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Rank of a group

Definition

For a finitely generated group G , the rank of G denoted rk(G ) is
the minimal number of generators of G .

Example

For an abelian group G , if H < G , then rk(H) ≤ rk(G ).

Let Fn be a free group of rank n > 1. Then Fn < F2 but
rk(Fn) ≥ rk(F2).
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Fixed subgroup: Scott conjecture

For a group G , denote the set of endomorphisms (resp. monomor-
phisms, automorphisms) of G by End(G ) (resp. Mon(G ), Aut(G )).

Definition

For an endomorphism φ ∈ End(G ), the fixed subgroup of φ is

Fix(φ) := {g ∈ G | φ(g) = g}.

For a free group Fn of rank n:

Theorem (Dyer-Scott, 1975)

Let φ ∈ Aut(Fn) be an automorphism with finite order of Fn. Then

rkFix(φ) ≤ n.

Theorem (Bestvina-Handel, 1992)

Let φ ∈ Aut(Fn). Then rkFix(φ) ≤ n.
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Fixed subgroup: various directions

Fixed subgroups in various groups:
Surface group (Nielsen 1920s, Jaco-Shalen ’77, JWZ ’11)
3-manifold group (Z. ’12&15, Lin-Wang ’14, Jiang-Wang-Wang-
Zheng ’21)
Hyper. gp (Paulin ’89, Neumann ’92, Shor ’99, Hsu-Wise ’04)
Relatively hyperbolic group (Minasyan-Osin ’11)
RAAG (Rodaro-Silva-Sykiotis ’13)
Torus knot groups 〈x , y | xp = yq〉 (Jones ’23)

Inertia of fixed subgroups in free/surface groups (Dicks-Ventura
’96, Wu-Z. ’14, . . . , Antolin-Jaikin-Zapirain ’22)

Algorithm to compute the rank of fixed subgroups of free groups
(Bogopolski-Maslakova’16, Ciobanu-Logan’22, Mutanguha ’22)

Bounds for Kurosh ranks of fixed subgroups of free products
(Collins-Turner ’94, Sykiotis ’07, . . . )

Relationship between fixed subgroups and Nielsen fixed point
theory (Jiang-Wang-Z. ’11, Z.-Zhao ’21&22&23, Wang-Z. ’23)

. . . . . .
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Fixed subgroup: surface & 3-manifold group

Theorem (Jiang-Wang-Z., 2011)

Suppose G is a surface group. Then for any endomorphism φ ∈
End(G ),

1 rkFix(φ) ≤ rk(G ), with equality if and only if φ = id;

2 rkFix(φ) ≤ 1
2rk(G ) if φ is not epimorphic.

Nielsen considered the fixed subgroups of automorphisms of ori-
entable surface group in 1920s.

Theorem (Lin-Wang, 2014)

Suppose φ is an automorphism of G = π1(M), where M is a hyper-
bolic 3-manifold. Then rkFix(φ) < 2rk(G ).

ZHANG Qiang Some progress on fixed subgroups and fixed points 5 / 25



Fixed subgroup: surface & 3-manifold group

Theorem (Jiang-Wang-Z., 2011)

Suppose G is a surface group. Then for any endomorphism φ ∈
End(G ),

1 rkFix(φ) ≤ rk(G ), with equality if and only if φ = id;

2 rkFix(φ) ≤ 1
2rk(G ) if φ is not epimorphic.

Nielsen considered the fixed subgroups of automorphisms of ori-
entable surface group in 1920s.

Theorem (Lin-Wang, 2014)

Suppose φ is an automorphism of G = π1(M), where M is a hyper-
bolic 3-manifold. Then rkFix(φ) < 2rk(G ).

ZHANG Qiang Some progress on fixed subgroups and fixed points 5 / 25



Fixed subgroup: inertia conjecture

Definition

A subgroup A is inert in G if for every subgroup H ≤ G ,

rk(A ∩ H) ≤ rk(H).

A ≤ G is inert in G =⇒ rk(A) ≤ rk(G ).

Theorem (Dicks-Ventura, 1996)

Let F be a family of injective endomorphisms of Fn. Then

FixF := {g ∈ Fn | φ(g) = g ,∀φ ∈ F} =
⋂
φ∈F

Fix(φ)

is inert in Fn, i.e., for every subgroup H ≤ G

rk(H ∩ FixF) ≤ rk(H).

