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The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling
model proposed by Casati et al. does not conserve total momentum and has been found to exhibit normal heat
conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied
and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model
without hard point collisions where total momentum is also conserved. We investigate the heat conduction
and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential
forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy
diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although
the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating
from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction
behavior can be found for the full-lattice ding-a-ling model.
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I. INTRODUCTION

It has long been believed that there should be a profound
connection between heat conduction and energy diffusion
since both of them describe the same dynamic process of
energy transport [1]. For normal and ballistic heat conduction,
it is well established that their energy diffusions should
also be normal and ballistic, respectively. What is nontrivial
and really interesting is the connection between anomalous
heat conduction and anomalous energy diffusion for low-
dimensional systems. For anomalous heat conduction, the
thermal conductivity diverges with the system length as κ ∝
Nα with 0 < α < 1 [2–43]. For anomalous energy diffusion,
the spreading of the Mean Square Displacement (MSD) of
energy follows the behavior as 〈�x2(t)〉E ∝ tβ with 1 < β <

2 [44–46]. In the early pioneering studies, it has been found
that the connection formula between heat conduction and
energy diffusion is α = β − 1 [44–48]. Only until recently,
a rigorous connection theory between heat conduction and
energy diffusion has been established within the framework
of linear response theory [49]. As a byproduct, the above-
mentioned connection formula comes out quite naturally.

According to the connection theory [49], the study of the
energy diffusion is equivalent to the study of heat conduction
in the sense of calculating thermal conductivity. As has been
pointed out by Ref. [50], the temporospatial distribution of
energy fluctuation correlation function gives more information
than the heat current-current correlation function used in
Green-Kubo formula. This justifies the advantage of using
the energy diffusion method to study the problem of heat
conduction. In previous works, it has been found that the
energy fluctuation correlation function is Gaussian for systems
with normal heat conduction [44]. More interestingly, the
energy fluctuation correlation function for systems with
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anomalous heat conduction is a Levy-walk–like distribu-
tion [34–36,44–46,50,51]. For a comprehensive understanding
of the Levy walks, please refer to the following excellent
references [52,53]. In general, the one-dimensional (1D) lattice
system exhibits normal heat conduction behavior if the total
momentum is not conserved and anomalous heat conduction
behavior if the total momentum is conserved [2–5]. There is
however one exception for the 1D coupled rotator model which
conserves total momentum but shows normal heat conduction
behavior [54,55]. Most recently, it has been confirmed that
the 1D coupled rotator model possesses normal momentum
diffusion as well as normal energy diffusion [50,56,57].

The first 1D ding-a-ling model proposed to study the
heat conduction problem was introduced by Casati et al. in
1984 [58]. This system consists of on-site harmonic oscillators
and free moving particles positioned alternately. It is a kind
of half lattice and half HPG model where total momentum
is not conserved. Therefore it is not a surprise that normal
heat conduction has been found for this model [58]. Recently,
a modified ding-a-ling model was proposed where the on-
site harmonic oscillators are replaced by inter-connected
harmonic oscillators [59]. With this setup, the total momentum
is conserved. It is then quite surprising that normal heat
conduction has also been detected for this modified half-lattice
and half-HPG ding-a-ling model [59].

In this paper, we will propose a full-lattice ding-a-ling
model which conserves the total momentum. Three different
inter-particle potentials will be applied to this model. The heat
conduction and energy diffusion behaviors will be studied for
each potential form with two numerical methods. Firstly, the
length dependent thermal conductivities κ will be calculated
using the non-equilibrium molecular dynamics simulations.
Secondly, the energy fluctuation correlation function will be
calculated at different correlation times and the MSD of energy
spreading will be presented to reveal the heat conduction
behavior for this momentum conserving full-lattice ding-a-ling
model. This paper will be organized as follows. In Sec. II
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FIG. 1. The schematic setup for the full-lattice ding-a-ling model
conserving total momentum. The top particles are connected by
harmonic springs. The bottom particles are connected with its
two neighbors of top particles with symmetrical and asymmetrical
nonlinear inter-particle potentials.

we will give the introduction of the full-lattice ding-a-ling
model with three different inter-particle potentials. The heat
conduction and energy diffusion behaviors will be presented
in Sec. III. In Sec. IV, we will give our summary for the study
of heat conduction as well as energy diffusion for our new
proposed full-lattice ding-a-ling model.

