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Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice
thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient de-
velopment of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical
interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal
graph convolutional neural network (CGCNN) is constructed to predict the fundamental physical parameters related to
lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model–sure in-
dependence screening and sparsifying operator (SISSO), is trained to predict the lattice thermal conductivity. We have
predicted the lattice thermal conductivity of all available materials in the open quantum materials database (OQMD)
(https://www.oqmd.org/). The proposed approach guides the next step of searching for materials with ultra-high or ultra-
low lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric
materials.

Keywords: low lattice thermal conductivity, interpretable machine learning, thermoelectric materials, physical
domain knowledge
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1. Introduction

Thermoelectric materials are a class of functional mate-
rials that directly convert thermal and electrical energy into
each other through carrier (electron or hole) motion inside the
material. They have great application prospects in waste heat
conversion, and thermoelectric cooling, etc., both are very es-
sential in our approach to realizing carbon neutrality. The rel-
evant devices are made of simple structure, no noise, no waste
emission, and are environmental friendly.[1] The dimension-
less thermoelectric optimum ZT determines the conversion ef-
ficiency of a thermoelectric material: ZT = S2σT/(κe +κL),
where S, σ , T , κe, and κL are the Seebeck coefficient, electri-
cal conductivity, absolute temperature, electronic thermal con-
ductivity, and lattice thermal conductivity, respectively. The
larger the ZT , the more efficient the conversion of thermal en-
ergy into electrical energy.[2]

The lattice thermal conductivity is a relatively indepen-
dent term in the thermoelectric figure of merit. Thus, finding
materials with lower lattice thermal conductivity is a critical
way to improve the conversion efficiency of thermoelectric

materials. Zhao et al.[3,4] have found SnSe and SnS materi-
als with high thermoelectric conversion and ultralow thermal
conductivity. However, the energy conversion efficiency of
high-performance thermoelectric materials is still lower than
that of conventional power generation and cooling technolo-
gies. Most of them are compounds of metallic lead elements
with high preparation costs. Therefore, there is an urgent need
to efficiently find new heat-conducting materials which are of
great significance to reducing energy consumption and envi-
ronmental pollution.

With the rapid development of artificial intelligence tech-
nology and big data science, material informatics has provided
a new way to accelerate the design and development of new
materials.[5–15] Material informatics is based on databases ob-
tained from simulations or experimental measurements. Ma-
chine learning algorithms are used to find functional materials
with specific properties or to predict unknown properties of
target materials.[16] It enables direct mapping from material
structure to thermal properties using machine learning algo-
rithms, which allows the prediction of target materials based
on predefined criteria and avoids repetitive human effort. As
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one of the core technologies in materials informatics, data-
driven machine learning methods have shown significant ad-
vantages in studying of thermal transport properties due to
their efficiency and accuracy. Machine learning methods have
become popular for accelerating the design of new materials
with accuracy close to that of ab initio calculations. At the
same time, the computational speed is several orders of magni-
tude faster.[17–19] Traditional machine learning methods such
as decision trees, random forests, gradient boosting regression
trees, extreme gradient boosting, and other algorithms have
been widely used for thermal conductivity prediction.[20–26]

However, the above models only consider the fundamen-
tal physical quantities related to the elemental composition and
neglect the influence of the crystal structure information of the
material on the properties. To address the above problem, Xie
et al.[27] developed a crystal graph convolutional neural net-
works framework to directly learn material properties from
the connection of atoms in the crystal, providing a universal
and interpretable representation of crystalline materials. The
method provided a highly accurate prediction of density func-
tional theory that calculated eight different properties of crys-
tals with various structure types and compositions after being
trained with 104 data points. Subsequently, for a small sample
learning problem, Zhu et al.[28] combined graph neural net-
works and random forest approaches to predict the thermal
conductivity of all known inorganic materials in the inorganic
crystal structure database. Although graph neural network-
based approaches can directly establish the mapping relation-
ship between crystal structure and lattice thermal conductivity,
they are black-box models[29] and have difficulty mining the
physical mechanism behind the data.

