the CUFED5 dataset [34]. Methods marked by
“∗” indicate that the pre-released models were used for test-
ing. Also, the most similar reference image was used when
testing the reference-based models on CUFED5. Results of
the best-performing MDIR methods in Table I are bolded.
We also conducted a small subjective study to quantify the
visual improvement achieved by the different MDIR methods.
More details are provided at https://vinelab.jp/refmdir/.

The network parameter numbers, floating point operations
(FLOPs), and inference times of the different MDIR methods
are shown in Table II. The FLOPs were computed based
on 128 × 128 pixel size images for all methods except RL-
Restore [44] which operates on image patches of 63×63 pixel
size. The inference time was computed by averaging over ten
images, each of which has two versions with different sizes
(256 × 256 and 512 × 512 pixels). For the reference-based
IR/SR models, the reference images were assumed to share
the same size as the distorted image. Note that a tiny version
of DATSR with fewer network parameters was employed to
accelerate the training process, and thus the corresponding
results in Table II are noteworthy. Also note that among the
22.814M parameters in Ref-IRT, 6.049M are for CUTNet,
2.297M for MPENet, and 7.234M for each of the two TMTR
models.
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TABLE I
PERFORMANCE OF REF-IRT VS. OTHER MDIR METHODS TESTED ON THE THREE DATASET IMAGES MEASURED IN TERMS OF FOUR OBJECTIVE

QUALITY ASSESSMENT METRICS

TABLE II
THE NETWORK PARAMETER NUMBERS, FLOPS, AND INFERENCE TIME (SECOND) OF REF-IRT VS. OTHER MDIR ALGORITHMS

As observed in both tables, Ref-IRT-I generally provides
better PSNR, SSIM, LPIPS, and DISTS values as compared
to all other MDIR methods on all dataset images considered,
yet with a relatively small number of network parameters,
FLOPs, and inference time compared to the two next-best
performing methods MIRNet and Restormer. This fact demon-
strates that the proposed cascaded U-Transformer network
can more effectively restore multi-degraded images with only
a lightweight computational complexity. By comparing with
Ref-IRT-II and Ref-IRT, we observe an apparent performance
improvement, demonstrating that by referring to a reference,
the perceived quality of a preliminarily-recovered image can
be further enhanced. In comparison, the relatively weak per-
formances obtained by using both the pre-released and the
retrained reference-based SR models suggest that textures in
the reference and distorted images can be inaccurately matched
if the two images exhibit different quality degradations.
These results demonstrate the effectiveness of the proposed
quality-degradation-restoration method in handling the texture
matching and transferring tasks in the reference-based MDIR
field. The increased network parameters, FLOPs, and inference
time of Ref-IRT can be justified for applications that require
higher image quality.

2) Performance With Different Reference Images: Since in
Ref-IRT similar textures are transferred from reference images
to distorted images, the content/texture similarity between
the reference and the target distorted image can affect the
overall performance. To evaluate the robustness/adaptiveness
of our model to different reference images, we tested on

TABLE III
PERFORMANCE OF THE SECOND AND THIRD STAGES OF REF-IRT TESTED

ON THE CUFED5 DATASET IMAGES BY USING FIVE DIFFERENT
LEVELS OF THE REFERENCE IMAGES

CUFED5 by using five reference images each with a different
similarity level as compared to the distorted image. The
testing results corresponding to the second and third stages
of Ref-IRT are presented in Table III, where level 1 indicates
the highest similarity and level 5 indicates the least. To further
investigate the impact of using unrelated reference images on
the algorithm performance, we tested on CUFED5, WR_SR,
and XRIR by using as the reference the pristine images from
the LIVE [71], CSIQ [72], and CBSD68 [73] datasets, all of
which contain completely different image contents. The testing
results are shown in Table IV in which each entry represents
the average performance value computed over all distorted
images which were processed by using the same pristine
image as the reference. The “Best” entry indicates the best
performance that can be achieved by using one pristine image
in the dataset, and the “Worst” entry indicates the opposite.
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TABLE IV
PERFORMANCE OF REF-IRT TESTED ON THE CUFED5 DATASET IMAGES BY USING REFERENCE IMAGES FROM DIFFERENT DATASETS

