Some progress on fixed subgroups and fixed points

Qiang ZHANG

Xi'an Jiaotong University, China

Topological Invariants in Fixed Point Theory and Dynamical Systems Gdańsk University of Technology, Poland, Jan. 29, 2024

For a finitely generated group G, the rank of G denoted rk(G) is the minimal number of generators of G.

Example

- For an abelian group G, if H < G, then $rk(H) \le rk(G)$.
- Let F_n be a free group of rank n > 1. Then $F_n < F_2$ but $\operatorname{rk}(F_n) \ge \operatorname{rk}(F_2)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

For a finitely generated group G, the rank of G denoted rk(G) is the minimal number of generators of G.

Example

- For an abelian group G, if H < G, then $rk(H) \le rk(G)$.
- Let F_n be a free group of rank n > 1. Then $F_n < F_2$ but $\operatorname{rk}(F_n) \ge \operatorname{rk}(F_2)$.

イロト イポト イヨト イヨト

Fixed subgroup: Scott conjecture

For a group G, denote the set of endomorphisms (resp. monomorphisms, automorphisms) of G by End(G) (resp. Mon(G), Aut(G)).

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$\operatorname{Fix}(\phi) := \{g \in G \mid \phi(g) = g\}.$$

For a free group F_n of rank n:

Theorem (Dyer-Scott, 1975)

Let $\phi \in Aut(F_n)$ be an automorphism with finite order of F_n . Then

 $\operatorname{rkFix}(\phi) \leq n.$

Theorem (Bestvina-Handel, 1992)

Let $\phi \in \operatorname{Aut}(F_n)$. Then $\operatorname{rkFix}(\phi) \leq n$.

Fixed subgroup: Scott conjecture

For a group G, denote the set of endomorphisms (resp. monomorphisms, automorphisms) of G by End(G) (resp. Mon(G), Aut(G)).

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$\operatorname{Fix}(\phi) := \{g \in G \mid \phi(g) = g\}.$$

For a free group F_n of rank n:

Theorem (Dyer-Scott, 1975)

Let $\phi \in Aut(F_n)$ be an automorphism with finite order of F_n . Then

 $\operatorname{rkFix}(\phi) \leq n.$

Theorem (Bestvina-Handel, 1992)

Let $\phi \in \operatorname{Aut}(F_n)$. Then $\operatorname{rkFix}(\phi) \leq n$.

Fixed subgroup: Scott conjecture

For a group G, denote the set of endomorphisms (resp. monomorphisms, automorphisms) of G by End(G) (resp. Mon(G), Aut(G)).

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$\operatorname{Fix}(\phi) := \{g \in G \mid \phi(g) = g\}.$$

For a free group F_n of rank n:

Theorem (Dyer-Scott, 1975)

Let $\phi \in Aut(F_n)$ be an automorphism with finite order of F_n . Then

 $\operatorname{rkFix}(\phi) \leq n.$

Theorem (Bestvina-Handel, 1992)

Let $\phi \in \operatorname{Aut}(F_n)$. Then $\operatorname{rkFix}(\phi) \leq n$.

• Fixed subgroups in various groups:

- Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
- 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
- Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
- Relatively hyperbolic group (Minasyan-Osin '11)
- RAAG (Rodaro-Silva-Sykiotis '13)
- Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

• Fixed subgroups in various groups:

- Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
- 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
- Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
- Relatively hyperbolic group (Minasyan-Osin '11)
- RAAG (Rodaro-Silva-Sykiotis '13)
- Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

• • • • • • •

・ロン ・回 と ・ 回 と ・ 回 と

- Fixed subgroups in various groups:
 - Surface group (Nielsen 1920s, Jaco-Shalen '77, JWZ '11)
 - 3-manifold group (Z. '12&15, Lin-Wang '14, Jiang-Wang-Wang-Zheng '21)
 - Hyper. gp (Paulin '89, Neumann '92, Shor '99, Hsu-Wise '04)
 - Relatively hyperbolic group (Minasyan-Osin '11)
 - RAAG (Rodaro-Silva-Sykiotis '13)
 - Torus knot groups $\langle x, y \mid x^p = y^q \rangle$ (Jones '23)
- Inertia of fixed subgroups in free/surface groups (Dicks-Ventura '96, Wu-Z. '14, ..., Antolin-Jaikin-Zapirain '22)
- Algorithm to compute the rank of fixed subgroups of free groups (Bogopolski-Maslakova'16, Ciobanu-Logan'22, Mutanguha '22)
- Bounds for Kurosh ranks of fixed subgroups of free products (Collins-Turner '94, Sykiotis '07, ...)
- Relationship between fixed subgroups and Nielsen fixed point theory (Jiang-Wang-Z. '11, Z.-Zhao '21&22&23, Wang-Z. '23)

•

ヘロン 人間と 人間と 人間と

Theorem (Jiang-Wang-Z., 2011)

Suppose G is a surface group. Then for any endomorphism $\phi \in End(G)$,

- $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G)$, with equality if and only if $\phi = \operatorname{id}$;
- 2 $\operatorname{rkFix}(\phi) \leq \frac{1}{2}\operatorname{rk}(G)$ if ϕ is not epimorphic.

Nielsen considered the fixed subgroups of **automorphisms** of **orientable** surface group in 1920s.