In order to identify reliable material feature descriptors
and capture the underlying physical mechanisms of target

properties, Ouyang et al.[30] proposed a systematic approach
to discover material property descriptors within a compressed
sensing-based dimensional framework — sure independence
screening and sparsifying operator (SISSO). The approach
modeled the relationship between feature descriptors and tar-
geted property concisely. Loftis et al.[31] introduced symbolic
regression and obtained a concise expression to predict ther-
mal conductivity. Liu et al.[32] introduced SISSO to obtain an
explicit expression for lattice thermal conductivity. However,
this method relies entirely on domain physical knowledge in
selecting basic physical parameters, and the feature selection
can only be performed in limited phase space.

In this paper, taking the advantages of the above two types
of methods, we develop a two-stage machine-learning frame-
work to predict lattice thermal conductivity efficiently. By
combining graph convolution neural network and SISSO ap-
proach, we can predict the lattice thermal conductivity effi-
ciently and accurately. For the first stage, CGCNN is intro-
duced to predict the fundamental physical parameters related
to lattice thermal conductivity. For the second stage, based
on the above physical parameters, an interpretable machine
learning model SISSO, is trained to predict the lattice thermal
conductivity. We have predicted the lattice thermal conduc-
tivity of all materials in the open quantum materials database
(OQMD). This work guides the next step of searching for ma-
terials with ultra-high or ultra-low lattice thermal conductivity
and promotes the development of new functional thermal ma-
terials.

2. Predicting lattice thermal conductivity

Here, the overall schematic framework is shown in Fig. 1.
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Fig. 1. The schematic framework of the proposed approach. First, the basic physical parameters of atom level and crystal level are selected from AFLOW
database. After high-throughput screening, CGCNN is utilized to model the relationship between crystal structure information and Grüneisen parameter,
shear modulus, bulk modulus and the average speed of sound which are related strongly to the lattice thermal conductivity of compound. Then, based on the
above predicted parameters and primitive atomic parameters, SISSO is leveraged to construct an explicit expression for lattice thermal conductivity. Before
model prediction for OQMD database, high-throughput screening is used to select non-metal compounds with four screening conditions.
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We start model training and testing by learning from the
AFLOW database, which is a globally available database of
3528653 material compounds with over 733959824 calculated
properties and provides information on crystals’ energy bands
and thermal and mechanical properties. The basic physical
parameters of atom and crystal levels are selected from this
database.

First, CGCNN is trained to model the relationship be-
tween crystal structure information and the Grüneisen parame-
ter, shear modulus, bulk modulus and the average sound speed,
which are related strongly to the lattice thermal conductivity
of the compound. Then, based on the above-predicted param-
eters and primitive atomic parameters, SISSO is leveraged to
construct the explicit expression for lattice thermal conductiv-
ity. After the above two stages, we collected the dataset from
the OQMD database for predicting lattice thermal conductiv-
ity. Specifically, high-throughput screening is used to select
non-metal compounds with four screening conditions. After
that, the lattice thermal conductivity of 19011 compounds is
predicted efficiently with trained interpretable model.

2.1. Correlation analysis of physical parameters

Due to the large number of parameters affecting the lattice
thermal conductivity, feature correlation analysis is used to se-
lect the critical parameters related to the lattice thermal con-
ductivity. In this work, Pearson correlation analysis method is
used to compute the correlation between each feature parame-
ter and lattice thermal conductivity. Correlogram between the
lattice thermal conductivity κ and basic physical parameters is
shown in Fig. 2. The basic physical parameters include energy
band gap, speed of sound vp, Poisson’s ratio P, bulk modu-
lus B, shear modulus G, Young’s modulus E, Debye tempera-
ture θDa, Grüneisen parameter γ , heat capacity Cv and lattice
constant a. For binary compounds, basic physical parameters
include atomic radius ra and rb , atomic mass ma and mb, elec-
tron affinity energy Eea and Eeb, ground state energy of atoms
Ea0 and Eb0, valence electron number of atoms V Ea and V Eb,
the electronegativity of atoms χa and χb, atomic number of
atoms Za and Zb. It is noted from the figure that speed of
sound vp, bulk modulus B, shear modulus G, Young’s modu-
lus E, and Debye temperature θDa have the strongest correla-
tions with the lattice thermal conductivity, which has the most
significant influence on the lattice thermal conductivity. As
can be seen from the figure, Young’s modulus is strongly cor-
related with bulk modulus B and shear modulus G, which is
in agreement with physical domain knowledge. In this way,
bulk modulus B and shear modulus G are selected as criti-
cal primary feature parameters with lattice thermal conductiv-
ity. Furthermore, according to the empirical Slack model,[33]

which is described as follows:

κL =
2.43×10−8

1− 0.514
γ

+ 0.228
γ2

·
M̄θ 3

DaV
1
3

T γ2 , (1)

where γ denotes the Grüneisen parameter, θ 3
Da denotes Debye

temperature, V denotes atomic volume, M̄ denotes the average
atomic mass, and T is the absolute temperature. Grüneisen
parameter γ is an essential parameter with lattice thermal
conductivity, which is not reflected in Fig. 2. In summary,
based on the combination of data analysis and physical domain
knowledge, Grüneisen parameter γ , bulk modulus B, shear
modulus G, and average phonon velocity vp are selected as
the most critical primary feature descriptors for lattice thermal
conductivity.
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Fig. 2. Pearson correlation analysis diagram showing the correlation be-
tween the basic physical parameters and the lattice thermal conductivity κ .
The larger the area of the pie chart and the closer the color to blue, the
greater the correlation between the two parameters. The basic physical pa-
rameters include energy band gap, speed of sound vp, Poisson’s ratio P, bulk
modulus B, shear modulus G, Young’s modulus E, Debye temperature θDa,
Grüneisen parameter γ , heat capacity Cv, lattice constant a. For binary com-
pounds, basic physical parameters include atomic radius ra and rb, atomic
mass ma and mb, electron affinity energy Eea and Eeb, ground state energy
of atoms Ea0 and Eb0, valence electron number of atoms V Ea and V Eb, the
electronegativity of atoms χa and χb, atomic number of atoms Za and Zb. It
is noted from the figure that speed of sound vp, bulk modulus B, shear mod-
ulus G, Young’s modulus E, and Debye temperature θDa have the strongest
correlations with the lattice thermal conductivity, which has the most signif-
icant influence on the lattice thermal conductivity.

2.2. Predicting physical parameters with CGCNN

The Grüneisen parameter is directly related to the lattice
thermal conductivity of the material and is an important pa-
rameter affecting the anharmonicity such as thermal expan-
sion. However, due to its high computational complexity and
unclear constitutive relationships, it is difficult to manually
extract the fundamental physical parameters to describe the
Grüneisen parameter. Furthermore, according to the Pearson
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correlation analysis in the above section, shear modulus, bulk
modulus, and average sound speed are also strongly related to
the lattice thermal conductivity.

In order to characterize the crystal structure information,
it is necessary to transform the crystal structure into a specific
feature vector. CGCNN[27] first transforms the crystal struc-
ture into a graph structure and then uses the graph convolu-
tional neural network to extract and characterize the features of
the graph structure to generate feature descriptors describing
the crystal structure information. First, the crystal is formed
into a graph structure by linking individual atoms. Atoms of
nodes are convolved to update the information of each atom
and the atomic environment and finally put together to form a
feature representation of the entire crystal, which can be used
to train a model for classification or regression. In this work,
CGCNN is utilized to construct the relationship between crys-
tal structure and critical parameters related to the lattice ther-
mal conductivity, such as Grüneisen parameter, shear modu-
lus, bulk modulus, and the average sound speed.

2.3. Predicting lattice thermal conductivity with SISSO

In order to predict lattice thermal conductivity efficiently,
based on the predicted parameters in the last section, SISSO is
utilized to construct the direct mapping relationship between
primary physical parameters and lattice thermal conductivity.

2.3.1. Selection of fundamental physical parameters

In this work, binary functional materials are taken into
consideration. Based on physical knowledge, primary feature
descriptors consist of two categories: comprehensive physical
parameters (Grüneisen parameter γ , bulk modulus B, average
phonon velocity vp, shear modulus G) and basic atomic in-
formation (valence electrons number V E, atomic number Z,
covalent radius r, electronegativity χ , ground state energy E0,
atomic mass m, lattice constant a, density ρ). Due to the com-
plexity of the thermal conductivity mechanism, the above two
types of descriptors complement with each other to provide a
rather comprehensive description of the factors affecting ther-
mal conductivity.