TABLE V
PERFORMANCE THE FIRST AND SECOND STAGES OF REF-IRT TESTED BY ELIMINATING/REPLACING WITH DIFFERENT NETWORK COMPONENTS

As can be observed from the two tables, the performance
of Ref-IRT is indeed affected by using different reference
images, which is as expected. This is also the reason why
the performance improvement on the WR_SR dataset images
is relatively small (as shown in Table I). Specifically, for
reference images in CUFED5 which display at least some
similarities with the distorted image, the performance of the
second/third stage of Ref-IRT still improves upon the first
stage (though minor for using the least similar reference
images), suggesting that a reference image does benefit the
MDIR task in this scenario. However, the performance varies
or even decreases when reference images with different con-
tents are used. This fact might suggest that transferring textures
from an irrelevant reference image can sometimes be useless
or even harmful, because the texture reconstruction network
has to remove the erroneous textures/structures additionally
introduced by the texture matching and transferring module
(as shown in Figure 5). Yet, under the current situation that
a similar reference image can possibly be obtained on the
Internet by using the website search engines, our method still
has the potential to benefit the IR field especially when images
are highly degraded.

D. Ablation Study
We perform an ablation study to validate the importance

of different network components in Ref-IRT. Specifically, for
CUTNet, we examined the contributions of the proposed gate
residual block (GRB) and progressive residual learning (PRL)
method by training three variant CUTNet models: (1) without
using GRB (denoted by “w/o GRB”) in which case the decoder
features of the first U-Transformer module are directly con-
catenated to the encoder features of the second U-Transformer
module; (2) without using PRL (denoted by “w/o PRL”) in
which case the residual computed by the first U-Transformer
module (r1) will not be added to the output of the second
U-Transformer module (i.e., Ir2 = ID + r2); and (3) without
using both GRB and PRL (denoted by “w/o GRB+PRL”). For
TMTR, we verified the effectiveness of the proposed quality-
degradation-restoration method and dual-window Transformer
block by training two variant TMTR models in the second

stage of Ref-IRT. One variant is without using MPENet
(denoted by “w/o MPE”) in which case the reference image
is directly employed for content/texture matching. The other
variant replaces DTB with TB that has been used in [33]
(denoted by “TB”). The five variant models were trained
by using the same training data and parameter settings. The
network parameter numbers as well as the testing results on the
three dataset images are shown in Table V. Note that for testing
on CUFED5, the reference image with the highest similarity
is employed for texture transfer. Also included in Table V are
the results of the original algorithm for reference (denoted by
“GRB+PRL” and “DTB”, respectively).

As can be seen from Table V, the performance of CUTNet
decreases when either GRB or PRL is removed, demonstrating
that both network components are essential to the first-stage
preliminary restoration task. The performance of the TMTR
model also decreases when DTB is replaced by TB, demon-
strating that the proposed dual-window Transformer block
is superior to the conventional Transformer block in recon-
structing high-quality image details from transferred features.
Furthermore, we observe an obvious performance drop on
CUFED5 and XRIR when the reference image is directly used
for matching, demonstrating that our strategy of conducting
content/texture matching between two preliminarily-recovered
images is an effective approach, thanks to the accurate
prediction of the distortion parameters by MPENet (please
see our online supplement for details). Such a performance
drop is not quite apparent when testing on WR_SR, which
is as expected, because there are relatively larger gaps in
contents/textures between the reference and target images
in the dataset. These results demonstrate that all network
components including GRB, PRL, MPENet, and DTB are
essential elements in boosting the overall performance of
Ref-IRT.

