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For heat conduction in one-dimensional (1D) nonlinear Hamiltonian lattices, it has been known that conserved
quantities play an important role in determining the actual heat conduction behavior. In closed or microcanonical
Hamiltonian systems, the total energy and stretch are always conserved. Depending on the existence of external
on-site potential, the total momentum can be conserved or not. All the momentum-conserving lattices have
anomalous heat conduction except the 1D coupled rotator lattice. It was recently claimed that “whenever
stretch (momentum) is not conserved in a 1D model, the momentum (stretch) and energy fields exhibit
normal diffusion.” The stretch in a coupled rotator lattice was also argued to be nonconserved due to the
requirement of a finite partition function, which enables the coupled rotator lattice to fulfill this claim. In this
work, we will systematically investigate stretch diffusion and heat conduction in terms of energy diffusion
for typical 1D nonlinear lattices. Contrary to what was claimed, no clear connection between conserved
quantities and heat conduction can be established. The actual situation might be more complicated than what was
proposed.
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I. INTRODUCTION

Anomalous heat conduction was first predicted for one-
dimensional (1D) Fermi-Pasta-Ulam β (FPU-β) nonlinear
lattices by Lepri et al. [1]. In that pioneering work, it was found
numerically that the thermal conductivity κ diverges with the
system size N as κ ∝ Nα with 0 < α < 1, which violates
Fourier’s heat conduction law [1]. Numerical simulations also
confirm this anomalous heat conduction in a diatomic Toda
lattice [2], carbon nanotubes [3], and single polymer chains
[4], to name a few. On the other hand, 1D nonlinear lattices
with external on-site potential, such as Frenkel-Kontorova
(FK) and φ4 lattices, show normal heat conduction [5–7].
Much effort has been devoted to unraveling the physical
mechanism behind normal and anomalous heat conduction
in low-dimensional systems [8–42]. The consensus reached
in this community is that momentum conservation and di-
mensionality play important roles in determining the actual
heat conduction behavior [43–45]. Mode-coupling theory [43]
predicts that κ ∝ Nα , κ ∝ ln N , and κ ∝ const for 1D, 2D, and
3D momentum-conserved systems, respectively. The numerics
in 2D and 3D lattice systems were found to be consistent
with these predictions [46–51]. In particular, the predictions
of length-dependent anomalous heat conduction were also
verified experimentally in 1D nanotubes [52], molecular chains
[53], and 2D suspended graphene [54]. However, there is one
exception of a 1D coupled rotator lattice that displays normal
heat conduction behavior despite its momentum-conserving
nature [55–58].

The traditional numerical methods used to investigate the
heat conduction problem are the nonequilibrium molecular dy-
namics (NEMD) and equilibrium Green-Kubo (GK) methods
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[43,44]. A novel diffusion method in thermal equilibrium was
proposed by Zhao [59], and it paved the way to explore the heat
transport problem in nonlinear systems [58,60]. The mean-
square displacement of energy diffusion generally follows a
power-law time dependence as 〈�x2(t)〉E ∝ tβ [59]. It has
also been rigorously proven [61] that this energy diffusion
method is equivalent to the Green-Kubo method, in which the
connection relation of α = β − 1 first proposed from particle
diffusion analysis [21] can be derived.

There are also contining theoretical efforts ranging from
early mode-coupling theory [8,9,26], renormalization-group
analysis [20], hydrodynamical theory [29,42], and self-
consistent mode-coupling theory [30] to recent nonlinear
fluctuating hydrodynamical theory [62–69]. Although there
is still debate about the actual classification and divergent ex-
ponents of the universal classes, there is no question that these
theoretical works have greatly improved our understanding
of the nature of anomalous heat transport in low-dimensional
systems.

Most recently, it was claimed by Das and Dhar that
“whenever stretch (momentum) is not conserved in a one-
dimensional model, the momentum (stretch) and energy fields
exhibit normal diffusion” [72]. The 1D coupled rotator lattice
was taken as an example to support this claim. However, after
carefully studying some typical 1D nonlinear lattices with
normal heat conduction or energy diffusion behaviors, we
found that no obvious connection between the conservation
of stretch or momentum and the normal diffusion of energy
and stretch can be established. Our numerical results indicate
that the actual situation might be more complicated than what
has been claimed.