In particular, rk(FixF) ≤ n.
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Fixed subgroup: inertia conjecture

Dicks-Ventura inertia conjecture, 1996

The fixed subgroup of any family of endomorphisms of Fn is inert in
Fn.

Theorem (Wu-Z., 2014)

The fixed subgroup of any family of automorphisms of a surface
group G is inert in G .

Theorem (Antoĺın and Jaikin-Zapirain, 2022)

The Dicks-Ventura inertia conjecture holds not only in free groups
but also in surface groups.
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Theorem (Antoĺın and Jaikin-Zapirain, 2022)

The Dicks-Ventura inertia conjecture holds not only in free groups
but also in surface groups.

ZHANG Qiang Some progress on fixed subgroups and fixed points 7 / 25



Fixed subgroup: direct products

Theorem (Ventura-Wu-Z., 2015)

Let G = ×n
i=1Gi be a direct product of surface groups and free

groups. If neither of the factors is cyclic, then for φ ∈ Aut(G ),

rkFix(φ) ≤ rk(G ).

Otherwise, if G contains a non-cyclic factor and a factor Z, then
there exists f ∈ Aut(G ) such that Fix(f ) is not finitely generated.

Example

Let f : F2×Z→ F2×Z = 〈a, b, t | [a, t], [b, t]〉 be an automorphism
such that

a 7→ at, b 7→ b, t 7→ t.

Then u ∈ Fix(f ) if and only if it has zero exponent sum in a. So
Fix(f ) ∼= F∞ × Z generated by the infinite set {t, aiba−i |i ∈ Z}.
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FGFPm, FGFPa and FGFPe

Definition

A group G is said to have the finitely generated fixed subgroup
property of monomorphisms (resp. automorphisms, endomorphism-
s), abbreviated as FGFPm (resp. FGFPa, FGFPe), if for any
f ∈ Mon(G ) (resp. Aut(G ), End(G )), the fixed subgroup Fix(f )
is finitely generated.

Clearly, FGFPe =⇒ FGFPm =⇒ FGFPa.

Example

Free groups and surface groups have FGFPe.

F2 and Z both have FGFPa but their direct product F2 × Z
don’t.
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Fixed subgroup: free products

It is natural to ask

Question
1 If two groups G1 and G2 both have finitely generated fixed

subgroup property (FGFPm, FGFPa or FGFPe), then, what
about their free product G1 ∗ G2?

2 If the answer of (1) is affirmative, what is the quantitative
relation among the explicit bounds of ranks of fixed subgroups
of G1 ∗ G2, G1 and G2?

Theorem (Lei-Z., 2023)

A free product ∗ni=1Gi has FGFPm (resp. FGFPa) if and only if the
factor groups G1,G2, . . . ,Gn all have FGFPm (resp. FGFPa).
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FP and UFP degree: definitions

To quantitatively analysis the ranks of fixed subgroups, we introduce

Definition
1 A group G is said to have k-FGFP, if for any φ ∈ Mon(G ),

rkFix(φ) ≤ k · rk(G ).

The FP degree for G is

Df (G ) := sup{rkFix(φ)

rk(G )
| φ ∈ Mon(G )} ∈ [1, +∞].

2 G is said to have k-UFGFP, (“U” for uniformly), if for every
f.g. subgroup H < G and φ ∈ Mon(H), rkFix(φ) ≤ k · rk(H).
The UFP degree for G is

Duf (G ) := sup{rkFix(φ)

rk(H)
| H ≤ G , φ ∈ Mon(H)} ∈ [1, +∞].
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FP and UFP degree: properties

Proposition

Let G be a f.g. group and let 1 6= H ≤ G be a f.g. subgroup.

1 If G has k-UFGFP, then its subgroup H also has k-UFGFP
and hence has k-FGFP, i.e.,

1 ≤ Df (H) ≤ Duf (H) ≤ Duf (G ) ≤ k .