E. Representative Qualitative Results
In this section, we provide visual comparisons of different

MDIR methods applied on sample multi-degraded images
selected from the three testing datasets. We also provide visual
comparisons of applying Ref-IRT by using different reference
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Fig. 8. Visual comparison of various MDIR methods applied on a sample multi-degraded image (002_0.png) in the CUFED5 dataset [34].

Fig. 9. Visual comparison of various MDIR methods applied on a sample multi-degraded image (058.png) in the WR_SR dataset [42].

Fig. 10. Visual comparison of various MDIR methods applied on a sample multi-degraded image in the XRIR dataset.

Fig. 11. Visual comparison of Ref-IRT applied on a sample multi-degraded image (008_0.png) in the CUFED5 dataset [34] by using different reference
images. Note that the letters become less readable when the similarity between the reference and distorted images decreases.

images each with different similarity levels as compared with
the target image. Again, level 1 indicates the highest similarity
and level 5 indicates the least. The visual results produced by
different MDIR methods are shown in Figures 8, 9, and 10
(the distorted image is cropped for better visualization), and
the results of Ref-IRT using different references are shown in
Figure 11. For all the figures, we include the distorted and
ground-truth images for reference. For Figures 8, 9, and 10,
we also include the results of the first and second stages of
Ref-IRT for comparison.

As observed in the figures, our method can generate more
favorable textures and sharper edges as compared to other
methods. One the one hand, with the assistance of the texture
features extracted from the reference, we observe that the
perceived quality of the restored image can be significantly
and progressively improved by each stage, especially when
images are of high degradations with too much information
changed/lost. In contrast, the restored images given by all
state-of-the-art methods including Ref-IRT-I will inevitably
give rise to the blur/ringing artifacts, which is attributed
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TABLE VI

PERFORMANCE OF APPLYING REF-IRT+ ON MULTI-DEGRADED IMAGES WITH DIFFERENT DISTORTION TYPES AND INTENSITIES

to the irreversible nature of the image degradation process.
In particular, even the retrained reference-based SR meth-
ods cannot produce the visually pleasant results, which is
attributed to the inaccurate spatial alignment between the
reference and distorted images caused by the quality degra-
dation. One the other hand, by comparing results of Ref-IRT
generated from different reference images, we observe differ-
ent sharpnesses/readabilities of the letters, indicating that the
content/texture similarity between the reference and distorted
images do influence the algorithm performance. Although we
are able to show only a limited number of demonstrative
images, overall, the proposed method shows either superior
or highly competitive restoration performance as compared to
existing MDIR methods.

F. Model Generalizability

Despite the effectiveness of Ref-IRT in handling multi-
degraded images, the distortion types we have so far discussed
contain only simple distortions sequentially added to an image
in a fixed order. Yet, in reality, real-world distortion can be
more complex and also the quality degradation process can be
more random. Thus, in this section, we additionally trained our
method on images corrupted by using a more practical degra-
dation model [46]. The generalizability of our approach was
then investigated by analyzing its performance on different dis-
tortion types and intensities, and on real-world images as well.

1) Test on Different Distortion Scenarios: We followed [46]
to synthesize practical image degradations. Specifically, the
blur distortion was generated by filtering the images with two
different Gaussian blur kernels: (1) the isotropic Gaussian ker-
nel and (2) the anisotropic Gaussian kernel, and the kernel size
was uniformly sampled from {7 × 7, 9 × 9, · · · , 21 × 21}. The
noise distortion was synthesized by using a three-dimensional
zero-mean Gaussian noise model with covariance matrix 6,
which actually contains the general case and two special
cases: (1) the channel-independent additive white Gaussian
noise (AWGN) model corresponding to 6 = σ 2I where I
is the identity matrix, and (2) the gray-scale AWGN model

corresponding to 6 = σ 21 where 1 denotes a 3×3 matrix with
all elements equal to one. The JPEG compression distortion
was introduced by using the same approach in Section III-B1,
but with a different quality parameter range, i.e., Q ∈ [30, 95].
As we are not dealing with image super-resolution, blur caused
by downsampling/upsampling was not considered. Also, the
JPEG compression was always used as the final degradation
step because it occurs when images are finally saved in JPEG
format. Thus, by incorporating a random shuffle strategy,
the three distortion types considered were (1) blur + JPEG
(B+J), (2) noise + JPEG (N+J), and (3) blur + noise +