This paper is organized as follows: In Sec. II, we present
the detailed numerical results of stretch and energy diffusion
for typical 1D nonlinear lattices such as φ4, coupled rotator,
FK, and combined (FK+φ4) lattices. The conclusions are
summarized in Sec. III.

2470-0045/2016/93(3)/032130(7) 032130-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.032130


ZHIBIN GAO, NIANBEI LI, AND BAOWEN LI PHYSICAL REVIEW E 93, 032130 (2016)

II. STRETCH DIFFUSION IN TYPICAL
1D NONLINEAR LATTICES

We consider the following Hamiltonian for general 1D
lattices:

H =
∑

i

Hi =
∑

i

[
p2

i

2
+ V (qi+1 − qi) + U (qi)

]
, (1)

where qi and pi denote the displacement and momentum for
the ith atom, respectively. The interaction potential V (qi+1 −
qi) only depends on the displacement difference of (qi+1 − qi).
The term U (qi) represents the external on-site potential, which
breaks the conservation of total momentum. For simplicity,
periodic boundary conditions qi = qN+i are applied. The atom
index i is assigned as −(N−1)/2, . . . ,−1,0,1, . . . ,(N−1)/2,
where an odd number of lattice sizes N is chosen without loss
of generality.

In the study of stretch diffusion and energy diffusion
behaviors, one needs to define the corresponding correlation
functions [59,61,62]. For energy diffusion, the excess energy
distribution function ρE(i,t) can be defined as [59]

ρE(i,t) = 〈�Hi(t)�H0(0)〉
〈�H0(0)�H0(0)〉 , (2)

where �Hi(t) = Hi(t) − 〈Hi〉 and 〈·〉 denotes the ensemble
average or time average equivalently for ergodic systems.
The stretch distribution function ρD(i,t) can also be defined
similarly as [62]

ρD(i,t) = 〈�Di(t)�D0(0)〉
〈�D0(0)�D0(0)〉 , (3)

where the local stretch Di(t) ≡ qi+1(t) − qi(t) and �Di(t) =
Di(t) − 〈Di〉.

For isolated or microcanonical systems with periodic
boundary conditions, both the total energy H = ∑

i Hi and
the total stretch D = ∑

i Di = ∑
i(qi+1 − qi) are conserved

quantities. As a result, the excess energy distribution function
ρE(i,t) and the stretch distribution function ρD(i,t) must
satisfy the sum rules as

∑
i ρE(i,t) = ∑

i ρD(i,t) = 0 in
microcanonical systems [39] by noticing that

∑
i Ai(t) −∑

i 〈Ai〉 = 0 with Ai = Hi or Di .
The spatiotemporal distribution functions ρE/D(i,t) can be

viewed as the fingerprint for its energy or stretch diffusion
behaviors. The overall effect of diffusion can also be described
by the mean-square displacement (MSD) 〈�x2(t)〉E/D of
energy or stretch defined as

〈�x2(t)〉E/D =
∑

i

i2ρE/D(i,t). (4)

For example, if the distribution functions ρE/D(i,t) follow

the Gaussian distributions as ρE/D(i,t) ∼ 1√
4πDE/Dt

e
− i2

4DE/Dt

asymptotically, the MSD 〈�x2(t)〉E/D ∼ 2DE/Dt depends
linearly on time, indicating a normal diffusion behavior for
energy or stretch.

One can also define a momentum distribution function
ρP (i,t) accordingly [58,59]. However, for lattices where total
momentum is not conserved, the sum of ρP (i,t) is not time-
invariant as

∑
i ρP (i,t) �= 0. In this situation, it is meaningless

to discuss the momentum diffusion since the MSD 〈�x2(t)〉P
of momentum is not well defined.