2 Df (G ) = Duf (G ) = 1 if G is one of the following:
a free abelian group Zn, a free group Fn or a surfaces group.

3 Df (F2 × Z) = ∞, and hence Duf (G ) = ∞ if G contains a
subgroup that is isomorphic to F2 × Z.

4 Df (∗ni=1Gi ) ≤ n · maxni=1 Df (Gi ), where each Gi is a freely
indecomposable group. In particular, if all the factors Gi have
the same rank, then

Df (∗ni=1Gi ) ≤
n

max
i=1

Df (Gi ).
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FGFP in hyperbolic groups

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov
hyperbolic groups is finitely generated.
[Shor 1999]: a torsion-free hyperbolic group contains, up to isomor-
phism, only finitely many fixed subgroups of automorphisms.
[Sela 1997]: every freely indecomposable torsion-free hyperbolic
group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G , we have Df(G ) <∞. In par-
ticular, for every monomorphism φ ∈ Mon(G ), the fixed subgroup
Fixφ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G , is Duf(G ) always finite?
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Fixed subgroup: hyperbolic group

A hyperbolic group G is called stably hyerbolic, if φm(G ) is hyper-
bolic for arbitrary lager m and any φ ∈ End(G ).

Theorem (Lei-Z., 2023)

Let G = ∗ni=1Gi be a torsion-free stably hyperbolic group, where
each factor Gi has finite UFP degree Duf (Gi ). Then, for any en-
domorphism φ ∈ End(G ),

rkFix(φ) ≤ 1

4
`(rk(G ) + 1)2,

where the number ` = maxni=1 Duf (Gi ).

Conjecture (O’Neill-Turner, 2000): all hyperbolic groups are stably
hyperbolic.
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Free products of free and surface groups

Theorem (Lei-Z., 2023)

Let G = ∗ti=1Gi ∗ Fs be a free product, where Fs is a free group of
rank s, and each factor Gi is a surface group. Then

if φ ∈ End(G ), then

rkFix(φ) ≤ 1

4
(rk(G ) + 1)2.

if φ ∈ Mon(G ), then rkFix(φ) ≤ (s + t)(rk(G ) − s − t + 1).
Moreover, if s = 0 and all the surface groups Gi share the same
rank, then

rkFix(φ) ≤ rk(G ).
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Graph groups

Theorem (Rodaro-Silva-Sykiotis, 2013)

Let G be a graph group (RAAG). Then the following two conditions
are equivalent

Fix(φ) is finitely generated for every endomorphism φ ∈
End(G );

G is a free product of finitely many free abelian groups of finite
rank.

Theorem (Lei-Z., 2023)

Let G = ∗ni=1Zti be a free product of free abelian groups Zti of rank
ti . Then for any endomorphism φ ∈ End(G ), we have

rkFix(φ) ≤ n(rk(G )− n + 1).

In particular, if t1 = t2 = · · · = tn, then rkFix(φ) ≤ rk(G ).
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3-manifold groups

Theorem (Lin-Wang, 2014)

Suppose φ is an automorphism of G = π1(M), where M is a hyper-
bolic 3-manifold. Then rkFix(φ) < 2rk(G ).

Theorem (Lei-Z., 2023)

Let M = #n
i=1Mi be a connected sum of finitely many hyperbol-

ic 3-manifolds. Then the fundamental group π1(M) has FGFPm

(and hence FGFPa). More precisely, for any monomorphism f ∈
Mon(π1(M)), we have

rkFix(f ) < 2n · rkπ1(M).

ZHANG Qiang Some progress on fixed subgroups and fixed points 17 / 25



3-manifold groups

Theorem (Lin-Wang, 2014)

Suppose φ is an automorphism of G = π1(M), where M is a hyper-
bolic 3-manifold. Then rkFix(φ) < 2rk(G ).

Theorem (Lei-Z., 2023)

Let M = #n
i=1Mi be a connected sum of finitely many hyperbol-

ic 3-manifolds. Then the fundamental group π1(M) has FGFPm

(and hence FGFPa). More precisely, for any monomorphism f ∈
Mon(π1(M)), we have

rkFix(f ) < 2n · rkπ1(M).

ZHANG Qiang Some progress on fixed subgroups and fixed points 17 / 25



What is Fixed Point Theory?

Let X be a space, and f : X → X a self-map.

x ∈ X is a fixed point of f ⇐⇒ f (x) = x .

Fixf := {x ∈ X |f (x) = x}: the set of all fixed points of f .

Fixed Point Theory studies the nature of Fixf in relation to the
space X and the map f , such as:

Existence: is Fixf 6= ∅ ?