JPEG (B+N+J). Note that for blur distortion, either the
isotropic Gaussian kernel or the anisotropic Gaussian kernel
or both were used to generate the test images, while for noise
distortion, the probabilities of applying the three different
cases were set to 0.2, 0.4, and 0.4, respectively. Also note
that for the “B+N+J” case, the blur and noise distortion can
be shuffled in two different orders, i.e., B+N+J and N+B+J.
We refer interested readers to [46] for more details.

To enable our approach to work on this new degradation
model, the DPE block in MPENet has to be modified since
more distortion parameters are required which include (1)
the 2 × 2 covariance matrix 6G of the multivariate normal
distribution for generating the isotropic/anisotropic Gaussian
kernels; (2) the 3 × 3 covariance matrix 6N of the Gaussian
noise model; and (3) the quality parameter Q for the JPEG
compression. Since 6G and 6N are symmetric matrices, the
number of parameters corresponding to the two distortions are
three and six, respectively. Also, the sequential order of the
two distortions being added to an image has to be predicted,
because the blur distortion can help reduce the perceived noise
strength. Accordingly, the DPE block was modified as follows:
(1) the numbers of output nodes for the three branches were
set to three, six, and one, respectively; and (2) some more FC
layers were cascaded as a classifier which was fed by the same
input vectors as the DPE block to predict the sequential order.
We refer to this slightly modified version of our approach as
Ref-IRT+. More details about Ref-IRT+ are provided in our
online supplement at https://vinelab.jp/refmdir/.
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Fig. 12. Visual results of applying Ref-IRT+ on sample images from the LIVE Challenge dataset [74]. Row (a) indicates the original inputs, and row
(b) indicates the restored/enhanced images.

By changing the ten distortion parameter values, for each
of the three distortion types, we synthesized three different
distortion intensities (mild, moderate, and severe), and thus
nine distortion scenarios were generated for each of the
pristine images in CUFED5, WR_SR, and XRIR. Test results
of Ref-IRT+ on these distorted images are shown in Table VI,
in which each entry represents the average performance mea-
sure computed for all the images in the dataset. Also included
in Table VI are the PSNR/SSIM/LPIPS/DISTS values of the
distorted images and the restored images obtained by applying
the first stage of Ref-IRT+ only (denoted by Ref-IRT-I+). The
best results for each distortion type at each distortion intensity
are bolded.

From Table VI, we can draw two conclusions. First, by com-
paring the different distortion types, we observe that the
reference image is less likely to help when images are cor-
rupted by noise and JPEG compression. We suspect that this
finding might be attributed to the information-additive prop-
erties of the two distortions, since transferred textures mainly
help to supplement the middle/high-frequency information of
an image lost in blurring. Second, by comparing the different
distortion intensities, we observe that the reference image
is not always necessary when images are mildly distorted.
This is as expected, because a Transformer network might
be good enough for recovering the mildly-distorted image
contents, in which case the transferred textures might be
less important, and can even harm the performance when
textures from the two images differ significantly. Despite
these potential limitations, we do observe that in most cases,
the proposed reference-based strategy can improve upon the
reference-free IR method especially when images are highly
degraded.

2) Test on Real-World Distortion: We also tested Ref-IRT+

on real-world distortions. To this end, images of lower qualities
from the LIVE Challenge dataset [74] were used for testing,
and the reference images were randomly selected from the
127 pristine images in the LIVE [71], CSIQ [72], and CBSD68
[73] datasets. As the ground-truth images are unavailable,
we only show visual results of the sample restored/enhanced
images in Figure 12 without providing their quality mea-
sures (more results are available at https://vinelab.jp/refmdir/).
As can be observed, our method works quite well in reducing
the noise, blur, and compression artifacts in these images,
generally resulting in more visually pleasant results with sharp
edges and clear textures. However, as it remains an open
research challenge to automatically determine the most useful
reference image(s) whose contents/textures are most relevant
to the original images, the important role of the reference

images in this test is not quite impressive; addressing this
challenge falls into the range of our future work.