Theorem (Lin-Wang, 2014)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a hyperbolic 3-manifold. Then $\operatorname{rkFix}(\phi) < \operatorname{2rk}(G)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Jiang-Wang-Z., 2011)

Suppose G is a surface group. Then for any endomorphism $\phi \in End(G)$,

- $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G)$, with equality if and only if $\phi = \operatorname{id}$;
- 2 $\operatorname{rkFix}(\phi) \leq \frac{1}{2}\operatorname{rk}(G)$ if ϕ is not epimorphic.

Nielsen considered the fixed subgroups of **automorphisms** of **orientable** surface group in 1920s.

Theorem (Lin-Wang, 2014)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a hyperbolic 3-manifold. Then $\operatorname{rkFix}(\phi) < 2\operatorname{rk}(G)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Fixed subgroup: inertia conjecture

Definition

A subgroup A is inert in G if for every subgroup $H \leq G$,

 $\operatorname{rk}(A \cap H) \leq \operatorname{rk}(H).$

 $A \leq G$ is inert in $G \Longrightarrow \operatorname{rk}(A) \leq \operatorname{rk}(G)$.

Theorem (Dicks-Ventura, 1996)

Let \mathcal{F} be a family of **injective** endomorphisms of F_n . Then

$$\operatorname{Fix} \mathcal{F} := \{ g \in F_n \mid \phi(g) = g, \forall \phi \in \mathcal{F} \} = \bigcap_{\phi \in \mathcal{F}} \operatorname{Fix}(\phi)$$

is inert in F_n , i.e., for every subgroup $H \leq G$

 $\operatorname{rk}(H \cap \operatorname{Fix}\mathcal{F}) \leq \operatorname{rk}(H).$

In particular,
$$rk(Fix\mathcal{F}) \leq n$$
.

Fixed subgroup: inertia conjecture

Definition

A subgroup A is inert in G if for every subgroup $H \leq G$,

 $\operatorname{rk}(A \cap H) \leq \operatorname{rk}(H).$

 $A \leq G$ is inert in $G \Longrightarrow \operatorname{rk}(A) \leq \operatorname{rk}(G)$.

Theorem (Dicks-Ventura, 1996)

Let \mathcal{F} be a family of **injective** endomorphisms of F_n . Then

$$\operatorname{Fix} \mathcal{F} := \{ g \in F_n \mid \phi(g) = g, \forall \phi \in \mathcal{F} \} = \bigcap_{\phi \in \mathcal{F}} \operatorname{Fix}(\phi)$$

is inert in F_n , i.e., for every subgroup $H \leq G$

 $\operatorname{rk}(H \cap \operatorname{Fix}\mathcal{F}) \leq \operatorname{rk}(H).$

Fixed subgroup: inertia conjecture

Definition

A subgroup A is inert in G if for every subgroup $H \leq G$,

 $\operatorname{rk}(A \cap H) \leq \operatorname{rk}(H).$

 $A \leq G$ is inert in $G \Longrightarrow \operatorname{rk}(A) \leq \operatorname{rk}(G)$.

Theorem (Dicks-Ventura, 1996)

Let \mathcal{F} be a family of **injective** endomorphisms of F_n . Then

$$\operatorname{Fix} \mathcal{F} := \{ g \in \mathcal{F}_n \mid \phi(g) = g, \forall \phi \in \mathcal{F} \} = \bigcap_{\phi \in \mathcal{F}} \operatorname{Fix}(\phi)$$

is inert in F_n , i.e., for every subgroup $H \leq G$

 $\operatorname{rk}(H \cap \operatorname{Fix}\mathcal{F}) \leq \operatorname{rk}(H).$

In particular, $rk(Fix\mathcal{F}) \leq n$.

Dicks-Ventura inertia conjecture, 1996

The fixed subgroup of any family of endomorphisms of F_n is inert in F_n .

Theorem (Wu-Z., 2014)

The fixed subgroup of any family of **automorphisms** of a surface group G is inert in G.

Theorem (Antolín and Jaikin-Zapirain, 2022)

The Dicks-Ventura inertia conjecture holds not only in free groups but also in surface groups.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dicks-Ventura inertia conjecture, 1996

The fixed subgroup of any family of endomorphisms of F_n is inert in F_n .

Theorem (Wu-Z., 2014)

The fixed subgroup of any family of **automorphisms** of a surface group G is inert in G.

Theorem (Antolín and Jaikin-Zapirain, 2022)

The Dicks-Ventura inertia conjecture holds not only in free groups but also in surface groups.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dicks-Ventura inertia conjecture, 1996

The fixed subgroup of any family of endomorphisms of F_n is inert in F_n .

Theorem (Wu-Z., 2014)

The fixed subgroup of any family of **automorphisms** of a surface group G is inert in G.

Theorem (Antolín and Jaikin-Zapirain, 2022)

The Dicks-Ventura inertia conjecture holds not only in free groups but also in surface groups.

• • • • • • • • • • •

Theorem (Ventura-Wu-Z., 2015)

Let $G = \times_{i=1}^{n} G_i$ be a direct product of surface groups and free groups. If neither of the factors is cyclic, then for $\phi \in Aut(G)$,

 $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G).$

Otherwise, if G contains a non-cyclic factor and a factor \mathbb{Z} , then there exists $f \in Aut(G)$ such that Fix(f) is not finitely generated.