2.3.2. Construction and screening of feature descriptor

For the SISSO approach, we assumed that the material
properties can be expanded into the set of orthogonal per-
fect function spaces Φ = φ1,φ2,φ3, . . ., and then the material
properties P(M) can be linearly represented by the set of per-
fect function spaces, i.e., P(M) = ∑

n
i=1 βiφi, where βi repre-

sents the coefficient of i-th function space, and φi denotes i-
th function space. However, the orthogonal perfect function
spaces are not easy to obtain. The high-dimensional feature
space represents the material properties P(M) instead of the
orthogonal perfect space. Usually, the functions in the high-
dimensional feature space φ constructed from the initial fea-

tures have n ∼ 1010. Based on the theory of compressed per-
ception, only the number of samples m∼ log(n) is required if
the solution is sparse. Thus, the demand for samples by SISSO
is not excessive. However, the feature space of n∼ 1010 is still
a big challenge for the algorithm and computational effort. To
solve this problem, sure independence screening (SIS)[27] is
used to reduce the feature space to a reasonable size.

The feature screening and descriptor construction process
using SISSO is briefly described as follows. First, primary fea-
ture parameters correlated with the lattice thermal conductivity
are selected as the input of SISSO based on physical knowl-
edge. Then, a large feature space is constructed with algebraic
operators Ĥ(m) ≡≡ I,+,−,×,÷,/,exp, log, |− |,√,−1 ,2 ,ϕ .
Subsequently, the targeted attribute P(M) = ∑

n
i=1 βiφi = Φ𝛽

is expanded if 𝛽 is sparse, where Φ and 𝛽 denote the function
spaces set and the coefficients set respectively. Thus, based on
the sparsity theory, SIS is utilized to screen the critical features
from an ample feature space. Lastly, the explicit expression
between feature descriptors and the lattice thermal conductiv-
ity can be described as P(M) = ∑

n
i=1 βiφi.

3. Numerical experiments and result
The last section introduces a two-stage machine-learning

framework to predict lattice thermal conductivity. It aims
to uncover the hidden relationship between physical model
parameters and the lattice thermal conductivity. Next, we
will verify the feasibility and efficacy of the proposed frame-
work. Firstly, we collect datasets from the public database
AFLOW[29] and OQMD.[30] Taking crystal structure informa-
tion as the input and primary physical parameters as output
of the CGCNN, a graph convolutional neural network is uti-
lized with high consistency between prediction and the pri-
mary physical parameters in AFLOW. For an interpretable ma-
chine learning model, the primary physical parameters are fed
to SISSO, and the lattice thermal conductivity is taken as the
output. Then, an interpretable model is achieved by SISSO.
By validating the AFLOW database, we show that the pro-
posed framework can predict the lattice thermal conductivity
accurately and efficiently with the machine learning model.

3.1. Data preparation

In this work, the training and testing datasets are down-
loaded from the AFLOW database,[34] and the predicting
dataset is downloaded from the OQMD database.[35] The
AFLOW database provides abundant information on the crys-
tal band gap, thermal and mechanical properties, etc. Then, the
crystal structures and the corresponding thermal and mechan-
ical properties such as Grüneisen parameter, shear modulus,
bulk modulus, and the average speed of sound are collected
from the AFLOW database and used as training and testing
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dataset to train the machine learning model and evaluate the
model’s performance.

After model training and testing, the predicting dataset
is collected from the OQMD database, including the crys-
tal structures of the compounds. The OQMD is a database
of DFT-calculated thermodynamic and structural properties
of 1022603 materials, created in Chris Wolverton’s group at
Northwestern University. There are two ways to download
data. One is the entire OQMD as dumps of MySQL database,
and the other is via API. The OQMD database provides two
types of representational state transfer (REST) API to real-
ize fully open data transfer. One is the OPTiMaDe API. This
specification provides a detailed set of rules about keywords
for materials data, specific rules about data lookup flexibility,
and the format of the returned data. The other one is OQMD
API with similar usage. However, there are a few notable dif-
ferences between OQMD API and OPTiMaDe API because
the former follows conventional qmpy data keywords, which
have been used in the OQMD database since its inception.
We choose OQMD API since its keywords fit better with the
OQMD database.

The corresponding structure ID can be obtained by
visiting the web page corresponding to the entry id in
the retrieval result. Then the corresponding POSCAR
file can be downloaded. As the crystal structure files
in CIF format are fed to the machine learning model,
the POSCAR files are converted to structure files in cif
format in batches by modifying the code provided on
https://github.com/dcccc/git python/blob/master/poscar2cif.py.
In this way, training, testing, and predicting datasets are col-
lected for model training, testing, and predicting.