In numerical simulations, the fourth-order symplectic al-
gorithm [70,71] will be used to integrate the equations of
motions for 1D lattices. The time steps of �t = 0.1 or 0.05
will be adopted. With this numerical setup, the sum of energy
distribution

∑
i ρE(i,t) and stretch distribution

∑
i ρD(i,t) can

be maintained within the range of the order of 10−5 and
10−14, respectively. The energy density E = H/N is the input
parameter, and the temperature T ≡ 〈p2

i 〉 is a derived quantity
as for isolated microcanonical systems.

A. φ4 lattice

We first consider the 1D φ4 lattice with the following
Hamiltonian:

H =
∑

i

[
p2

i

2
+ 1

2
(qi+1 − qi) + 1

4
q4

i

]
. (5)

The 1D φ4 lattice is a typical nonlinear lattice with on-site
potential that exhibits normal heat conduction behavior [6,7].
The total momentum is not conserved due to the existence of
external on-site potential. It has been verified that the energy
diffusion is normal as well [59].

This normal diffusion for energy can be seen from
Figs. 1(a) and 1(b). The excess energy distribution func-
tions ρE(i,t) collapse to an almost Gaussian distribution

FIG. 1. The φ4 lattice. (a) The excess energy distribution function
ρE(i,t) and (c) the stretch distribution function ρD(i,t). (b) The
MSD 〈�x2(t)〉E of energy and (d) 〈�x2(t)〉D of stretch. The excess
energy distribution function ρE(i,t) follows the Gaussian distribution
when correlation time t > 100, while the stretch distribution function
ρD(i,t) fails to follow the Gaussian distribution. As a result, the
MSD of energy depends on time linearly as 〈�x2(t)〉E ∝ t , displaying
normal energy diffusion behavior. In contrast, the MSD 〈�x2(t)〉D of
stretch saturates to a constant value after a short time scale, which is
definitely not a normal diffusion behavior. In panel (a), the ρE(i,t) is
shifted upward with a constant value of 1/(N − 1) to maintain the
vanishing tails [39]. The energy density is set as E = 0.4 and the
corresponding temperature is around T ≈ 0.44. The lattice size is
chosen as N = 801.
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FIG. 2. The rescaled excess energy distribution function
t1/2ρE(i,t) as the function i/t1/2 for the φ4 lattice. The data are taken
from Fig. 1(a). The dotted black reference line corresponds to the
normal Gaussian distribution with diffusion constant D = 8.0. It can
be seen that when the correlation time is longer than some intrinsic
relaxation time, the distribution of ρE(i,t) approaches to the normal
Gaussian distribution.

ρE(i,t) ∼ 1√
4πDEt

e
− i2

4DEt at long enough correlation times; see

Fig. 2. As a result, the MSD 〈�x2(t)〉E of energy follows a
linear time dependence as 〈�x2(t)〉E ∼ 2DEt , asymptotically.
Here DE denotes the diffusion constant for energy.

However, the stretch distribution ρD(i,t) fails to follow the
Gaussian distribution, as can be seen in Fig. 1(c). The two
humps existing at correlation time t = 100 spread rapidly
over the lattice and disappear at larger correlation times. In
Fig. 1(d), the MSD 〈�x2(t)〉D of stretch is plotted as a function
of correlation time t . The 〈�x2(t)〉D saturates to a constant
value after a short correlation time scale. It is definitely not
the normal diffusion behavior that is predicted in Ref. [72].
The momentum is not conserved for a 1D φ4 lattice, while its
stretch diffusion is not normal.

From numerical simulations, we found that the transient
time for 〈�x2(t)〉D is related to the phonon relaxation time. As
temperature decreases, the phonon relaxation time increases
giving rise to larger thermal conductivity [6,7]. This transient
time follows the same trend as the phonon relaxation time
as a function of temperature. It is found that the constant
value saturated by 〈�x2(t)〉D also increases slightly as the
temperature decreases (see Fig. 3).

B. Coupled rotator lattice

The 1D coupled rotator lattice has the following Hamilto-
nian:

H =
∑

i

[
p2

i

2
+ [1 − cos (qi+1 − qi)]

]
. (6)

Although it conserves the total momentum, it has normal heat
conduction behavior [55,56] as well as normal energy diffusion
behavior [58]. Furthermore, its momentum diffusion is also
normal, which has never been expected [58].