II. 1D MOMENTUM CONSERVING FULL-LATTICE
DING-A-LING MODELS

The full-lattice ding-a-ling model is depicted in Fig. 1.
The original half-free moving particles shown as the bottom
particles in Fig. 1 are now connected with its two top neighbors
via the nonlinear inter-particle potentials. The Hamiltonian for
this full-lattice ding-a-ling model is

H =
∑

i

Hi =
∑
it ,ib

[
p2

it

2
+ p2

ib

2
+ 1

2
(qit+1 − qit )

2

+V (qib ,qit ) + V (qib ,qit+1)

]
, (1)

where the index it and ib denote the particle index in the top and
bottom, respectively. The pit and pib are the momentum for
top and bottom particles. The qit and qib are the displacements
from equilibrium for top and bottom particles.

The inter-particle potential V (qit ,qib ) describes the inter-
action between top and bottom particles which could be
any nonlinear potential form. Here we consider three typical
nonlinear potentials for V :

(i) symmetric FPU-β potential with

V (qib ,qit ) = (qib − qit )
2

2
+ (qib − qit )

4

4
; (2)

(ii) symmetric coupled rotator potential with

V (qib ,qit ) = 1 − cos(qib − qit ); (3)

(iii) asymmetric half FPU-β potential depicted in Fig. 2 with

V (qib ,qit ) =
{

(qib
−qit )2

2 + (qib
−qit )4

4 , qib − qit < 0
0, qib − qit � 0

V (qib ,qit+1) =
{

0, qib − qit+1 < 0
(qib

−qit +1)2

2 + (qib
−qit +1)4

4 , qib − qit+1 � 0.

(4)

FIG. 2. The schematic picture of the asymmetrical half-FPU-β
form potential V (qib − qit ) and V (qib − qit +1).

The first two models are symmetrical since V (qib ,qit ) and
V (qib ,qit+1) possess the same form while the third model
is asymmetric as V (qib ,qit ) and V (qib ,qit+1) have different
potential forms. Compared with the previously studied half-
lattice and half-HPG ding-a-ling model, this full-lattice ding-
a-ling model enables us to simulate the system dynamics
with more accurate and consistent numerical algorithm such
as fourth-order symplectic method [60,61] in studying the
energy diffusion behaviors. In the following calculation, the
dimensionless units have been applied.

III. HEAT CONDUCTION AND ENERGY DIFFUSION

In the study of heat conduction, we first apply the direct
non-equilibrium molecular dynamics method. For simplicity
and convenience, the fixed boundary conditions with qit=0 =
qit=N+1 = 0 will be used. The first and last atoms on the top
chain will be contacted with two Langevin heat baths with
temperature TL/R . In particular, the equations of motions for
these two atoms are

q̈it = F (qit ) − λq̇it + ξit (t), (5)

where F (qit ) is the force which can be derived from Eq. (1) and
corresponding boundary conditions, and the Gaussian white
noise ξit=1/N (t) satisfy

〈ξit=1/N (t)〉 = 0,

〈ξit=1/N (t)ξit=1/N (0)〉 = 2λkBTL/Rδ(t), (6)

where λ is the damping parameter which will be always set as
unity and 〈·〉 denotes the ensemble average which is equivalent
to the time average for the chaotic systems we considered
here. The second order Verlet velocity method will be used to
integrate the equations of motions.

The unit cell contains one top particle it and one bottom
particle ib indexed by i = it = ib. From continuity equation
of energy for this unit cell, the heat flux can be derived
as ji = −q̇it (qit − qit−1) − q̇it ∂V (qib−1,qit )/∂qit . The thermal
conductivity can be calculated as

κ = − J

∇T
, (7)
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where J = 〈ji〉 is the average heat flux in the stationary state
independent on the index i and ∇T is the temperature gradient.
The temperature of the heat baths are set as TL/R = T (1 ± �),
where T is the average temperature and � is the bias. In
numerical calculations, the temperature gradient ∇T is fitted
by removing the boundary atoms to eliminate the temperature
jump effect.