Number of fixed points #Fixf

Behavior under homotopy: how Fixf changes when f changes
continuously?

......
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Fixed point class

Let X be a connected compact polyhedron, and f : X → X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes

Fixf := {x ∈ X |f (x) = x} =
⊔

F∈Fpc(f )

F

Definition (path approach)

Two fixed points x , x ′ ∈ Fix(f ) are in the same fixed point class
⇐⇒ there is a path c (called a Nielsen path) from x to x ′ such that
c ' f ◦ c rel endpoints.

The index of a fixed point class F is the sum

ind(f ,F) :=
∑
x∈F

ind(f , x) ∈ Z.
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Index: examples

The index is defined by using homology.

Let f : Rn → Rn be a diff. map, x a isolated fixed point. Then

ind(f , x) = sgn det(I − Dfx) = (−1)k .

If f : C→ C has a complex analytic expression z 7→ f (z), then
ind(f , z0) = multiplicity of the zero z0 of the function z− f (z).

Theorem (Lefschetz-Hopf Fixed Point Theorem)

∑
F

ind(f ,F) =
∑
q

(−1)qTrace(f∗ : Hq(X ;Q)→ Hq(X ;Q)) := L(f ),

and hence
L(f ) 6= 0 =⇒ Fixf 6= ∅.
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Bounded Index Property

A compact polyhedron X is said to have the Bounded Index Property
(BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)),
if ∃ B > 0 s.t. for any map (resp. homeomorphism) f : X → X ,

|ind(f ,F)| ≤ B, ∀F ∈ Fpc(f ).

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. πi (X ) = 0 for
all i > 1). Does X have BIP or BIPH?

Many positive examples:

[McCord, ’92]: Infra-solvmanifolds have BIP;

[Jiang-Wang, ’92]: Geometric 3-manifolds have BIPH;

[Jiang, ’98][Kelly, ’00]: Graphs & surfaces (χ < 0) have BIP;

[Ye-Z., 2019]: Products of negatively curved Riemannian man-
ifolds have BIPH;

· · · · · ·
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Fixed subgroups in π1(T 2#T 2)× Z2

Let Σ2 = T 2#T 2 be the orientable surface of genus 2.

Proposition

For any integer m > 0, there is an automorphism φ of π1(Σ2×T 2),
such that

rkFix(φ) = 2m.

Proof.

Taking the presentation

π1(Σ2 × T 2) = 〈a1, b1, a2, b2 | [a1, b1][a2, b2]〉 × 〈a, b | [a, b]〉.

Consider the automorphism φ : (u, v) 7→(u, rπ(u)ξ(v)), where

rπ : π1(Σ2)→ π1(T 2), a1 7→ a, b1 7→ b, a2, b2 7→ 1,

and
ξ : π1(T 2)→ π1(T 2), a 7→ am+1b, b 7→ amb.
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Lemma

Let p : E = Σ2 × T k → Σ2 be the projection to the first factor,
where T k (k ≥ 1) is a k-torus. Let f : E → E be a fiber-preserving
map with induced self-map f̄ on the base space.

E
f−−−−→ E

p

y p

y
Σ2

f̄−−−−→ Σ2

Then, for any essential fixed point class F of f , the projection p(F)
is an essential fixed point class of f̄ , and

|ind(f ,F)| = [Fixf̄π : pπ(Fixfπ)] · |ind(f̄ , p(F)|,

where fπ : π1(E , e) → π1(E , e) and f̄π : π1(Σ2, x) → π1(Σ2, x) for
e = (x , y) ∈ F, are the natural homomorphisms induced by f and f̄
respectively.
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First examples DO NOT have BIP.

As a consequence, we give a negative answer to Question (Jiang,
Math. Ann. 1998):

Theorem (Z.-Zhao, 2023)

(T 2#T 2)× S1 has BIPH, but does not have BIP;

(T 2#T 2)×T 2 does not have BIPH, and hence does not have
BIP.

A. Gogolev and J.-F. Lafont, Aspherical products which do not sup-
port Anosov diffeomorphisms, Ann. Henri Poincaré 17 (2016), 3005-
3026.
J. Lei, P. Wang and Q. Zhang, Classification of aut-fixed subgroups
in free-abelian times surface groups, 2023, 18pp. arXiv:2309.13540
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Thanks! ���
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