The stretch conservation is a tricky issue for a coupled
rotator lattice due to the 2π degeneracy of qi . The dynamics
of the system is invariant to the arbitrary shift of multiple 2π

for every qi as qi → qi + 2nπ , where n can be any integer

FIG. 3. Temperature dependence of the MSD of the stretch of
〈�x2(t)〉D for the φ4 lattice. As the energy density (temperature)
decreases, the transient time becomes longer before saturation, which
might be the result of longer phonon relaxation times at lower
temperatures. The saturation value also increases as the temperature
decreases. The other parameters are the same as those used in Fig. 1.
For energy density E = 0.2, the temperature is about T ≈ 0.22.

number. Depending on how to limit the qi or the local stretch
Di , the total stretch of a coupled rotator lattice can be adjusted
as a conserved quantity or not. To illustrate this effect, we
consider the following three limitations for qi or Di :

(i) No limitations. Nothing is done to the values of qi

and Di . The variable qi can take whatever it takes during
the evolution of the system dynamics. In this situation, the
total stretch is a conserved quantity as D = ∑

i Di = 0, where
periodic boundary conditions are applied. The local stretch
Di = qi+1 − qi can take a value from negative infinity to
positive infinity, and the partition function is not well defined
[67,72]. Although this effect will cause problems in theoretical
analysis, the dynamics of the system will not be affected. The
energy diffusion is normal, as can be seen from Fig. 4(a).
In this situation, the stretch correlation functions ρD(i,t) at

FIG. 4. The 1D coupled rotator lattice of case (i). (a) The excess
energy distribution function ρE(i,t) and (b) the stretch distribution
function ρD(i,t). The excess energy distribution functions ρE(i,t)
follow the Gaussian distributions at correlation times t = 100, 300,
and 500, implying a normal energy diffusion behavior. However, the
stretch distribution functions ρD(i,t) at different correlation times
all collapse to the same pattern curve as that at t = 0. The energy
density is set as E = 0.5 and the corresponding temperature is around
T ≈ 0.54. The lattice size is chosen as N = 601.
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FIG. 5. The stretch distribution functions ρD(i,t) for the 1D
coupled rotator lattice in cases (ii) and (iii). At correlation time t = 10,
both ρD(i,t) show a similar pattern for cases (ii) and (iii), except that
the amplitude in case (iii) is much larger than that in case (ii). At
t = 30, ρD(i,t) still maintains a clear pattern for case (iii) while the
pattern disappears for case (ii). The parameters are the same as those
used in Fig. 4.

different correlation times all collapse to the same pattern as
that at t = 0, as can be seen in Fig. 4(b). This might be due to
the unbounded nature of the values of qi and Di .

(ii) The qi is limited within −π < qi � π . After each time
step in numerical simulations, the qi is forced to reshifted
into this region whenever it jumps out. As a result, the local
stretch Di lies within −2π < Di � 2π . In this case, the
partition function can be well defined. The total stretch is
still a conserved quantity, which can be verified by the fact
that the sum of

∑
i ρD(i,t) can be maintained within the order

of 10−14 for all times in numerical simulations. In Fig. 5(a),
the ρD(i,t) in case (ii) displays a similar spatial pattern at
short correlation times to that in case (iii). The only difference
is that the amplitude is much smaller for case (ii). At larger
correlation times seen in Fig. 5(b), the ρD(i,t) in case (ii)
quickly loses its spatial pattern in comparison to that in case
(iii). The MSD 〈�x2(t)〉D of stretch in this case saturates to a
constant value after a short correlation time (not shown here),
similar to that of the φ4 lattice in Fig. 1(d).

(iii) The local stretch Di is limited within −π < Di � π . In
this case, the qi is not affected during the dynamical evolution.
However, Di is adjusted appropriately at every time step when
it is recorded to generate the correlation function of stretch.
The partition function is well defined. However, in this special
situation, the total stretch is not a conserved quantity, as can
be seen from Fig. 6, which is consistent with the result in
Ref. [72]. As we have mentioned, it will be meaningless to
discuss the diffusion behavior if the sum of ρD(i,t) is not
time-independent.