In the study of energy diffusion, the equilibrium numerical
method will be applied with the periodic boundary conditions
of qit = qN+it and qib = qN+ib . The key information needed
to be calculated is the energy fluctuation correlation function
CE(i,t) defined as [30,44]

CE(i,t) = 〈�Hi(t)�H0(0)〉
〈�H0(0)�H0(0)〉 + 1

N − 1
, (8)

where �Hi(t) ≡ Hi(t) − 〈Hi〉 and the extra constant of
1/(N − 1) is due to the use of closed system where the
energy density instead of temperature is the input parameter.
The local energy Hi includes the energy of top particle it
and bottom particle ib with i = it = ib. The unit cell index
i runs from −(N − 1)/2 to (N − 1)/2 so there are N top
and bottom particles each. With this indexing for odd N , the
central particles have the index it = ib = 0 which turns out
to be convenient for numerical simulations. The system will
have 2N particles in total. In the thermodynamical limit this
so-defined energy fluctuation correlation function approaches
to the Kronecker δ function as CE(i,t = 0) = δi,0, which can
be understood as the result of an initial distribution for excess
energy perturbation. If one considers a small initial excess
energy perturbation with a special δ form, the excess energy
distribution ρE(i,t) equals to the energy fluctuation correlation
function as ρE(i,t) = CE(i,t), which describes the actual time
evolution of the initial excess energy along the lattice [49].

The MSD of the excess energy distribution 〈�x2(t)〉E can
be defined as [44,49]

〈�x2(t)〉E ≡
∑

i

i2ρE(i,t) =
∑

i

i2CE(i,t). (9)

According to the connection theory, the second derivative
of the MSD of the excess energy distribution 〈�x2(t)〉E is
connected with the autocorrelation function of total heat flux
CJJ (t) [49]:

d2〈�x2(t)〉E
dt2

= 2CJJ (t)

kBT 2c
, (10)

where c is the volumetric specific heat capacity and kB is the
Boltzmann constant. The autocorrelation function of total heat
flux CJJ (t) is the central quantity which enters the Green-Kubo
formula for the calculation of thermal conductivity [2,3]:

κ = 1

kBT 2

∫ ∞

0
CJJ (t)dt. (11)

The connection theory between heat conduction and energy
diffusion tells us the following [49]: if the energy fluctuation
correlation function CE(i,t) is Gaussian in the asymptotic
time limit, the MSD of the energy distribution 〈�x2(t)〉E
will be linearly proportional to time t as 〈�x2(t)〉E ∝ t . This
linear time dependence of 〈�x2(t)〉E eventually gives rise
to a finite thermal conductivity κ indicating a normal heat
conduction behavior. This has been already observed for φ4

lattice [44] and coupled rotator lattice [50] where both of
the systems exhibit normal heat conduction [62,63]. If the
energy fluctuation correlation function CE(i,t) is Levy-walk
like in the asymptotic time limit, the MSD will grow faster
than linear time dependency as 〈�x2(t)〉E ∝ tβ with β > 1.
This is the case for 1D momentum-conserving FPU-β lattice,
amended rotator lattice, and Lennard-Jones lattice [44,50].
From the connection theory [49], the thermal conductivity
will diverge as κ ∝ Nα with α = β − 1 exhibiting anomalous
heat conduction behavior. The connection theory has been
verified quantitatively by numerical simulations for lattices
with symmetrical potential [49,64] but fails for lattices with
asymmetrical potential [64]. However, one can still use the
diffusion method to determine whether the heat conduction is
normal or anomalous qualitatively.

In order to study the heat transport behavior for the full-
lattice ding-a-ling models with three different nonlinear inter-
particle potentials, we will use the two numerical methods to
investigate the heat conduction as well as the energy diffu-
sion behaviors. For the non-equilibrium molecular dynamics
simulations, the length dependent thermal conductivities κ will
be calculated directly. For the equilibrium simulations, we will
calculate the temporospatial distributions of energy fluctuation
correlation functions CE(i,t) at different correlation times. The
resulted MSD of the excess energy 〈�x2(t)〉E as the function
of correlation time t will be used to analyze the actual behavior
of energy diffusion for each model.