V. CONCLUSION

In this paper, we presented a three-stage framework
(Ref-IRT) for reducing distortion artifacts in multi-degraded
images. Our method operates by first conducting a prelim-
inary restoration on the distorted image followed by the
texture matching and transfer from a reference image to
further enhance the restoration performance. The prelimi-
nary restoration stage employs a cascaded U-Transformer
network for progressive residual learning such that a decent
IR performance can be achieved with relatively small num-
ber of network parameters. The primary restoration stage
induces a similar distortion to the reference image by refer-
ring to the estimated distortion parameters, and then applies
restoration on the quality-degraded image such that the con-
tent/texture features between the reference and target images
can be more accurately matched. Moreover, based on the
matching result, a DTB-based U-Transformer network is
proposed for high-quality image reconstruction. In the final
restoration stage, the image quality is further enhanced by
reapplying the matching procedure on the primarily-restored
reference/distorted images, thus achieving the state-of-the-art
IR performance. Experimental results tested on three bench-
mark datasets demonstrate the effectiveness of the proposed
method. Future work could involve developing a more pow-
erful texture matching, transfer, and reconstruction network
to further improve the restoration performance. Future work
could also involve taking into account additional real-world
distortions and developing more efficient algorithms (e.g.,
by using semantic matching or with the assistance of the
large language model) to automatically search for appropriate
reference images such that the practicability of the proposed
reference-based MDIR method can be further improved.

REFERENCES

[1] X.-L. Zhao, W. Wang, T.-Y. Zeng, T.-Z. Huang, and M. K. Ng, “Total
variation structured total least squares method for image restoration,”
SIAM J. Sci. Comput., vol. 35, no. 6, pp. B1304–B1320, Jan. 2013.

[2] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[3] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation
for image restoration,” IEEE Trans. Image Process., vol. 23, no. 8,
pp. 3336–3351, Aug. 2014.

[4] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, Jan. 2010.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 12,2024 at 03:13:37 UTC from IEEE Xplore.  Restrictions apply. 



4996 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

[5] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
minimization with application to image denoising,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2862–2869.

[6] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 2, Jun. 2005, pp. 60–65.

[7] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse
representation for image restoration,” IEEE Trans. Image Process.,
vol. 22, no. 4, pp. 1620–1630, Apr. 2013.

[8] W. Dong, G. Shi, and X. Li, “Image deblurring with low-rank approx-
imation structured sparse representation,” in Proc. Asia–Pacific Signal
Inf. Process. Assoc. Annu. Summit Conf., Dec. 2012, pp. 1–5.

[9] X. Liu, X. Wu, J. Zhou, and D. Zhao, “Data-driven soft decoding of
compressed images in dual transform-pixel domain,” IEEE Trans. Image
Process., vol. 25, no. 4, pp. 1649–1659, Apr. 2016.

[10] H. Wang, Y. Cen, Z. He, Z. He, R. Zhao, and F. Zhang, “Reweighted low-
rank matrix analysis with structural smoothness for image denoising,”
IEEE Trans. Image Process., vol. 27, no. 4, pp. 1777–1792, Apr. 2018.

[11] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[13] G. Lin, Q. Wu, L. Qiu, and X. Huang, “Image super-resolution using
a dilated convolutional neural network,” Neurocomputing, vol. 275,
pp. 1219–1230, Jan. 2018.

[14] J. Dai et al., “Deformable convolutional networks,” in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 764–773.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700–4708.

[16] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. 18th Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent., vol. 9351, 2015,
pp. 234–241.

[17] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[18] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design Appl.,
vol. 5, pp. 64–67, May 2001.