Example

Let $f : F_2 \times \mathbb{Z} \to F_2 \times \mathbb{Z} = \langle a, b, t \mid [a, t], [b, t] \rangle$ be an automorphism such that

 $a\mapsto at, \ b\mapsto b, \ t\mapsto t.$

Then $u \in Fix(f)$ if and only if it has zero exponent sum in *a*. So $Fix(f) \cong F_{\infty} \times \mathbb{Z}$ generated by the infinite set $\{t, a^{i}ba^{-i} | i \in \mathbb{Z}\}$.

Theorem (Ventura-Wu-Z., 2015)

Let $G = \times_{i=1}^{n} G_i$ be a direct product of surface groups and free groups. If neither of the factors is cyclic, then for $\phi \in Aut(G)$,

 $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G).$

Otherwise, if G contains a non-cyclic factor and a factor \mathbb{Z} , then there exists $f \in Aut(G)$ such that Fix(f) is not finitely generated.

Example

Let $f: F_2 \times \mathbb{Z} \to F_2 \times \mathbb{Z} = \langle a, b, t \mid [a, t], [b, t] \rangle$ be an automorphism such that

$$a\mapsto at, \ b\mapsto b, \ t\mapsto t.$$

Then $u \in Fix(f)$ if and only if it has zero exponent sum in *a*. So $Fix(f) \cong F_{\infty} \times \mathbb{Z}$ generated by the infinite set $\{t, a^i b a^{-i} | i \in \mathbb{Z}\}$.

A group G is said to have the *finitely generated fixed subgroup* property of monomorphisms (resp. automorphisms, endomorphisms), abbreviated as $FGFP_m$ (resp. $FGFP_a$, $FGFP_e$), if for any $f \in Mon(G)$ (resp. Aut(G), End(G)), the fixed subgroup Fix(f)is finitely generated.

Clearly, $FGFP_e \Longrightarrow FGFP_m \Longrightarrow FGFP_a$.

Example

- Free groups and surface groups have $FGFP_e$.
- F_2 and $\mathbb Z$ both have $\mathrm{FGFP}_{\mathrm{a}}$ but their direct product $F_2\times\mathbb Z$ don't.

イロト イヨト イヨト イヨト

A group G is said to have the *finitely generated fixed subgroup* property of monomorphisms (resp. automorphisms, endomorphisms), abbreviated as $FGFP_m$ (resp. $FGFP_a$, $FGFP_e$), if for any $f \in Mon(G)$ (resp. Aut(G), End(G)), the fixed subgroup Fix(f)is finitely generated.

 $\mathsf{Clearly, } \mathrm{FGFP}_{e} \Longrightarrow \mathrm{FGFP}_{m} \Longrightarrow \mathrm{FGFP}_{a}.$

Example

- Free groups and surface groups have $\mathrm{FGFP}_{\mathrm{e}}$.
- F_2 and $\mathbb Z$ both have FGFP_a but their direct product $F_2\times\mathbb Z$ don't.

・ロン ・回 と ・ ヨ と ・ ヨ と

A group G is said to have the *finitely generated fixed subgroup* property of monomorphisms (resp. automorphisms, endomorphisms), abbreviated as $FGFP_m$ (resp. $FGFP_a$, $FGFP_e$), if for any $f \in Mon(G)$ (resp. Aut(G), End(G)), the fixed subgroup Fix(f)is finitely generated.

 $\mathsf{Clearly, } \mathrm{FGFP}_{e} \Longrightarrow \mathrm{FGFP}_{m} \Longrightarrow \mathrm{FGFP}_{a}.$

Example

- \bullet Free groups and surface groups have $\mathrm{FGFP}_{e}.$
- F_2 and $\mathbb Z$ both have ${\rm FGFP}_{\rm a}$ but their direct product $F_2\times \mathbb Z$ don't.

イロン 不同と 不同と 不同と

It is natural to ask

Question

- If two groups G_1 and G_2 both have finitely generated fixed subgroup property (FGFP_m, FGFP_a or FGFP_e), then, what about their free product $G_1 * G_2$?
- **②** If the answer of (1) is affirmative, what is the quantitative relation among the explicit bounds of ranks of fixed subgroups of $G_1 * G_2$, G_1 and G_2 ?

Theorem (Lei-Z., 2023)

A free product $*_{i=1}^{n} G_i$ has $FGFP_m$ (resp. $FGFP_a$) if and only if the factor groups G_1, G_2, \ldots, G_n all have $FGFP_m$ (resp. $FGFP_a$).

イロン イヨン イヨン イヨン

It is natural to ask

Question

- If two groups G_1 and G_2 both have finitely generated fixed subgroup property (FGFP_m, FGFP_a or FGFP_e), then, what about their free product $G_1 * G_2$?
- **②** If the answer of (1) is affirmative, what is the quantitative relation among the explicit bounds of ranks of fixed subgroups of $G_1 * G_2$, G_1 and G_2 ?

Theorem (Lei-Z., 2023)

A free product $*_{i=1}^{n} G_i$ has $FGFP_m$ (resp. $FGFP_a$) if and only if the factor groups G_1, G_2, \ldots, G_n all have $FGFP_m$ (resp. $FGFP_a$).

