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Role of high-order anharmonicity and off-diagonal terms in thermal conductivity:
A case study of multiphase CsPbBr3
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We investigate the influence of three- and four-phonon scattering, perturbative anharmonic phonon renor-
malization, and off-diagonal terms of coherent phonons on the thermal conductivity of CsPbBr3 phase change
perovskite, by using advanced implementations and first-principles simulations. Our study spans a wide tem-
perature range covering the entire structural spectrum. Notably, we demonstrate that the interactions between
acoustic and optical phonons result in contrasting trends of phonon frequency shifts for the high-lying optical
phonons in orthorhombic and cubic CsPbBr3 as temperature varies. Our findings highlight the significance of
wavelike tunneling of coherent phonons in ultralow and glasslike thermal conductivity in halide perovskites.
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I. INTRODUCTION

Phonons are crucial for understanding thermal transport
in semiconductors and dielectrics. In the traditional approach
of first-principles calculations, important quantities such as
the mode-Grüneisen parameter, thermal expansion, phonon
group velocity, three-phonon lifetime, and linewidth can be
obtained by using anharmonic lattice dynamics under the
quasiharmonic approximation through the linearized phonon
Boltzmann transport equation [1–3].

However, the traditional approach, in which some impor-
tant factors have been overlooked, is facing several challenges
as follows.

(1) The higher-order interatomic interactions like the
fourth order have been ignored for a long time like in BAs
in which the four-phonon scattering is responsible for around
40% suppression of κL compared to that with only three-
phonon interactions.

(2) Interatomic anharmonicity increases as temperature is
raised. However, the perturbation approach is difficult to deal
with in highly anharmonic systems, such as cubic ABX3

perovskites with imaginary frequencies of harmonic phonons
[4,5]. Therefore, we should illustrate the significance of anhar-
monic phonon renormalization, by utilizing the self-consistent
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phonon (SCPH) with temperature-dependent frequencies in
several systems [6,7].

(3) The off-diagonal terms in the heat flux operator rep-
resenting the heat transfer through the tunneling of wavelike
coherent phonons could provide a potential method to bridge
the gap between the traditional Peierls-Boltzmann transport
equation and the experimental measurement in ultralow ther-
mal conductivity materials and glasslike materials [8]. Items
(1) and (2) are related but independent from (3).

CsPbBr3 is a classical chalcogenide material and a
promising candidate for thermoelectric application, garnering
significant attention in recent years. However, current studies
have mainly focused on the thermal transport properties of
individual phase [8,9], often considering only three-phonon
scattering and calculating the lattice thermal conductivity with
zero temperature phonon dispersion [10,11].

The systematic investigation of all three phases of
CsPbBr3, considering both renormalization effects and four-
phonon scattering, as well as the contribution of off-diagonal
terms, remains largely unexplored. Previous studies have pri-
marily focused on phase transitions, vibrational mechanisms,
and dielectric properties [12,13]. To the best of our knowl-
edge, no systematic studies have been conducted to date that
encompass all three phases while considering renormaliza-
tion, four-phonon scattering, and off-diagonal contributions.

In this study, we conduct a systematic investigation of the
influence of quartic anharmonicity on the lattice dynamics
and thermal transport properties of the three distinct phases of
CsPbBr3. We employ recent advancements in first-principles
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simulations, incorporating (i) efficient construction of high-
order interatomic force constants (IFCs) from the CSLD
method [14–16], (ii) rigorous calculations of temperature-
dependent phonons through SCPH theory and higher-order
multiphonon scattering rates [4,17], and (iii) evaluation of
the lattice thermal conductivity κL by using a unified theory
that considers both diagonal terms from the standard Peierls
contribution and off-diagonal terms from the coherent Wigner
distribution [8,18].

