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We utilized ab initio density functional theory as implemented in VASP, combined with 

projector-augmented wave (PAW) pseudopotentials and PBEsol functionals. The structural 

optimization was carried out with a cutoff energy of 650 eV and convergence thresholds of 10−4 

eV/Å for Hellmann-Feynman forces on each atom and 10−8 eV for the total energy. Harmonic 

phonon and interatomic force constants (IFCs) calculations were conducted using the finite 

displacement technique utilizing a 4 × 4 × 4 supercell and a 11 × 11 × 11 Monkhorst-Pack k-

grids. Subsequently, we performed a 2000-step ab initio molecular dynamics (AIMD) 

simulation at 300 K with 2 ps step sizes, selecting 40 random incoherent structures. Our 

approach to extracting third- and fourth-order IFCs was based on a compressive sensing lattice 

dynamics (CSLD) technique [1-3] to select the most physically relevant IFCs from force-

displacement data under constraints imposed by the space group symmetry and operation. 

Combining all IFCs, thermal transport properties were calculated using our modified 

ShengBTE code for CsCl. 

 

By performing various functionals, we provide a more comprehensive comparison in 

lattice constant and lattice thermal conductivity (𝜅𝐿) from computation and experimental results 

as shown in follows TABLE. I. 

 

Lattice constant (Å) Functional 𝜅𝐿 (W m-1 K-1) References 

4.073 PBE 1.12@250 K Our work 

4.039 LDA 1.14@300 K [4] 

4.225 GGA / [4] 

3.990 GGA / [5] 

4.085 GGA / [6] 

3.970 LDA 1.38@300 K [7] 

4.116 Experimental 1.11@250 K [8] 

4.090 Experimental 1.01@300 K [9] 

TABLE. SI. Comparison of lattice constants, functionals, and lattice thermal conductivity (𝜅𝐿) 

from computational and experimental results for CsCl.  
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