・ロン ・回 と ・ ヨ と ・ ヨ と

FP and UFP degree: definitions

To quantitatively analysis the ranks of fixed subgroups, we introduce

Definition

4 A group G is said to have k-FGFP, if for any $\phi \in Mon(G)$,

 $\operatorname{rkFix}(\phi) \leq k \cdot \operatorname{rk}(G).$

The FP degree for G is

$$\mathfrak{D}_f(G) := \sup\{rac{\mathrm{rkFix}(\phi)}{\mathrm{rk}(G)} \mid \phi \in \mathrm{Mon}(G)\} \in [1, +\infty]$$

② *G* is said to have k-UFGFP, ("U" for uniformly), if for every f.g. subgroup *H* < *G* and $\phi \in Mon(H)$, rkFix(ϕ) ≤ *k* · rk(*H*). The UFP degree for *G* is

$$\mathfrak{D}_{uf}(G) := \sup\{\frac{\operatorname{rkFix}(\phi)}{\operatorname{rk}(H)} \mid H \leq G, \ \phi \in \operatorname{Mon}(H)\} \in [1, +\infty].$$

FP and UFP degree: definitions

To quantitatively analysis the ranks of fixed subgroups, we introduce

Definition

() A group G is said to have k-FGFP, if for any $\phi \in Mon(G)$,

 $\operatorname{rkFix}(\phi) \leq k \cdot \operatorname{rk}(G).$

The FP degree for G is

$$\mathfrak{D}_f(\mathcal{G}) := \sup\{rac{\mathrm{rkFix}(\phi)}{\mathrm{rk}(\mathcal{G})} \mid \phi \in \mathrm{Mon}(\mathcal{G})\} \in [1, +\infty]$$

G is said to have k-UFGFP, ("U" for uniformly), if for every f.g. subgroup H < G and φ ∈ Mon(H), rkFix(φ) ≤ k ⋅ rk(H). The UFP degree for G is

FP and UFP degree: definitions

To quantitatively analysis the ranks of fixed subgroups, we introduce

Definition

() A group G is said to have k-FGFP, if for any $\phi \in Mon(G)$,

 $\operatorname{rkFix}(\phi) \leq k \cdot \operatorname{rk}(G).$

The FP degree for G is

$$\mathfrak{D}_f(\mathcal{G}) := \mathsf{sup}\{rac{\mathrm{rkFix}(\phi)}{\mathrm{rk}(\mathcal{G})} \mid \phi \in \mathrm{Mon}(\mathcal{G})\} \in [1, +\infty].$$

G is said to have k-UFGFP, ("U" for uniformly), if for every f.g. subgroup H < G and φ ∈ Mon(H), rkFix(φ) ≤ k ⋅ rk(H). The UFP degree for G is

FP and UFP degree: definitions

To quantitatively analysis the ranks of fixed subgroups, we introduce

Definition

1 A group G is said to have k-FGFP, if for any $\phi \in Mon(G)$,

 $\operatorname{rkFix}(\phi) \leq k \cdot \operatorname{rk}(G).$

The FP degree for G is

$$\mathfrak{D}_f(\mathcal{G}) := \mathsf{sup}\{rac{\mathrm{rkFix}(\phi)}{\mathrm{rk}(\mathcal{G})} \mid \phi \in \mathrm{Mon}(\mathcal{G})\} \in [1, +\infty].$$

G is said to have k-UFGFP, ("U" for uniformly), if for every f.g. subgroup H < G and φ ∈ Mon(H), rkFix(φ) ≤ k ⋅ rk(H). The UFP degree for G is

$$\mathfrak{D}_{uf}(\mathcal{G}) := \sup\{rac{\mathrm{rkFix}(\phi)}{\mathrm{rk}(\mathcal{H})} \mid \mathcal{H} \leq \mathcal{G}, \ \phi \in \mathrm{Mon}(\mathcal{H})\} \in [1, \ +\infty].$$

FP and UFP degree: properties

Proposition

Let G be a f.g. group and let $1 \neq H \leq G$ be a f.g. subgroup.

If G has k-UFGFP, then its subgroup H also has k-UFGFP and hence has k-FGFP, i.e.,

 $1 \leq \mathfrak{D}_f(H) \leq \mathfrak{D}_{uf}(H) \leq \mathfrak{D}_{uf}(G) \leq k.$

- ② $\mathfrak{D}_f(G) = \mathfrak{D}_{uf}(G) = 1$ if G is one of the following: a free abelian group \mathbb{Z}^n , a free group F_n or a surfaces group.
- ③ D_f(F₂ × Z) = ∞, and hence D_{uf}(G) = ∞ if G contains a subgroup that is isomorphic to F₂ × Z.
- $\mathfrak{D}_f(*_{i=1}^n G_i) \leq n \cdot \max_{i=1}^n \mathfrak{D}_f(G_i)$, where each G_i is a freely indecomposable group. In particular, if all the factors G_i have the same rank, then

$$\mathfrak{D}_f(*_{i=1}^n G_i) \leq \max_{i=1}^n \mathfrak{D}_f(G_i).$$

FP and UFP degree: properties

Proposition

Let G be a f.g. group and let $1 \neq H \leq G$ be a f.g. subgroup.

If G has k-UFGFP, then its subgroup H also has k-UFGFP and hence has k-FGFP, i.e.,

 $1 \leq \mathfrak{D}_f(H) \leq \mathfrak{D}_{uf}(H) \leq \mathfrak{D}_{uf}(G) \leq k.$

② $\mathfrak{D}_f(G) = \mathfrak{D}_{uf}(G) = 1$ if G is one of the following: a free abelian group \mathbb{Z}^n , a free group F_n or a surfaces group.