II. COMPUTATIONAL METHODS

For the Peierls-Boltzmann transport equation, the lattice
thermal conductivity κp can be calculated as

κp = h̄2

kBT 2V N0

∑

λ

nλ(nλ + 1)ω2
λvλ ⊗ vλτλ, (1)

where h̄, kB, T , V , and N0 are the reduced Planck constant,
Boltzmann constant, absolute temperature, primitive unit cell
volume, and the total number of sampled phonon wave vec-
tors in the first Brillouin zone, respectively. nλ, ωλ, vλ, and
τλ are the equilibrium component of the phonon population,
frequency, group velocity, and lifetime for the λ mode (wave
vector q and branch index s), respectively. Except for τλ,
all the above parameters can be obtained from harmonic
approximation (HA). Usually, τλ can be obtained from the per-
turbation theory by consideration of three-phonon scattering
[19,20].

The temperature-dependent phonon dispersion could be
considered by the anharmonic phonon renormalization
(APRN) at finite temperatures [22–27]. Among various ex-
isting approaches, SCPH [4,6] approximation is one effective
method that can rigorously account for the first-order correc-
tion of phonon frequencies from the quartic anharmonicity.
It can better describe the soft phonon modes and strong an-
harmonicity. In brief, under the SCPH approximation, the
temperature-dependent renormalized phonon frequency �λ

can be obtained from the following equation:

�2
λ = ω2

λ + 2�λ

∑

λ1

Iλλ1 , (2)

where ωλ is the original phonon frequency from the harmonic
approximation. The scalar Iλλ1 can be obtained as

Iλλ1 = h̄

8N0

V (4)(λ,−λ, λ1,−λ1)

�λ�λ1

[
1 + 2nλ

(
�λ1

)]
, (3)

in which V (4) is the fourth-order IFCs in the reciprocal repre-
sentation. The phonon population nλ satisfies Bose-Einstein
distribution as a function of temperature. Both Eq. (2) and
Eq. (3) have parameters Iλλ1 and �λ in common and thus the
SCPH equation can be solved iteratively. Note that Iλλ1 can be
interpreted as the interaction between a pair of phonon modes,
λ and λ1, including the temperature effects [4,6].

Moreover, if one considers the off-diagonal terms of the
heat-flux operator, which depicts the tunneling of coherent
phonons, an additional contribution of lattice thermal con-
ductivity, κc, needs to be considered [28–30]. Usually, κc

is neglected in simple crystals because of well-separated
phonon dispersions and slight broadening as a function of

temperature. However, it could dominate in disordered and
glasslike amorphous compounds where phonon and related
group velocities cannot be clearly defined and heat transfer
is mediated by diffusons and locons [31–33].

Recent studies show that κc is substantial for materials with
ultralow thermal conductivity, such as Mn4Si7 with twisting
phonons [34], Ba7.81Ge40.67Au5.33 clathrate [35], and Tl3VSe4

[36]. Therefore, in all-inorganic halide perovskite CsPbBr3,
we incorporate κc as follows:

κc = h̄2

kBT 2V N0

∑

q

∑

s �=s′

ωs
q + ωs′

q

2
vs,s′

q ⊗ vs′,s
q

× ωs
qns

q

(
ns

q + 1
) + ωs′

q ns′
q

(
ns′

q + 1
)

4
(
ωs′

q − ωs
q

)2 + (
�s

q + �s′
q

)2

(
�s

q + �s′
q

)
, (4)

where the phonon lifetime in Eq. (1) is substituted as �s
q =

1/τλ, including three-phonon (3ph) and four-phonon (4ph)
scattering. The group velocity is replaced with a generalized
form containing off-diagonal elements [8,32],

vq
s′,s =

〈
es

q

∣∣ ∂D(q)
∂q

∣∣es′
q

〉

ωs
q + ωs′

q
, (5)

in which es
q and D(q) are the polarization vector and the

phonon dynamical matrix, respectively. When s = s′, it stands
for the phonon band diagonal terms, while s �= s′ corresponds
to the off-diagonal terms.

Therefore, the total lattice thermal conductivity κL = κp +
κc. Note that, in order to compute the generalized group ve-
locity correctly, we used the phase convention that accounts
for atomic positions within its lattice point to construct the
dynamical matrix, as adopted in earlier studies [37]. The
details of the calculation are shown within the Supplemental
Material [38–44].

