Supplemental Material

Migration and aggregation of fission products and their impacts on physical properties in UO₂: Deep potential molecular dynamics simulations

Zhihong Chen^a, Yunfei Hong^a, Junkai Deng^a, *, Zhibin Gao^a, Ronghua Chen^b, Rui Tang^c, Hongxing Xiao^c, *, Xiangdong Ding^a, Jun Sun^a

- ^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- ^b School of Nuclear Science and Technology, Xi'an Jiaotong University, Shaanxi, Xi'an, 710049, China
- c National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu, 610213, China

*Corresponding authors: junkai.deng@mail.xjtu.edu.cn (J. Deng); xiaohongxing2003@163.com (H. Xiao)

In this work, for the defect formation energy calculations (including vacancy and interstitial defects), the reference state is the perfect UO₂ crystal. For the incorporation energy calculations, the reference structure is a UO₂ crystal containing a pre-existing vacancy. Specifically, the formation energies of vacancies and interstitials were calculated using the following formulas:

$$E_{vacancy} = E_X^{N-1} + E_X - E^N \tag{1}$$

$$E_{interstitial} = E_X^{N+1} - E^N - E_X \tag{2}$$

where E^N is the energy of the perfect supercell without defects, E_X^{N-1} is the energy of the supercell with a single vacancy of type X, and E_X^{N+1} is the energy of the supercell with a single interstitial of type X. E_X is the corresponding chemical potential of a uranium or oxygen atom in the reference state (α -Uranium and oxygen molecule, respectively).

The incorporation energy $E_{Incorporation}$ of each FP atom at sites X, including a uranium vacancy (V_U) or an oxygen vacancy (V_O) , is estimated using the following formula:

$$E_{Incorporation} = E_X^N - E_X^{N-1} - E_{fp}$$
 (3)

where E_X^N is the energy of the supercell containing the FP atom at site X, and E_{fp} is the energy of the FP atom in isolation.

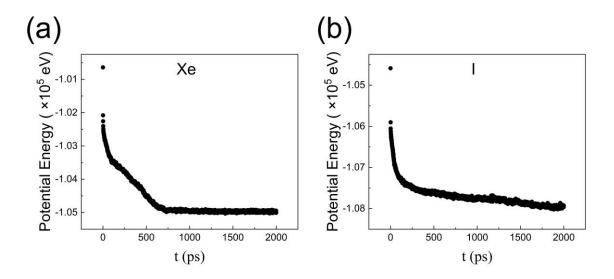


FIG. S1. Potential energy variation in UO₂-Xe (a) and UO₂-I (b) systems in MD&MC simulations.

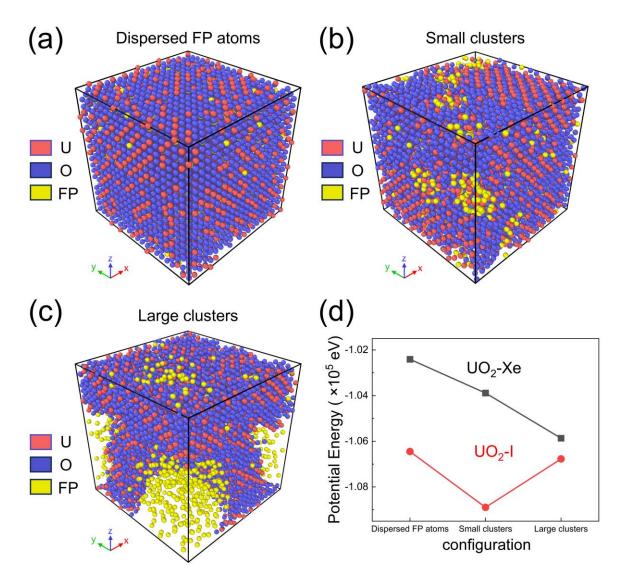


FIG. S2. Different configurations: (a) dispersed FP atoms, (b) small clusters, (c) large clusters for UO₂-Xe and UO₂-I systems, and (d) comparison between their potential energies for these different configurations.

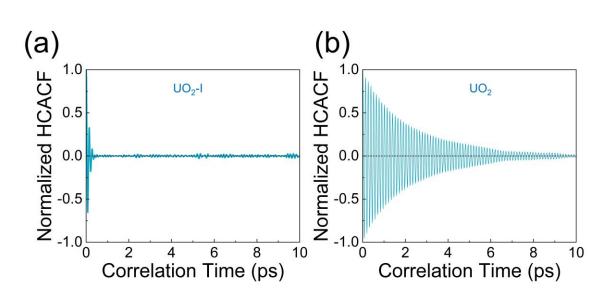


FIG. S3. The heat current autocorrelation function for UO₂-I system and pristine UO₂ at 300 K.

TABLE S1. UO₂ properties calculated by DP_{U-O-Xe} and DP_{U-O-I} models.

properties	$\mathrm{DP}_{\text{U-O-Xe}}$	DP _{U-O-I}
Bulk modulus (GPa)	217.54	206.72
Hill's Shear modulus (GPa)	88.54	94.66
Young's modulus (GPa)	233.89	246.36
Poisson's ratio	0.32	0.30

TABLE S2. Comparison of UO₂ thermal conductivity in different sizes calculated by DP models with other MD and experimental results. The values in parentheses were converted according to a correction equation [1], accounting for 95% of the theoretical UO₂ density to facilitate comparison with experimental data.

	thermal conductivity (W·m ⁻¹ ·K ⁻¹)	
$4 \times 4 \times 4$ supercell by DP	15.08 (13.23)	
$5 \times 5 \times 5$ supercell by DP	15.07 (13.22)	
$10 \times 10 \times 10$ supercell by DP	14.85 (13.03)	
$12 \times 12 \times 12$ supercell by DP	14.82 (13.00)	
Cooper (MD)	about 16.86	
Arima (MD)	about 15.17	
Maxwell (MD)	about 13.52	
Weisensee (experiment)	10.2 [2]	

REFERENCE

- [1] R. Brandt and G. Neuer, Thermal Conductivity and Thermal Radiation Properties of UO₂, J. Non-Equilib. Thermodyn. 1, 3 (1976).
- [2] P. B. Weisensee, J. P. Feser, and D. G. Cahill, Effect of ion irradiation on the thermal conductivity of UO_2 and U_3O_8 epitaxial layers, J. Nucl. Mater. 443, 212 (2013).