- $\mathfrak{D}_f(F_2 \times \mathbb{Z}) = \infty$, and hence $\mathfrak{D}_{uf}(G) = \infty$ if G contains a subgroup that is isomorphic to $F_2 \times \mathbb{Z}$.
- $\mathfrak{D}_f(*_{i=1}^n G_i) \leq n \cdot \max_{i=1}^n \mathfrak{D}_f(G_i)$, where each G_i is a freely indecomposable group. In particular, if all the factors G_i have the same rank, then

$$\mathfrak{D}_f(*_{i=1}^n G_i) \leq \max_{i=1}^n \mathfrak{D}_f(G_i).$$

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov hyperbolic groups is finitely generated.

[Shor 1999]: a torsion-free hyperbolic group contains, up to isomorphism, only finitely many fixed subgroups of automorphisms. [Sela 1997]: every freely indecomposable torsion-free hyperbolic group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G, we have $\mathfrak{D}_{f}(G) < \infty$. In particular, for every monomorphism $\phi \in Mon(G)$, the fixed subgroup $Fix\phi$ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G, is $\mathfrak{D}_{uf}(G)$ always finite?

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov hyperbolic groups is finitely generated.

[Shor 1999]: a torsion-free hyperbolic group contains, up to isomorphism, only finitely many fixed subgroups of automorphisms.

[Sela 1997]: every freely indecomposable torsion-free hyperbolic group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G, we have $\mathfrak{D}_{f}(G) < \infty$. In particular, for every monomorphism $\phi \in Mon(G)$, the fixed subgroup $Fix\phi$ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G, is $\mathfrak{D}_{\mathrm{uf}}(G)$ always finite?

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov hyperbolic groups is finitely generated.

[Shor 1999]: a torsion-free hyperbolic group contains, up to isomorphism, only finitely many fixed subgroups of automorphisms.

[Sela 1997]: every freely indecomposable torsion-free hyperbolic group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G, we have $\mathfrak{D}_{f}(G) < \infty$. In particular, for every monomorphism $\phi \in Mon(G)$, the fixed subgroup $Fix\phi$ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G, is $\mathfrak{D}_{\mathrm{uf}}(G)$ always finite?

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov hyperbolic groups is finitely generated.

[Shor 1999]: a torsion-free hyperbolic group contains, up to isomorphism, only finitely many fixed subgroups of automorphisms. [Sela 1997]: every freely indecomposable torsion-free hyperbolic

group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G, we have $\mathfrak{D}_{\mathrm{f}}(G) < \infty$. In particular, for every monomorphism $\phi \in \mathrm{Mon}(G)$, the fixed subgroup $\mathrm{Fix}\phi$ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G, is $\mathfrak{D}_{uf}(G)$ always finite?

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov hyperbolic groups is finitely generated.

[Shor 1999]: a torsion-free hyperbolic group contains, up to isomorphism, only finitely many fixed subgroups of automorphisms. [Sela 1997]: every freely indecomposable torsion-free hyperbolic

group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G, we have $\mathfrak{D}_{\mathrm{f}}(G) < \infty$. In particular, for every monomorphism $\phi \in \mathrm{Mon}(G)$, the fixed subgroup $\mathrm{Fix}\phi$ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G, is $\mathfrak{D}_{uf}(G)$ always finite?

[Paulin 1989]: the fixed subgroup of any automorphism of a Gromov hyperbolic groups is finitely generated.

[Shor 1999]: a torsion-free hyperbolic group contains, up to isomorphism, only finitely many fixed subgroups of automorphisms. [Sela 1997]: every freely indecomposable torsion-free hyperbolic

group is either co-Hopfian or infinite cyclic.

Theorem (Lei-Z., 2023)

For a torsion-free hyperbolic group G, we have $\mathfrak{D}_{\mathrm{f}}(G) < \infty$. In particular, for every monomorphism $\phi \in \mathrm{Mon}(G)$, the fixed subgroup $\mathrm{Fix}\phi$ is finitely generated.

A subgroup of a hyperbolic group may not be hyperbolic.

Question

For a hyperbolic group G, is $\mathfrak{D}_{\mathrm{uf}}(G)$ always finite?

A hyperbolic group G is called stably hyerbolic, if $\phi^m(G)$ is hyperbolic for arbitrary lager m and any $\phi \in \text{End}(G)$.

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{n} G_i$ be a torsion-free stably hyperbolic group, where each factor G_i has finite UFP degree $\mathfrak{D}_{uf}(G_i)$. Then, for any endomorphism $\phi \in \operatorname{End}(G)$,

$$\operatorname{rkFix}(\phi) \leq \frac{1}{4}\ell(\operatorname{rk}(G)+1)^2,$$

where the number $\ell = \max_{i=1}^{n} \mathfrak{D}_{uf}(G_i)$.

Conjecture (O'Neill-Turner, 2000): all hyperbolic groups are stably hyperbolic.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A hyperbolic group G is called stably hyerbolic, if $\phi^m(G)$ is hyperbolic for arbitrary lager m and any $\phi \in \text{End}(G)$.

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{n} G_i$ be a torsion-free stably hyperbolic group, where each factor G_i has finite UFP degree $\mathfrak{D}_{uf}(G_i)$. Then, for any endomorphism $\phi \in \operatorname{End}(G)$,

$$\operatorname{rkFix}(\phi) \leq \frac{1}{4}\ell(\operatorname{rk}(G)+1)^2,$$

where the number $\ell = \max_{i=1}^{n} \mathfrak{D}_{uf}(G_i)$.

Conjecture (O'Neill-Turner, 2000): all hyperbolic groups are stably hyperbolic.