III. RESULTS AND DISCUSSION

CsPbBr3 is a typical phase change material of ABX3 per-
ovskite. One can discriminate the transition temperature by
the dynamical instability of the appearance of soft acoustic
phonons from anharmonic potential energy surfaces [45,46].
Specifically for CsPbBr3, a second-order phase transition
occurs at about 318 K and the transition temperature may
vary, up to 361 K, depending on different samples. At about
373 K, there is another first-order phase transition. The critical
temperature was also found at a higher temperature of about
401 K due to different experimental conditions [47,48]. Here,
we have chosen an intermediate temperature by considering
the above different experimental values [47,48]. Accordingly,
the estimated temperatures for the first-order and second-
order phase transitions are 320 K and 400 K, respectively.
The high-temperature phase remains a cubic symmetry. The
temperature reduction induces symmetry breaking, leading
to anisotropic structures from the cubic to the tetragonal at
midtemperature and finally to the orthorhombic crystals at
low temperature [12,47–49]. All three crystal structures are
depicted in Figs. 1(a)–1(c).

Figure 1(e) shows the effects of SCPH, 4ph, and κc on
the calculated lattice thermal conductivity of CsPbBr3. In the
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FIG. 1. (a)–(c) Crystal structures of CsPbBr3 in the orthorhombic, tetragonal, and cubic phases, respectively. The green, brown, and yellow
colors represent cesium (Cs), bromine (Br), and lead (Pb) atoms. (d) The first Brillouin zone of the cubic phase with high symmetry points �,
X , M, and R indicated by red dots. (e) Lattice thermal conductivity κL of CsPbBr3 includes diagonal and off-diagonal contributions in three
phases using self-consistent phonon approximation. P1, P2, and P3 represent orthorhombic, tetragonal, and cubic phases. κp [Eq. (1)] is the
standard Peierls contribution and κc [Eq. (4)] is the coherent contribution from the off-diagonal Wigner distribution elements. 3ph indicates
only three-phonon scattering is included and 3,4ph means both three-phonon and four-phonon scattering are considered. For comparison, the
unified first-principles theory [8] and the quasiparticle nonlinear theory (QP-NL) [9] are plotted for reference. Expt.L , Expt.M , and Expt.S refer
to experiments on single crystalline nanowires [21] with cross sections of 800 × 380 nm2, 320 × 390 nm2, and 300 × 160 nm2, respectively.

following, we neglect the SCPH notation for simplicity. Dif-
ferent primitive cells are used to calculate the corresponding
temperature range. Due to the different crystal symmetry, we
find that κL increases from the orthorhombic to the tetragonal
and the cubic phases. Moreover, κ

3,4ph
p + κc in each phase

decreases as temperature increases because of the enhanced
phonon scattering. Since P1 and P2 are anisotropic, we use
the arithmetic mean value in the figure.

Compared with κ
3ph
p , κ

3,4ph
p is smaller due to the ad-

ditional 4ph scattering. Moreover, the gap between them
(	 = κ

3ph
p − κ

3,4ph
p ) is growing significantly from P1 to P2

and finally to P3 based on Eq. (1). For instance, 	 is 0.114,
0.168, and 0.361 W m−1 K−1 for temperatures 300 K, 400 K,
and 500 K, respectively. It is usually attributed to the differ-
ent scaling laws of 4ph (τ−1

4 ∼ T 2ω4) and 3ph (τ−1
3 ∼ T ω2)

scatterings in which τ is the relaxation time [50]. Therefore,
4ph scattering is more critical than 3ph scattering at high
temperature and 	 is proportional to the temperature.

Since the ABX3 perovskite has ultralow κL and off-
diagonal terms contribute significantly [8,11], we include κc

calculation of CsPbBr3 based on Eq. (4) and Eq. (5). At 300 K,
the value of κc of CsPbBr3 for P1 phase is 0.158 W m−1 K−1.
At 400 K and 500 K, κc of CsPbBr3 for both P2 and P3
phases are 0.138 and 0.084 W m−1 K−1, respectively. More
details of the values can be found in Supplemental Material
S3 [38].