A. Symmetric FPU-β potential

We first consider the full-lattice ding-a-ling model with
symmetric FPU-β potential. The length-dependent thermal
conductivities κ are plotted in Fig. 3 with average temperature
T = 12. The κ shows a good power-law length dependence
as κ ∝ N0.45. The heat conduction should be anomalous

FIG. 3. Thermal conductivity κ as the function of lattice size N

for symmetric FPU-β potential. The circles are the numerical data
and the straight line of κ ∝ N0.45 is guided for your eyes. The average
temperature is chosen as T = 12.15 corresponding to energy density
E = 10 used in equilibrium method below. Temperature bias is set
as � = 0.1 and N is the number of unit cells.
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FIG. 4. (a) Energy fluctuation correlation function CE(i,t) for
model with symmetric FPU-β potential. The red, olive, and blue solid
lines represent the functions at t = 100, 200, and 300, respectively.
(b) The MSD of the excess energy 〈�x2(t)〉E as the function of
correlation time t . The two solid reference lines of t1.45 and t are
guides for the eyes. It can be seen that the numerical data almost follow
the t1.45 behavior which is the similar anomalous energy diffusion
behavior previously found for 1D FPU-β lattice. The energy density
E = 10 and the lattice length N = 1001.

similar to the FPU-β lattice. Simulations with other average
temperatures show almost the same results.

In Fig. 4(a), the energy fluctuation correlation functions
CE(i,t) with symmetric FPU-β potential have been plotted
at different correlation times t = 100, 200, and 300. Similar
to the most studied 1D FPU-β lattice [44], the correlation
function CE(i,t) here is also like the Levy-walk distribution
which is characterized by one central peak and two side
peaks. The side peaks moves towards outside with a constant
sound velocity. To determine the diffusion behavior, the time
dependence of MSD of the excess energy 〈�x2(t)〉E needed to
be calculated. The MSD of the excess energy 〈�x2(t)〉E as the
function of correlation time t has been plotted in Fig. 4(b).
As can be seen from the figure, the MSD of the excess
energy exhibits superdiffusion behavior as 〈�x2(t)〉E ∝ t1.45.
Our results are consistent with the previously found diffusion
exponent β = 1.40 for the 1D FPU-β lattice [44]. According
to the connection theory between energy diffusion and heat
conduction [49], superdiffusion of an energy of β = 1.45 will
imply an anomalous heat conduction with κ ∝ Nα=0.45 for the
considered full-lattice ding-a-ling model with symmetric FPU-
β potential. This momentum-conserving ding-a-ling model
exhibits almost the same energy diffusion behavior as the 1D
momentum-conserving FPU-β lattice. We have also done the
simulations for this model at other energy densities and similar
results are found.

B. Symmetric rotator potential

We then consider the full-lattice ding-a-ling model with
symmetric rotator potential. The length-dependent thermal
conductivities κ are plotted in Fig. 5 with average temperature

FIG. 5. Thermal conductivity κ as the function of lattice size
N for symmetric rotator potential. The circles are the numerical
data and the straight line of κ ∝ N0.48 is a guide for your eyes.
The average temperature is chosen as T = 0.91 corresponding to the
energy density E = 1 used in equilibrium method below. Temperature
bias is set as � = 0.2 and N is the number of unit cells.

T = 0.9. The thermal conductivity κ still shows a good power-
law length dependence as κ ∝ N0.48. The heat conduction is
anomalous as previous case. Simulations with other average
temperatures show almost the same results.

In Fig. 6(a), we plot the energy fluctuation correlation
functions CE(i,t) at different correlation times t = 300, 400,
and 500 for the ding-a-ling model with symmetric rotator
potential. The clear characteristics of Levy-walk distribution

FIG. 6. (a) Energy fluctuation correlation function CE(i,t) for
model with symmetric rotator potential. The red, olive, and blue solid
lines represent the functions at t = 300, 400, and 500, respectively.
(b) The MSD of the excess energy 〈�x2(t)〉E as the function of
correlation time t . The two solid reference lines of t1.48 and t are
guides for the eyes. It can be seen that the numerical data also follow
the t1.48 behavior which is the similar anomalous energy diffusion
behavior previously found for 1D FPU-β lattice. The energy density
E = 1 and the lattice length N = 1001.
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FIG. 7. Thermal conductivity κ as the function of lattice size N

for asymmetric FPU-β potential. The circles are the numerical data
and the thermal conductivity κ seems to converge in the larger N

region. The average temperature is chosen as T = 1.0 corresponding
to the energy density E = 1 used in equilibrium method below.
Temperature bias is set as � = 0.2 and N is the number of unit
cells.

with one central peak and two side peaks appear. Compared
with the ding-a-ling lattice with FPU-β potential, the side
peaks here are relatively small. But the time dependence
of the MSD of the excess energy still follows the same
time-dependent behavior as 〈�x2(t)〉E ∝ t1.48 as can be seen
from Fig. 6(b). According to the connection theory, the heat
conduction for the ding-a-ling lattice with rotator potential is
anomalous with κ ∝ N0.48 which is the case in Fig. 5.