ヘロン 人間と 人間と 人間と

A hyperbolic group G is called stably hyerbolic, if $\phi^m(G)$ is hyperbolic for arbitrary lager m and any $\phi \in \text{End}(G)$.

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{n} G_i$ be a torsion-free stably hyperbolic group, where each factor G_i has finite UFP degree $\mathfrak{D}_{uf}(G_i)$. Then, for any endomorphism $\phi \in \operatorname{End}(G)$,

$$\operatorname{rkFix}(\phi) \leq \frac{1}{4}\ell(\operatorname{rk}(G)+1)^2,$$

where the number $\ell = \max_{i=1}^{n} \mathfrak{D}_{uf}(G_i)$.

Conjecture (O'Neill-Turner, 2000): all hyperbolic groups are stably hyperbolic.

ZHANG Qiang

・ロン ・回 と ・ 回 と ・ 回 と

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{t} G_i * F_s$ be a free product, where F_s is a free group of rank s, and each factor G_i is a surface group. Then

• if $\phi \in \operatorname{End}(G)$, then

$$\operatorname{rkFix}(\phi) \leq \frac{1}{4}(\operatorname{rk}(G)+1)^2.$$

 if φ ∈ Mon(G), then rkFix(φ) ≤ (s + t)(rk(G) − s − t + 1). Moreover, if s = 0 and all the surface groups G_i share the same rank, then

 $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G).$

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{t} G_i * F_s$ be a free product, where F_s is a free group of rank s, and each factor G_i is a surface group. Then

• if $\phi \in \operatorname{End}(G)$, then

$$\operatorname{rkFix}(\phi) \leq \frac{1}{4}(\operatorname{rk}(G)+1)^2.$$

• if $\phi \in Mon(G)$, then $\operatorname{rkFix}(\phi) \leq (s+t)(\operatorname{rk}(G) - s - t + 1)$. Moreover, if s = 0 and all the surface groups G_i share the same rank, then

 $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G).$

・ロト ・回ト ・ヨト

Graph groups

Theorem (Rodaro-Silva-Sykiotis, 2013)

Let G be a **graph group** (RAAG). Then the following two conditions are equivalent

- $Fix(\phi)$ is finitely generated for every endomorphism $\phi \in End(G)$;
- *G* is a free product of finitely many free abelian groups of finite rank.

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{n} \mathbb{Z}^{t_i}$ be a free product of free abelian groups \mathbb{Z}^{t_i} of rank t_i . Then for any endomorphism $\phi \in \text{End}(G)$, we have

 $\operatorname{rkFix}(\phi) \leq n(\operatorname{rk}(G) - n + 1).$

In particular, if $t_1 = t_2 = \cdots = t_n$, then $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G)$.

Graph groups

Theorem (Rodaro-Silva-Sykiotis, 2013)

Let G be a **graph group** (RAAG). Then the following two conditions are equivalent

- $Fix(\phi)$ is finitely generated for every endomorphism $\phi \in End(G)$;
- *G* is a free product of finitely many free abelian groups of finite rank.

Theorem (Lei-Z., 2023)

Let $G = *_{i=1}^{n} \mathbb{Z}^{t_i}$ be a free product of free abelian groups \mathbb{Z}^{t_i} of rank t_i . Then for any endomorphism $\phi \in \text{End}(G)$, we have

$$\operatorname{rkFix}(\phi) \leq n(\operatorname{rk}(G) - n + 1).$$

In particular, if $t_1 = t_2 = \cdots = t_n$, then $\operatorname{rkFix}(\phi) \leq \operatorname{rk}(G)$.

Theorem (Lin-Wang, 2014)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a hyperbolic 3-manifold. Then $\operatorname{rkFix}(\phi) < 2\operatorname{rk}(G)$.

Theorem (Lei-Z., 2023)

Let $M = \#_{i=1}^{n} M_i$ be a connected sum of finitely many hyperbolic 3-manifolds. Then the fundamental group $\pi_1(M)$ has FGFP_m (and hence FGFP_a). More precisely, for any monomorphism $f \in$ Mon $(\pi_1(M))$, we have

 $\operatorname{rkFix}(f) < 2n \cdot \operatorname{rk}\pi_1(M).$

イロト イヨト イヨト イヨト

Theorem (Lin-Wang, 2014)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a hyperbolic 3-manifold. Then $\operatorname{rkFix}(\phi) < 2\operatorname{rk}(G)$.

Theorem (Lei-Z., 2023)

Let $M = \#_{i=1}^{n} M_i$ be a connected sum of finitely many hyperbolic 3-manifolds. Then the fundamental group $\pi_1(M)$ has FGFP_m (and hence FGFP_a). More precisely, for any monomorphism $f \in$ Mon $(\pi_1(M))$, we have

 $\operatorname{rkFix}(f) < 2n \cdot \operatorname{rk}\pi_1(M).$

Image: A match the second s

• $x \in X$ is a fixed point of $f \iff f(x) = x$.

• Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

A (B) > A (B) > A (B) >

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

▲ □ ► ▲ □ ►

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points # Fix f
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

▲ □ ► ▲ □ ►

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

Fixed Point Theory studies the nature of Fixf in relation to the space X and the map f, such as:

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?