From the above results and discussions for three cases, it can
be found that the conservation of total stretch is a very tricky
issue in a coupled rotator lattice. Depending on the limitation
of qi or Di , the stretch can be adjusted to be a conserved or

FIG. 6. The sum of ρD(i,t) for the coupled rotator lattice in case
(iii). It can be seen that

∑
i ρD(i,t) decays from a finite value to 0

very quickly, which is consistent with the result in Ref. [72]. As a
comparison, the sum

∑
i ρD(i,t) for case (ii) can be maintained within

the order of 10−14 in the whole correlation time range studied. These
results indicate that the total stretch is conserved in case (ii) but not
in case (iii). The parameters are the same as those used in Fig. 4.

nonconserved quantity. The stretch conservation or diffusion
in a coupled rotator lattice will require further study, and it
remains an open issue.

C. FK lattice

We then consider another 1D nonlinear lattice with on-site
potential, namely the FK lattice with a Hamiltonian as

H =
∑

i

[
p2

i

2
+ 1

2
(qi+1 − qi)

2 + V

2π
(1 − cos 2πqi)

]
. (7)

The FK lattice also exhibits normal heat conduction [5] as
well as normal energy diffusion behaviors. In Figs. 7(a) and
7(b), the excess energy distribution function ρE(i,t) and the
MSD 〈�x2(t)〉E of energy are plotted. The ρE(i,t) follows
the Gaussian distribution functions, and the 〈�x2(t)〉E is
linearly proportional to the correlation time as 〈�x2(t)〉E ∝ t ,
indicating obvious normal diffusion behavior for energy.

In contrast to the φ4 lattice, the stretch distribution function
ρD(i,t) of the FK lattice approaches the Gaussian distribu-

tions as ρD(i,t) ∼ 1√
4πDDt

e
− i2

4DDt at long enough correlation

times, as can be seen in Fig. 7(c). The MSD 〈�x2(t)〉D of
stretch follows the linear time dependence asymptotically as
〈�x2(t)〉D ∼ 2DDt in Fig. 7(d). Although both φ4 and FK
lattices have normal heat conduction and energy diffusion
behaviors, they exhibit totally different stretch diffusion
behavior. The stretch diffusion is normal for the FK lattice
despite its stretch conservation nature. This effect is consistent
with the prediction by Das and Dhar in Ref. [72]. Unlike the
previous 1D coupled rotator lattice, there is no ambiguous
space for the stretch conservation in the FK lattice (see Fig. 8).
The value of qi or Di is not degenerated anymore due to the
existence of the interaction potential term in Eq. (7).
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FIG. 7. The 1D FK lattice. (a) The energy distribution function
ρE(i,t) and (c) stretch distribution function ρD(i,t). (b) The MSD
〈�x2(t)〉E of energy and (d) 〈�x2(t)〉D of stretch. Both the energy dis-
tribution function ρE(i,t) and the stretch distribution function ρD(i,t)
follow the Gaussian distributions after long enough correlation times.
As a result, both the energy and stretch diffusions are normal as
〈�x2(t)〉E/D ∝ t , asymptotically. These results are consistent with
the claim in Ref. [72]. In panels (a) and (c), the ρE/D(i,t) are shifted
upward with a constant value of 1/(N − 1) to maintain vanishing
tails. The parameter for on-site coupling strength is set as V = 1. The
energy density is set as E = 1 and the corresponding temperature is
around T ≈ 0.86. The lattice size is chosen as N = 801.

D. Combined (FK+φ4) lattice

In the end, we consider the combined (FK+φ4) lattice with
Hamiltonian

H =
∑

i

[
p2

i

2
+ 1

2
(qi+1 − qi)

2+ V

2π
(1 − cos 2πqi) + 1

4
q4

i

]
.