3.2. High-throughput screening

To screen for suitable compounds, four filters are used
to obtain the data, including the total number of atoms less
than 11, atomic species less than 4, formation energy less than
−1.0 eV, and band gap greater than 0.05 eV. (1) Setting the
filter condition as the total number of atoms less than 11 to get
876980 results. (2) Adding the filter that the atomic species
should be less than 4 enables 620881 results to be found. (3)
Screening the data that formation energy is less than −1.0 eV
and obtaining 48693 data samples. (4) By selecting the filter
condition as band gap > 0.05 eV, 19075 results meeting our
requirements can be obtained. After removing errors and du-
plicate data, 19011 different structures and corresponding data
can finally be downloaded. Each structural data contains dif-
ferent fields, such as name, entry id, composition, volume, the
total number of atoms, band gap, formation energy, stability,
etc., except for the density. Moreover, the density data can be
calculated by volume and molar mass which can be obtained
from the composition of the selected unit cell.

After data collection, we use the well-trained model
trained with a dataset from the AFLOW database to predict
the Grüneisen parameter, bulk modulus, shear modulus, and

the average speed of sound corresponding to the crystal struc-
tures of the compounds.

3.3. Evaluation metrics

To evaluate the performance of the proposed approach,
we employed four standard evaluation metrics for the regres-
sion task, mean absolute error (MAE), mean absolute percent-
age error (MAPE), root mean square error (RMSE) and good-
ness of fit (R2), which are described as follows:

MAE =
1
n

n

∑
i=1

wi|ŷi− yi|, (2)

MAPE =
100%

n

n

∑
i=1

wi

∣∣∣ ŷi− yi

yi

∣∣∣, (3)

RMSE =

√
1
n

n

∑
i=1

wi(ŷi− yi)
2, (4)

R2 =

n
∑

i=1
wi(ŷi− ȳi)

2

n
∑

i=1
wi(yi− ȳi)

2
. (5)

Assuming a set of samples y = {y1,y2, . . . ,yn} and the pre-
dicted dataset ŷ = {ŷ1, ŷ2, . . . , ŷn}, where n is the number of
a sample dataset.

3.4. CGCNN results

First, the Grüneisen parameter, bulk modulus, shear mod-
ulus, and the average sound speed are predicted with the
CGCNN model to predict the lattice thermal conductivity of
the compounds. We obtain the crystal structures of all binary
compounds in the AFLOW database and their corresponding
Grüneisen parameters, bulk modulus, shear modulus, and the
average speed of sound. Then, a nonlinear mapping relation-
ship is established from the crystal structures to the Grüneisen
parameters, bulk modulus, shear modulus, and the average
speed of sound based on CGCNN via multi-task learning.

According to the above mapping relationship, the pre-
dicted performance of the model on the testing set is shown in
Fig. 3. R2

test indicates the goodness-of-fit of the trained model
on the testing set, which describes the degree of fit between
the predicted values of the Grüneisen parameters and the cal-
culated values in the database, the closer the predicted values
are to the calculated values, the better the fit is. The smaller
the error value, the closer the predicted value is to the cal-
culated value and the better the model performance. As can
be seen from Fig. 3(a), the absolute error between the pre-
dicted Grüneisen parameter and the calculated Grüneisen pa-
rameter in the database lies between ±0.1, and the average
relative error is less than 0.05. It is noted from Figs. 3(b)–
3(d) that for bulk modulus, shear modulus, and the average
sound speed, the multi-task CGCNN model achieves superior
prediction performance with a good fit above 0.9.
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Fig. 3. Comparisons of the predicted and calculated values of Grüneisen parameter, shear modulus, bulk modulus and the average sound
speed on testing dataset. (a) Comparison of the predicted and calculated values of Grüneisen parameter. (b) Comparison of the predicted and
calculated values of Bulk modulus. (c) Comparison of the predicted and calculated values of shear modulus. (d) Comparison of the predicted
and calculated values of the average sound speed on testing dataset.