•

▲ □ ► ▲ □ ►

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class ${\bf F}$ is the sum

$$\operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

Image: A math a math

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class ${\bf F}$ is the sum

$$\operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

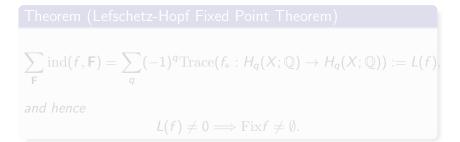
Index: examples

The index is defined by using homology.

• Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f, x) = \operatorname{sgn} \operatorname{det}(I - Df_x) = (-1)^k.$$

 If f : C → C has a complex analytic expression z → f(z), then ind(f, z₀) = multiplicity of the zero z₀ of the function z − f(z).



Index: examples

The index is defined by using homology.

• Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f, x) = \operatorname{sgn} \operatorname{det}(I - Df_x) = (-1)^k.$$

 If f : C → C has a complex analytic expression z → f(z), then ind(f, z₀) = multiplicity of the zero z₀ of the function z − f(z).

Theorem (Lefschetz-Hopf Fixed Point Theorem)

$$\sum_{\mathbf{F}} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})) := L(f)$$

and hence

$$L(f) \neq 0 \Longrightarrow \operatorname{Fix} f \neq \emptyset.$$

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism) $f : X \to X$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Many positive examples:

- [McCord, '92]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, '92]: Geometric 3-manifolds have BIPH;
- [Jiang, '98][Kelly, '00]: Graphs & surfaces ($\chi < 0$) have BIP;
- [Ye-Z., 2019]: Products of negatively curved Riemannian manifolds have BIPH;

・ロン ・回 と ・ ヨン ・ ヨン

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism) $f : X \to X$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Many positive examples:

- [McCord, '92]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, '92]: Geometric 3-manifolds have BIPH;
- [Jiang, '98][Kelly, '00]: Graphs & surfaces ($\chi < 0$) have BIP;
- [Ye-Z., 2019]: Products of negatively curved Riemannian manifolds have BIPH;

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism) $f : X \to X$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Many positive examples:

- [McCord, '92]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, '92]: Geometric 3-manifolds have BIPH;
- [Jiang, '98][Kelly, '00]: Graphs & surfaces ($\chi < 0$) have BIP;
- [Ye-Z., 2019]: Products of negatively curved Riemannian manifolds have BIPH;

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism) $f : X \to X$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Many positive examples:

- [McCord, '92]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, '92]: Geometric 3-manifolds have BIPH;
- [Jiang, '98][Kelly, '00]: Graphs & surfaces ($\chi < 0$) have BIP;
- [Ye-Z., 2019]: Products of negatively curved Riemannian manifolds have BIPH;

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism) $f : X \to X$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Many positive examples:

- [McCord, '92]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, '92]: Geometric 3-manifolds have BIPH;
- [Jiang, '98][Kelly, '00]: Graphs & surfaces ($\chi < 0$) have BIP;
- [Ye-Z., 2019]: Products of negatively curved Riemannian manifolds have BIPH;

æ

ヘロン 人間と 人間と 人間と

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism) $f : X \to X$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

Question (Jiang, Math. Ann. 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Many positive examples:

- [McCord, '92]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, '92]: Geometric 3-manifolds have BIPH;
- [Jiang, '98][Kelly, '00]: Graphs & surfaces ($\chi < 0$) have BIP;
- [Ye-Z., 2019]: Products of negatively curved Riemannian manifolds have BIPH;
- • • • •

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Fixed subgroups in $\pi_1(T^2 \# T^2) \times \mathbb{Z}^2$

Let $\Sigma_2 = T^2 \# T^2$ be the orientable surface of genus 2.

Proposition

For any integer m > 0, there is an automorphism ϕ of $\pi_1(\Sigma_2 \times T^2)$, such that

 $\operatorname{rkFix}(\phi) = 2m.$

Proof.

Taking the presentation

$$\pi_1(\Sigma_2 \times T^2) = \langle a_1, b_1, a_2, b_2 \mid [a_1, b_1][a_2, b_2] \rangle \times \langle a, b \mid [a, b] \rangle.$$

Consider the automorphism $\phi : (u, v) \mapsto (u, r_{\pi}(u)\xi(v))$, where

 $r_{\pi}:\pi_1(\Sigma_2) \to \pi_1(T^2), \quad a_1 \mapsto a, \ b_1 \mapsto b, \ a_2, b_2 \mapsto 1,$

and

 $\mathcal{E}: \pi_1(T^2) \to \pi_1(T^2), \quad a \mapsto a^{m+1}b, \ b \mapsto a^m b.$

Some progress on fixed subgroups and fixed points

Fixed subgroups in $\pi_1(T^2 \# T^2) \times \mathbb{Z}^2$

Let $\Sigma_2 = T^2 \# T^2$ be the orientable surface of genus 2.

Proposition

For any integer m > 0, there is an automorphism ϕ of $\pi_1(\Sigma_2 \times T^2)$, such that

$$\operatorname{rkFix}(\phi) = 2m.$$

Proof.

Taking the presentation

$$\pi_1(\Sigma_2 \times T^2) = \langle a_1, b_1, a_2, b_2 \mid [a_1, b_1][a_2, b_2] \rangle \times \langle a, b \mid [a, b] \rangle.$$

Consider the automorphism $\phi : (u, v) \mapsto (u, r_{\pi}(u)\xi(v))$, where

 $r_{\pi}:\pi_1(\Sigma_2)
ightarrow\pi_1(T^2),\quad a_1\mapsto a,\ b_1\mapsto b,\ a_2,b_2\mapsto 1,$

and

Some progress on fixed subgroups and fixed points

Fixed subgroups in $\pi_1(T^2 \# T^2) \times \mathbb{Z}^2$

Let $\Sigma_2 = T^2 \# T^2$ be the orientable surface of genus 2.