(8)

The combined FK+φ4 lattice should also have normal heat
conduction behavior due to the existence of the on-site poten-

FIG. 8. The rescaled (a) excess energy distribution functions
t1/2ρE(i,t) and (b) stretch distribution functions t1/2ρD(i,t) as a
function of rescaled position i/t1/2 for the FK lattice. The black
dotted lines correspond to the normal Gaussian distributions with the
diffusion constants DE = 4.8 for energy and DD = 8.5 for stretch.
The data are taken from Figs. 7(a) and 7(c).

FIG. 9. The 1D combined FK+φ4 lattice. (a) The energy distribu-
tion function ρE(i,t) and (c) the stretch distribution function ρD(i,t).
(b) The MSD 〈�x2(t)〉E of energy and (d) 〈�x2(t)〉D of stretch. The
overall behavior is similar to that of the φ4 lattice. The excess energy
distribution function ρE(i,t) follows the Gaussian distribution, while
the stretch distribution function ρD(i,t) does not. As a result, only the
energy diffusion is normal as 〈�x2(t)〉E ∝ t , asymptotically. In panel
(a), the ρE(i,t) is shifted upward with a constant value of 1/(N − 1)
to maintain vanishing tails. The parameter is set as V = 0.5. The
energy density is set as E = 0.5 and the corresponding temperature
is around T ≈ 0.47. The lattice size is chosen as N = 801.

tial. This can be verified by examining the energy diffusion
behavior in Figs. 9(a) and 9(b). ρE(i,t) follows Gaussian
distributions, and the MSD of energy depends linearly on time
as 〈�x2(t)〉E ∼ 2DEt , asymptotically.

In Fig. 9(c), the stretch distribution functions ρD(i,t) are
plotted for correlation times t = 100, 300, and 500. No
Gaussian-like distribution is observed, and the scenario is
similar to that of the φ4 lattice as in Fig. 1(c). As with
the φ4 lattice, the 〈�x2(t)〉D saturates to a constant value
after a short time scale, as can be seen in Fig. 9(d). This is
another counterexample to the claim by Das and Dhar since the
momentum is not conserved here, while the stretch diffusion
is also not normal.

III. CONCLUSIONS

In conclusion, we have systematically investigated the
stretch diffusion as well as the energy diffusion for a few
1D nonlinear lattices with normal heat conduction behaviors.
For isolated systems with periodic boundary conditions, both
the total energy and the total stretch are conserved quantities.
Depending on the existence of on-site potential, the total
momentum can be conserved or nonconserved. For 1D φ4

and combined (FK+φ4) lattices, the total momentum is not
conserved while the stretch diffusion is not normal, which are
counterexamples to the claim in Ref. [72]. For a 1D coupled
rotator lattice with normal momentum diffusion, the situation
is tricky in the sense that its stretch conservation depends
on the choices of limitation of qi or Di . Only for a 1D FK
lattice is the total momentum not conserved and the stretch
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TABLE I. The relation between conservation quantities and
corresponding diffusion behaviors. The straight (waved) underline
indicates that the numerical behavior is consistent (inconsistent)
with theoretical predictions in Ref. [72]. If momentum or stretch
is not conserved, there is no corresponding diffusion behavior for
momentum or stretch, respectively.

Model Conservation Normal diffusion

Mom. Stretch Energy Mom. Stretch

φ4 No Yes Yes No∼∼∼
Rotator Yes Yes (I) Yes Yes No

Yes (II) Yes Yes No
No (III) Yes Yes

FK No Yes Yes Yes
FK+φ4 No Yes Yes No∼∼∼

and energy diffusions are normal, which is consistent with
the claim. The relation between conserved quantities and their
corresponding diffusion behaviors is summarized in Table I. In

conclusion, our numerical results do not support the definite
claim that “whenever stretch (momentum) is not conserved
in a one-dimensional model, the momentum (stretch) and
energy fields exhibit normal diffusion” proposed in Ref. [72].
However, there is something of interest with regard to the
lattices with cosine or bounded potentials. This remains an
open issue, and we hope more efforts will be made in this
direction in the near future.
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