It is interesting that although the 1D rotator lattice exhibits
normal energy diffusion and normal heat-conduction behavior
[50,56,57], the ding-a-ling model with rotator potential be-
tween top and bottom atoms displays the similar super-energy
diffusion and anomalous heat conduction behavior as the 1D
FPU-β lattice [44].

C. Asymmetric FPU-β potential

To further mimic the half-lattice and half-HPG ding-a-ling
model where the free particle can only collide with the particle
in its moving direction, we introduce the ding-a-ling lattice
with asymmetric FPU-β potential as can be seen in Fig. 2.
The thermal conductivities κ are plotted as the function of
length N in Fig. 7. The κ first increases with length N and
then seems to saturate to a constant value after N > 1000. It
looks like that α = 0 and the heat conduction is normal in this
asymmetric case.

However, if we look at the energy fluctuation correlation
functions CE(i,t) at different correlation times t = 200, 300,
and 400 plotted in Fig. 8(a), the signatures of Levy-walk
distribution with one central peak and two side peaks have
also been found. The only differences are the negative tips
next to the side peaks which has already been found for
other 1D asymmetric lattices. The time dependence of the
MSD of the excess energy has been plotted in Fig. 8(b) and a
superdiffusion with 〈�x2(t)〉E ∝ t1.80 has been obtained. The

FIG. 8. (a) Energy fluctuation correlation function CE(i,t) for
model with asymmetric FPU-β potential. The red, olive, and
blue solid lines represent the functions at t = 200, 300, and 400,
respectively. (b) The MSD of the excess energy 〈�x2(t)〉E as the
function of correlation time t . The two solid reference lines of t1.80

and t are guides for the eyes. It can be seen that the numerical data
follow the t1.80 behavior which is faster than the anomalous energy
diffusion behavior previously found for 1D FPU-β lattice. (c) The
decay of the central peak CE(i = 0,t). It is obvious that the decay
of the central peak as CE(i = 0,t) ∝ t−1 is faster than the decay for
normal diffusion case which should be proportional to t−1/2. The
energy density E = 1 and the lattice length N = 1001.

relation between α and β here deviates from the connection
theory as noticed in a recent work [64]. It might be that the
asymptotic length is very large for asymmetric lattices.

We then further plot the decay of the central peak CE(i =
0,t) in Fig. 8(c). It is observed that the decay rate is proportional
to t−1 which is also much faster than the decay of the central
peak for a normal diffusion which should be proportional
to t−1/2. Therefore, it will be insufficient to judge the heat
conduction behavior only via the non-equilibrium molecular
dynamics simulation for asymmetric potential lattices. One
should rely on the energy diffusion behavior as well.

IV. SUMMARY

In summary, we have systematically studied the heat
conduction and energy diffusion in momentum-conserving 1D
full-lattice ding-a-ling model with symmetric and asymmetric
potentials. For symmetric lattices, the thermal conductivities
diverge as the lattice length with a power-law dependence
displaying obvious anomalous behaviors. The super-energy
diffusions of 〈�x2(t)〉E ∝ tβ with β > 1 have also been
found. For asymmetric lattices, the thermal conductivity seems
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to converge as the lattice length increases. However, the
energy diffusion behavior is definitely superdiffusive indicat-
ing anomalous heat-conduction behavior also. As a result,
the heat conduction for the full-lattice ding-a-ling models
should be anomalous as that in 1D FPU-β lattice [6]. This
is in contrast to the momentum-conserving half-lattice and
half-HPG ding-a-ling model where normal heat conduction
has been obtained [59]. The underlying physical mechanism
behind this discrepancy is an open issue and deserves further
investigation in the future.
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