[19] X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network
for video deblurring,” IEEE Trans. Circuits Syst. Video Technol., vol. 31,
no. 8, pp. 3025–3036, Aug. 2021.

[20] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7794–7803.

[21] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1–22.

[22] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 10012–10022.

[23] S. Ayas and E. Tunc-Gormus, “SpectralSWIN: A spectral-Swin trans-
former network for hyperspectral image classification,” Int. J. Remote
Sens., vol. 43, no. 11, pp. 4025–4044, Jun. 2022.

[24] X. Huang, M. Dong, J. Li, and X. Guo, “A 3-D-Swin transformer-
based hierarchical contrastive learning method for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5411415.

[25] H. Gong et al., “Swin-transformer-enabled YOLOv5 with attention
mechanism for small object detection on satellite images,” Remote Sens.,
vol. 14, no. 12, p. 2861, Jun. 2022.

[26] Z. Liu, Y. Tan, Q. He, and Y. Xiao, “SwinNet: Swin transformer drives
edge-aware RGB-D and RGB-T salient object detection,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 7, pp. 4486–4497, Jul. 2022.

[27] J. Ma, L. Tang, F. Fan, J. Huang, X. Mei, and Y. Ma, “SwinFusion:
Cross-domain long-range learning for general image fusion via Swin
transformer,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1200–1217,
Jul. 2022.

[28] Z. Wang, Y. Chen, W. Shao, H. Li, and L. Zhang, “SwinFuse: A residual
Swin transformer fusion network for infrared and visible images,” 2022,
arXiv:2204.11436.

[29] A. Lin, B. Chen, J. Xu, Z. Zhang, G. Lu, and D. Zhang, “DS-TransUNet:
Dual Swin transformer U-Net for medical image segmentation,” IEEE
Trans. Instrum. Meas., vol. 71, pp. 1–15, 2022.

[30] A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H. R. Roth, and D. Xu,
“Swin UNETR: Swin transformers for semantic segmentation of brain
tumors in MRI images,” in Proc. Int. MICCAI Brainlesion Workshop,
2022, pp. 272–284.

[31] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van G., and R. Timofte, “SwinIR:
Image restoration using Swin transformer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV) Workshops, Oct. 2021, pp. 1833–1844.

[32] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 3146–3154.

[33] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang,
“Restormer: Efficient transformer for high-resolution image restoration,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2022, pp. 5728–5739.

[34] Z. Zhang, Z. Wang, Z. Lin, and H. Qi, “Image super-resolution by
neural texture transfer,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 7982–7991.

[35] X. Liu, M. Suganuma, X. Luo, and T. Okatani, “Restoring images
with unknown degradation factors by recurrent use of a multi-branch
network,” 2019, arXiv:1907.04508.

[36] M. Suganuma, X. Liu, and T. Okatani, “Attention-based adaptive selec-
tion of operations for image restoration in the presence of unknown
combined distortions,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Apr. 2019, pp. 9039–9048.

[37] S. Kim, N. Ahn, and K.-A. Sohn, “Restoring spatially-heterogeneous
distortions using mixture of experts network,” in Proc. Asian Conf.
Comput. Vis., 2020, pp. 1–226.

[38] Z. Huang, C. Li, F. Duan, and Q. Zhao, “Multi-distorted image restora-
tion with tensor 1×1 convolutional layer,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2021, pp. 1–8.

[39] W. Shin, N. Ahn, J.-H. Moon, and K.-A. Sohn, “Exploiting distortion
information for multi-degraded image restoration,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2022,
pp. 536–545.

[40] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning texture trans-
former network for image super-resolution,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5791–5800.

[41] L. Lu, W. Li, X. Tao, J. Lu, and J. Jia, “MASA-SR: Matching
acceleration and spatial adaptation for reference-based image super-
resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 6368–6377.

[42] Y. Jiang, K. C. K. Chan, X. Wang, C. C. Loy, and Z. Liu,
“Robust reference-based super-resolution via C2-matching,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 2103–2112.