Our results of κc agree reasonably well with the one re-
ported by Simoncelli, Marzari, and Mauri [8], while the minor

deviations might come from the size of the supercell used
in the calculation of harmonic phonon as well as additional
effects arising from quartic anharmonicity. For the P3 phase,
the value of (κ3,4ph

p + κc) is 0.501 W m−1 K−1 at 500 K, which
is quite close to the result of 0.50 W m−1 K−1 from the recent
quasiparticle nonlinear theory (QP-NL) [9].

Next, we investigate the influence of anharmonic renormal-
ization on phonon dispersion among orthorhombic, tetrago-
nal, and cubic phases of CsPbBr3. Phonon-phonon interaction
and lattice anharmonicity are ascribable to the cubic, quartic,
and even higher-order IFCs.

The phonon spectra at different temperatures in three
phases are shown in Fig. 2. Unexpectedly, we notice that the
acoustic and optical phonon branches become hardened as
temperature increases for the low-temperature orthorhombic
phase of CsPbBr3, shown in Fig. 2(a). Nevertheless, it is indis-
putable for the high-temperature cubic phase that the acoustic
branches stiffen, whereas the top three optical branches soften
with increasing temperature, shown in Fig. 2(c). For the
tetragonal phase of CsPbBr3 in Fig. 2(b), the high-lying opti-
cal phonons are almost temperature independent. We also plot
the off-diagonal term contribution for CsPbBr3 heat transport
of three phases, which can be found in the Supplemental
Material [38].

We also analyze the frequency-resolved (dashed lines)
and cumulative (solid lines) lattice thermal conductivity
κL at different temperatures for cubic CsPbBr3, shown in
Figs. 2(d)–2(f). Since 4ph has proved to be additional
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(a) (b) (c)

(e) (f)(d)
Orthorhombic-200 K Tetragonal-350 K Cubic-500 K

FIG. 2. Renormalized phonon dispersions for (a) orthorhombic, (b) tetragonal, and (c) cubic phases at different temperatures, respectively.
HA is the harmonic approximation. Panels (d), (e), and (f) are the frequency-resolved κL (dashed lines) and cumulative κL (solid lines) using
3ph (the upper line) and 3,4ph (the lower line) methods at different temperatures, respectively.

scattering, κL of 3ph (the upper one) is more significant than
that of 4ph (the lower one).

Traditionally, acoustic phonons are the main heat carriers.
However, in cubic CsPbBr3, it is found that optical phonons,
ranging from 13.0 to 16.0 meV, dominate the heat transport,
no matter whether or not the 4ph scattering processes are
accounted for. Furthermore, 4ph scattering reduces κL of the
cubic CsPbBr3 by almost 40% on top of 3ph.

It is noticed that phonons of various frequencies dominate
κL among different phases. Optical phonons above the fre-
quency of 15.0 meV control the heat transport of 3ph and 4ph
for the orthorhombic phase. In comparison, acoustic and opti-
cal phonons among the frequency of 3.0 meV and 6.0 meV are
also important for 3ph transport. However, for the tetragonal
phase, we can find that optical phonons among the frequency
from 13.0 meV to 19.0 meV dominate the phonon transport
of 3ph and 4ph as well.

Different phonon-temperature tendencies is an interest-
ing phenomenon that has yet to be thoroughly investigated.
Previous work only found consistently softened or hard-
ened phonons [5,51] in different materials. We unveiled the
multitendency of high-frequency phonon modes variation oc-
curring in different phases of the same material. We reveal
in the following that such an opposite tendency of optical
phonon modes of cubic CsPbBr3 as a function of temperature
is sourced from the interaction between the top three opticals
and other phonon modes.

