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Table S1 Atomic Wyckoff positions of the CCDW phase 

 

Atom Wyckoff site x y z 

Nb 1a 0.00000 0.00000 0.00000 

Nb 6g 0.28895 0.07091 0.00079 

Nb 6g 0.63544 0.15267 0.99709 

S 6g 0.05081 0.17504 0.27403 

S 6g 0.35420 0.25173  0.27096 

S 6g 0.48565 0.19924 0.75082 

S 6g 0.97298 0.40846 0.24565 

S 2d 0.33333 0.66667 0.75405 
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Fig. S1 Vertical view of the optimized crystal structure for the undistorted high-symmetry phase 

(top) and distorted CCDW phase (bottom) of bulk 1T-NbS2. Compared to the undistorted phase, 

there are three nonequivalent Nb atoms sites in the CCDW phase: The central Nb atoms in the star 

(purple), the peripheral Nb atoms belonging to the √7 × √7 cluster (blue), and more peripheral 

Nb atoms sites (red). These three kinds of Nb atoms form √13 × √13 star-of-David clusters 

schematized by green lines. The S atoms are shown in gray balls. The Nb-Nb distances and 

Nb-S-Nb bond angles are shown by the numbers.  
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Fig. S2 Phonon dispersion curves for the √13 × √13 CCDW phase of bulk 1T-NbS2 calculated 

by VASP joint with Phonopy code within 1×1×2 supercell (78 atoms).  
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Fig. S3 Electronic band structures of the √13 × √13 CCDW phase within 1×1×1 cell calculated 

with (a) spin polarized GGA, (b) GGA+SOC (c) GGA + U, and (d) GGA + U + SOC. The red 

balls represent orbital contributions with the 𝑑𝑧2−𝑟2 character. We use U value of 2.95 eV here.  
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Fig. S4 Antiferromagnetic electronic band structure of the √13 × √13 CCDW phase within 

1×1×2 supercell calculated by GGA + U with different U values.  
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Fig. S5 Band structure of the bulk 1T-NbS2 in the high-symmetry phase calculated by first 

principles based on DFT (black solid lines) and 5-orbital d band model within the MLWF method 

(red dashed lines).  
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Fig. S6 Phonon linewidth of the lowest phonon mode in the qz = 0 plane, which is calculated 

within a normal smearing parameter  of 0.01 Ry for the undistorted high-symmetry 1T-NbS2. 

The corresponding phonon dispersion curves have been presented in Fig. 2(c) of the main text. 

The color bar indicates the relative value.  
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Fig. S7 (a) Phonon dispersion curves and (b) electronic band structure of the undistorted high 

symmetry 1T-NbS2 calculated within different smearing parameter  by QUANTUM ESPRESSO 

package. The band structures are calculated with almost identical relaxed lattice constants by 

smearing parameter = 0.01, 0.02, and 0.03 Ry, where a = 3.365, 3.351 and 3.356 Å, and c = 

5.954, 5.889 and 5.883 Å, respectively. Larger σ indeed removes the imaginary phonon mode, 

whereas the smearing parameter almost plays no role in the lattice constants and band structures.  
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Fig. S8 (a) Electronic density of states and (b) phonon dispersion curves for the superconducting 

phase of the compressed bulk 1T-NbS2 at different pressure.  