[43] J. Z. Cao et al., “Reference-based image super-resolution with
deformable attention transformer,” in Proc. Eur. Conf. Comput. Vis.,
2022, pp. 325–342.

[44] K. Yu, C. Dong, L. Lin, and C. C. Loy, “Crafting a toolchain for image
restoration by deep reinforcement learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2443–2452.

[45] X. Li et al., “Learning disentangled feature representation for hybrid-
distorted image restoration,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 313–329.

[46] K. Zhang, J. Liang, L. Van Gool, and R. Timofte, “Designing a
practical degradation model for deep blind image super-resolution,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 4791–4800.

[47] H. Zheng, M. Ji, H. Wang, Y. Liu, and L. Fang, “CrossNet: An
end-to-end reference-based super resolution network using cross-scale
warping,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 88–104.

[48] A. Dosovitskiy et al., “FlowNet: Learning optical flow with convo-
lutional networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 2758–2766.

[49] Z.-S. Liu, W.-C. Siu, and L.-W. Wang, “Variational autoencoder for ref-
erence based image super-resolution,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2021, pp. 516–525.

[50] Y. Xie, J. Xiao, M. Sun, C. Yao, and K. Huang, “Feature rep-
resentation matters: End-to-end learning for reference-based image
super-resolution,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 230–245.

[51] L. Zhang, X. Li, D. He, F. Li, E. Ding, and Z. Zhang, “LMR: A
large-scale multi-reference dataset for reference-based super-resolution,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023,
pp. 13118–13127.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 12,2024 at 03:13:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: REFERENCE-BASED MULTI-STAGE PROGRESSIVE RESTORATION FOR MULTI-DEGRADED IMAGES 4997

[52] Y. Zhou, C. Barnes, E. Shechtman, and S. Amirghodsi, “TransFill:
Reference-guided image inpainting by merging multiple color and
spatial transformations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 2266–2276.

[53] T. Liu, L. Liao, Z. Wang, and S. Satoh, “Reference-guided texture and
structure inference for image inpainting,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2022, pp. 1996–2000.

[54] Y. Zhao, C. Barnes, Y. Zhou, E. Shechtman, S. Amirghodsi, and
C. Fowlkes, “GeoFill: Reference-based image inpainting with better
geometric understanding,” in Proc. IEEE/CVF Winter Conf. Appl. Com-
put. Vis. (WACV), Jan. 2023, pp. 1776–1786.

[55] D. Yoon, J. Kwak, Y. Li, D. Han, Y. Jin, and H. Ko, “Reference guided
image inpainting using facial attributes,” 2023, arXiv:2301.08044.

[56] R. Yasarla, H. R. V. Joze, and V. M. Patel, “Network architecture search
for face enhancement,” 2021, arXiv:2105.06528.

[57] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[59] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 126–135.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[61] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[62] X. Liu, M. Suganuma, Z. Sun, and T. Okatani, “Dual residual networks
leveraging the potential of paired operations for image restoration,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 7000–7009.

[63] S. W. Zamir et al., “Learning enriched features for real image restoration
and enhancement,” in Proc. Eur. Conf. Comput. Vis., vol. 12370, 2020,
pp. 492–511.

[64] C. Mou, J. Zhang, X. Fan, H. Liu, and R. Wang, “COLA-Net: Collabo-
rative attention network for image restoration,” IEEE Trans. Multimedia,
vol. 24, pp. 1366–1377, 2022.

[65] D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen,
“DoubleU-Net: A deep convolutional neural network for medical image
segmentation,” in Proc. IEEE 33rd Int. Symp. Comput.-Based Med. Syst.
(CBMS), Jul. 2020, pp. 558–564.

[66] X. Xia and B. Kulis, “W-Net: A deep model for fully unsupervised
image segmentation,” 2017, arXiv:1711.08506.