In order to understand the underlying physical mechanism
of the optical branches with high frequencies of different
CsPbBr3 phases having opposite temperature dependence in
their phonon spectra, we have systematically studied the
strength of 4ph interaction matrix elements Iλλ1 that have
been introduced in Eq. (2) and Eq. (3). We set λ for

the highest optical phonon mode as any mode of the three
highest optical phonon branches (index of mode = 13–15
for cubic and 58–60 for the orthorhombic phase) and change
λ1 from the lowest acoustic phonon (index of mode = 1)
to all other optical phonons, gradually scrutinizing the inter-
action between phonon population nλ, quartic-anharmonicity
V (4)(λ,−λ, λ1,−λ1), phonon frequencies �λ1 , and �λ, re-
spectively. Here we use the imode parameter to label the index
of the phonon branches.

Interestingly, Iλλ1 is mainly positive for the orthorhombic
phase, as is shown in Fig. 3. It can be both positive and
negative for the tetragonal phase and they almost cancel with
each other leading to a small net frequency change. In con-
trast, it is found that the highest three optical branches have
strong coupling with phonons in the low-frequency region
and the interaction Iλλ1 is even negative in the cubic CsPbBr3,
shown in Fig. 3. We further examine the wave vector position
behind the negative Iλλ1 and discover that most negative Iλλ1

stem from the low-energy acoustic phonon modes, especially
around M and R high-symmetry points.

In Supplemental Material S9–S11 [38], we also show the
Iλλ1 between imode = 3, 57 at 100 K for the P1 phase,
imode = 3, 27 at 350 K for the P2 phase, and imode =
3, 12 at 500 K for the P3 phase, respectively. Since Iλλ1

can be either positive or negative, the renormalized phonon
frequency �λ as a function of temperature can either increase
or decrease according to Eq. (2). Based on Eq. (3), only when
V (4)(λ,−λ, λ1,−λ1) is negative for the three highest optical
phonons of the cubic phase, leading to a negative Iλλ1 and a re-
duced renormalization phonon frequency based on Eq. (2). On
the contrary, Iλλ1 is positive as a function of temperature for
the orthorhombic phase and finally results in an increased �λ.
Owing to the strong interaction between low-energy phonon
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FIG. 3. Scattering strength Iλλ1 of the 4ph interaction matrix ele-
ments between the highest zone-center optical phonon mode and all
other remaining phonons in three various phases according to Eq. (2)
and Eq. (3) for the (a) orthorhombic at 100 K, (b) tetragonal at 350 K,
and (c) cubic phase at 500 K, respectively.

modes around M and R and high-frequency optical phonons,
the three highest optical phonon frequencies, with the tem-
perature increasing, are softening for the cubic phase while
hardening for the orthorhombic phase. More details can be
found in the Supplemental Material [38].

To further understand the effects of anharmonic phonon
renormalization and 4ph scattering on the thermal transport
properties of CsPbBr3, we continue to examine several param-
eters related to the lattice thermal conductivity, i.e., phonon
phase space and scattering rates, respectively.

All available 3ph and 4ph scattering phase spaces need to
satisfy the energy and quasimomentum conservation simulta-
neously [20,52], shown in Fig. 4(a). The phase space of 3ph
and 4ph scatterings increases as the temperature rises from
500 K to 800 K. Since the unit of phase space of 3ph and 4ph is
different, one cannot compare them directly. Nevertheless, the
larger phase space means more available scattering channels.
The scattering strength in each accessible channel determines
the final phonon relaxation time. Therefore, by including 4ph
scattering, the lattice thermal conductivity is generally smaller
than that with only 3ph scattering.

The phonon scattering rates of the cubic phase are shown in
Fig. 4(b). It displays that 4ph scattering has the same order of
phonon scattering strength as that of 3ph. The scattering rates

(a)

(c)

(b)

(d)

FIG. 4. (a) Phonon scattering phase space and (b) scattering rates between 3ph and 4ph for cubic CsPbBr3 at different temperatures.
(c) 3ph and 4ph scattering with channels resolution, including the splitting (λ→λ1 + λ2, λ→λ1 + λ2 + λ3), combination (λ + λ1→λ2, λ +
λ1 + λ2→λ3), and redistribution (λ + λ1→λ2 + λ3) processes at 500 K. (d) v2, where v is phonon group velocity.
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and phase space results for the orthorhombic and the tetrag-
onal structures also show the same trends in Supplemental
Material S5–S8 [38].