3.5. SISSO results

Lattice thermal conductivity is a comprehensive parame-
ter of materials with many influencing factors, and it is diffi-
cult to make a direct and exact prediction. Based on feature
selection, four important primary feature parameters are se-
lected via Pearson correlation coefficient analysis and domain
knowledge in the above section. Then, SISSO is applied to

construct the relationship between primary feature parameters
and lattice thermal conductivity. Based on the predicted pa-
rameters with CGCNN, we obtain an explicit expression after
the SISSO training. However, we find that the physical dimen-
sions are misaligned, even though having good accuracy. The
fact is that the dimension consistency of various descriptors is
not considered in the feature construction process, resulting in
misalignment of the dimensions for different descriptors.
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Fig. 4. The comparison of predicted lattice thermal conductivity and calculated values for binary compounds with different atomic numbers. It
is noted from the figure that the model achieves superior performance for lattice thermal conductivity prediction, demonstrating the feasibility
of our proposed framework.
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To verify the feasibility and effectiveness of the model,

the performance is validated on the testing dataset, and the re-

sults are shown in Fig. 4. The testing data in the AFLOW

database has calculated the lattice thermal conductivity of bi-

nary compounds with different atomic numbers compared to

the model’s predicted values. The horizontal axis represents

the calculated value of the lattice thermal conductivity in the

database, and the vertical axis represents the predicted lattice

thermal conductivity. The more concentrated the data points

are on the red dotted line in the middle, the closer the predicted

value is to the true value. RMSE and MAPE represent the root

mean square error and the average relative error between the

predicted and calculated values, respectively. The smaller the

value, the better the prediction performance of the machine

learning model. It is noted from the figure that the model

achieves superior performance for lattice thermal conductiv-

ity prediction, demonstrating the feasibility of our proposed

framework and providing a novel method for fast computation

of lattice thermal conductivity.

4. Discussions
To analyze the composition distribution of thermoelectric

materials,[36] we count the histogram of the elemental distri-
bution of compounds in the OQMD database, shown in Fig. 5.
The figure shows the distribution of elements in compounds
with thermal conductivity less than 1. It is noted from the fig-
ure that the top three elements that appeared the most are chlo-
rine, bromine, and cesium. In addition, F, O, Se, In, Te, and
other elements with high-frequency occurrence are also com-
mon elements in low thermal conductivity materials. The elec-
tronegativity corresponding to the element is marked on the
top of the Fig. 5 column. It can be seen from the comparison
of electronegativity that the elements with more extreme elec-
tronegativity appear more often with stronger building ions.
For example, it can be seen from the figure that the oxygen
frequency is about half than that of fluorine. The strong elec-
tronegativity of fluorine can explain this phenomenon. Fluo-
rine is usually accessible to form ionic solids with alkali met-
als (such as Cs, Rb, K, Na, etc.), alkaline earth metals (such as
Ba, Sr, Ca, etc.), and elements from the 12th, 13th, and 14th
groups (such as Tl, Sn, In, Cd, etc.).
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Fig. 5. The histogram of elemental distribution of compounds in OQMD database.
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Fig. 6. The probability density function (PDF) of lattice thermal con-
ductivity for compounds in OQMD database.

Furthermore, we also computed the PDF probability den-

sity function (PDF) of compounds in the OQMD database,
which is shown in Fig. 6. As can be seen from the figure,
the thermal lattice conductivity of the majority compounds in
the OQMD database is mainly concentrated between e1.0 =

2.72 W/mK and e3 = 20.1 W/mK, which agrees with the
physical knowledge that the lattice thermal conductivity of the
compounds conforms to a mixed Gaussian distribution, and
can be fitted with a Gaussian mixture model. Materials with
high and low thermal conductivity are only a very small per-
centage, less than 3%.

5. Conclusion and perspectives
We have proposed a two-stage interpretable machine

learning framework to predict the lattice thermal conductiv-
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ity with high accuracy and efficiency. To verify the feasibil-
ity of the proposed framework, a graph convolutional neural
network CGCNN is utilized to predict complex physical pa-
rameters. An interpretable machine learning model SISSO is
introduced to construct an explicit model between feature de-
scriptors and the lattice thermal conductivity. The prediction
results show that our proposed framework can accurately and
efficiently predict the lattice thermal conductivity from crystal
structures. It is worth stating that our approach applies only to
semiconductors or insulators, where phonons contribute dom-
inantly to the total thermal conductivity. This work provides
a novel way for fast and accurate prediction of lattice thermal
conductivity and guides the searching for materials with ultra-
high or ultralow lattice thermal conductivity.
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