[67] A. Sevastopolsky, S. Drapak, K. Kiselev, B. M. Snyder, J. D. Keenan,
and A. Georgievskaya, “Stack-U-Net: Refinement network for improved
optic disc and cup image segmentation,” in Medical Imaging 2019:
Image Processing. Bellingham, WA, USA: SPIE, 2019, pp. 576–584.

[68] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 586–595.

[69] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality
assessment: Unifying structure and texture similarity,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2567–2581, May 2022.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[71] H. R. Sheikh, Z. Wang, A. C. Bovik, and L. K. Cormack. Image
and Video Quality Assessment Research at Live. [Online]. Available:
http://live.ece.utexas.edu/research/quality/

[72] D. M. Chandler, “Most apparent distortion: Full-reference image quality
assessment and the role of strategy,” J. Electron. Imag., vol. 19, no. 1,
Jan. 2010, Art. no. 011006.

[73] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis., Jul. 2001, pp. 416–423.

[74] D. Ghadiyaram and A. C. Bovik, “Massive online crowdsourced study
of subjective and objective picture quality,” IEEE Trans. Image Process.,
vol. 25, no. 1, pp. 372–387, Jan. 2016.

Yi Zhang received the B.S. and M.S. degrees
in electrical engineering from Northwestern Poly-
technical University, Xi’an, China, in 2008 and
2011, respectively, and the Ph.D. degree in elec-
trical engineering from Oklahoma State University,
Stillwater, OK, USA, in 2015. From 2016 to 2018,
he was a Postdoctoral Research Associate with the
Department of Electrical and Electronic Engineer-
ing, Shizuoka University, Japan. He is currently an
Associate Professor with the School of Information
and Communications Engineering, Xi’an Jiaotong

University, China. His research interests include 2D/3D image processing,
machine learning, pattern recognition, and computer vision.

Qixue Yang received the B.S. degree in electronic
information engineering from Chengdu University of
Information Technology, Chengdu, China, in 2021,
and the M.S. degree in communication engineer-
ing from Xi’an Jiaotong University, Xi’an, China,
in 2024. His research interests include image
super-resolution and denoising.

Damon M. Chandler (Senior Member, IEEE)
received the B.S. degree in biomedical engineer-
ing from Johns Hopkins University, Baltimore,
MD, USA, in 1998, and the M.Eng., M.S.,
and Ph.D. degrees in electrical engineering from
Cornell University, Ithaca, NY, USA, in 2000,
2003, and 2005, respectively. From 2005 to 2006,
he was a Postdoctoral Research Associate with
the Department of Psychology, Cornell University.
From 2006 to 2015, he was a Faculty Member with
the School of Electrical and Computer Engineering,

Oklahoma State University, USA. From 2016 to 2020, he was an Associate
Professor with the Department of Electrical and Electronic Engineering,
Shizuoka University, Japan. He is currently a Professor with the College
of Information Science and Engineering, Ritsumeikan University, Japan. His
research interests include image processing, data compression, computational
vision, natural scene statistics, and visual perception.

Xuanqin Mou (Senior Member, IEEE) has been
with the School of Electronic and Information
Engineering, Institute of Image Processing and Pat-
tern Recognition (IPPR), Xi’an Jiaotong University,
Xi’an, China, since 1987, where he has been an
Associate Professor since 1997 and a Professor since
2002. He is currently the Director of IPPR and the
Director of the National Data Broadcasting Engi-
neering and Technology Research Center. He has
authored or co-authored over 200 peer-reviewed
journals or conference papers. He was a member

of the 12th Expert Evaluation Committee for the National Natural Science
Foundation of China and the Executive Committee Member of China Society
of Image and Graphics and Chinese Society for Stereology. He was also the
Director of the Intelligent Imaging Society for Chinese Stereology. He was
a recipient of the Yung Wing Award for Excellence in Education, the KC
Wong Education Award, the Technology Academy Award for Invention by
the Ministry of Education of China, and the Technology Academy Awards
from the Government of Shaanxi Province, China.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 12,2024 at 03:13:37 UTC from IEEE Xplore.  Restrictions apply. 