Figure 4(c) displays the absorption and emission processes
of the 3ph and 4ph as a function of frequency at 500 K, respec-
tively. For the 3ph scattering, we consider the phonon splitting
(λ→λ1 + λ2) and combination (λ + λ1→λ2). For the 4ph
situation, we count both phonon splitting (λ→λ1 + λ2 + λ3)
and combination (λ + λ1 + λ2→λ3), as well as redistribution
(λ + λ1→λ2 + λ3) processes. In the low-frequency region
wherein acoustic modes dominate, 3ph combination processes
are stronger than the splitting situation, while the redistribu-
tion processes of 4ph are the dominant ones. However, in the
high-frequency region that is dominated by optical modes,
the splitting process of 3ph becomes more important. For
4ph scattering, the splitting process also increases to a dom-
inating portion and has the same order as the redistribution
process.

Figure 4(d) shows the temperature effect on v2, where v

is the group velocity at different temperatures for the cubic
phase. Interestingly, v2 of 800 K is higher than that of 500 K
for most frequencies but almost the same for the acoustic
phonons. It stems from the renormalized phonon dispersions
at finite temperatures. Besides, we distinguish phonon group
velocity for the cases with and without considering SCPH in
Supplemental Material S4 [38].

Besides, for the ABX3 perovskites, we find that dynamical
stability is in line with the thermodynamic stability [53,54].
Previous work also used finite-temperature phonon disper-
sion of different phases of perovskites to predict the phase
transition temperature [9]. But for other materials, dynam-
ical stability and thermodynamical stability have no direct
connection.

In general, the larger the lattice constant, the weaker the
interatomic interaction in materials, which will usually lead
to a lower lattice thermal conductivity. On the one hand, the
calculation of three-phonon scattering including thermal ex-
pansion in lower temperature phases (orthorhombic phase and
tetragonal phase) is computationally prohibitive since they
have lower symmetry and more atoms in the primitive cell
compared with the cubic phase. On the other hand, based
on the experimental investigations, the coefficient of thermal
expansion for CsPbBr3 is 3.8 × 10−5 K−1, 6.5 × 10−5 K−1,
and 2.6 × 10−5 K−1 for orthorhombic, tetragonal, and cubic
phase, respectively [55]. The effect of the lattice constant on
the thermal conductivity might be neglected in a moderate

temperature range. Therefore, in our calculation, we neglect
the thermal expansion like previous works [8,11,12]. Most re-
cently, an effective one-body Hamiltonian that well represents
the quasiparticle peak has been developed. In this method, the
thermal expansion in the calculation is included [9].

IV. CONCLUSIONS

In summary, our study reveals the significant contributions
of four-phonon scattering and the off-diagonal terms of the
heat flux operators in calculating the thermal conductivity
in systems with harmonic phonons exhibiting imaginary fre-
quencies and temperature renormalization.

Specifically, our investigation of CsPbBr3 halide per-
ovskites in orthorhombic, tetragonal, and cubic phases yields
the following key findings.

(i) For materials with ultralow lattice thermal conduc-
tivity κL, the inclusion of high-order anharmonicity and
off-diagonal terms bridges the gap between experimental ob-
servations and theoretical predictions.

(ii) The strong coupling between high-frequency optical
phonons and overdamped acoustic phonons (Iλλ1 ) provides
insights into the intriguing phonon renormalization phenom-
ena observed in strongly anharmonic systems as a function of
temperature.

(iii) Beyond the conventional phonon-phonon scattering
perspective, phenomena such as electron-phonon coupling,
polaron formation, and entropy in halide perovskites warrant
further theoretical advancements [12,56].

Our study, which presents an effective approach to under-
standing the ultralow κL observed in halide perovskites, might
inspire further experimental investigations exploring materials
with glasslike thermal conductivity.
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