Proposition

For any integer m > 0, there is an automorphism ϕ of $\pi_1(\Sigma_2 \times T^2)$, such that

$$\operatorname{rkFix}(\phi) = 2m.$$

Proof.

Taking the presentation

$$\pi_1(\Sigma_2 \times T^2) = \langle a_1, b_1, a_2, b_2 \mid [a_1, b_1][a_2, b_2] \rangle \times \langle a, b \mid [a, b] \rangle.$$

Consider the automorphism $\phi : (u, v) \mapsto (u, r_{\pi}(u)\xi(v))$, where

$$r_\pi:\pi_1(\Sigma_2) o\pi_1(\mathcal{T}^2),\quad a_1\mapsto a,\ b_1\mapsto b,\ a_2,b_2\mapsto 1,$$

and

$$\xi: \pi_1(T^2) \to \pi_1(T^2)$$
, $a \mapsto a^{m+1}b$, $b \mapsto a^m b$.

ZHANG Qiang

Some progress on fixed subgroups and fixed points

_emma

Let $p: E = \Sigma_2 \times T^k \to \Sigma_2$ be the projection to the first factor, where T^k $(k \ge 1)$ is a k-torus. Let $f: E \to E$ be a fiber-preserving map with induced self-map \overline{f} on the base space.

Then, for any essential fixed point class **F** of f, the projection $p(\mathbf{F})$ is an essential fixed point class of \overline{f} , and

$$|\operatorname{ind}(f, \mathbf{F})| = [\operatorname{Fix}\overline{f}_{\pi} : p_{\pi}(\operatorname{Fix}f_{\pi})] \cdot |\operatorname{ind}(\overline{f}, p(\mathbf{F})|,$$

where $f_{\pi} : \pi_1(E, e) \to \pi_1(E, e)$ and $\overline{f}_{\pi} : \pi_1(\Sigma_2, x) \to \pi_1(\Sigma_2, x)$ for $e = (x, y) \in \mathbf{F}$, are the natural homomorphisms induced by f and \overline{f} respectively.

Theorem (Z.-Zhao, 2023)

- $(T^2 \# T^2) \times S^1$ has BIPH, but does not have BIP;
- $(T^2 \# T^2) \times T^2$ does not have BIPH, and hence does not have BIP.

A. Gogolev and J.-F. Lafont, *Aspherical products which do not support Anosov diffeomorphisms*, Ann. Henri Poincaré 17 (2016), 3005-3026.

J. Lei, P. Wang and Q. Zhang, *Classification of aut-fixed subgroups in free-abelian times surface groups*, 2023, 18pp. arXiv:2309.13540

イロト イポト イヨト イヨト

Theorem (Z.-Zhao, 2023)

• $(T^2 \# T^2) \times S^1$ has BIPH, but does not have BIP;

• $(T^2 \# T^2) \times T^2$ does not have BIPH, and hence does not have BIP.

A. Gogolev and J.-F. Lafont, *Aspherical products which do not support Anosov diffeomorphisms*, Ann. Henri Poincaré 17 (2016), 3005-3026.

J. Lei, P. Wang and Q. Zhang, *Classification of aut-fixed subgroups in free-abelian times surface groups*, 2023, 18pp. arXiv:2309.13540

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Z.-Zhao, 2023)

- $(T^2 \# T^2) \times S^1$ has BIPH, but does not have BIP;
- $(T^2 \# T^2) \times T^2$ does not have BIPH, and hence does not have BIP.

A. Gogolev and J.-F. Lafont, *Aspherical products which do not support Anosov diffeomorphisms*, Ann. Henri Poincaré 17 (2016), 3005-3026.

J. Lei, P. Wang and Q. Zhang, *Classification of aut-fixed subgroups in free-abelian times surface groups*, 2023, 18pp. arXiv:2309.13540

イロト イポト イヨト イヨト

Theorem (Z.-Zhao, 2023)

- $(T^2 \# T^2) \times S^1$ has BIPH, but does not have BIP;
- $(T^2 \# T^2) \times T^2$ does not have BIPH, and hence does not have BIP.

A. Gogolev and J.-F. Lafont, Aspherical products which do not support Anosov diffeomorphisms, Ann. Henri Poincaré 17 (2016), 3005-3026.

J. Lei, P. Wang and Q. Zhang, *Classification of aut-fixed subgroups in free-abelian times surface groups*, 2023, 18pp. arXiv:2309.13540

イロト イポト イヨト イヨト

Theorem (Z.-Zhao, 2023)

- $(T^2 \# T^2) \times S^1$ has BIPH, but does not have BIP;
- $(T^2 \# T^2) \times T^2$ does not have BIPH, and hence does not have BIP.

A. Gogolev and J.-F. Lafont, Aspherical products which do not support Anosov diffeomorphisms, Ann. Henri Poincaré 17 (2016), 3005-3026.

J. Lei, P. Wang and Q. Zhang, Classification of aut-fixed subgroups in free-abelian times surface groups, 2023, 18pp. arXiv:2309.13540

Thanks! 谢谢!

ZHANG Qiang

Some progress on fixed subgroups and fixed points

25 / 25

æ

ヘロン 人間 とくほど くほとう