Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Ultrahigh thermoelectric performance of Janus $\alpha\text{-STe}_2$ and SeTe $_2$ monolayers

Gang Liu^{1*}, Aiqing Guo¹, Fengli Cao¹, Weiwei Ju¹, Zhaowu Wang¹, Hui Wang¹, Guo-Ling Li², Zhibin Gao^{3*}

¹School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China

²Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, People's Republic of China

³State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.

Email: <u>liugang8105@haust.edu.cn</u>; <u>zhibin.gao@xjtu.edu.cn</u>

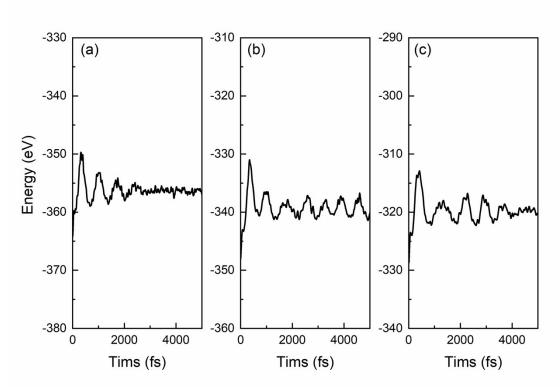


Fig. S1. AIMD simulation curves of energy with respect to time for (a) α -STe₂, (b) α -SeTe₂ and (c) α -Te monolayers at 500 K. The energy curves fluctuate, but the average energies remain nearly invariant, confirming the thermal stabilities of the three monolayers at 500 K.