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ABSTRACT: Silicon dioxide or silica, normally existing in
various bulk crystalline and amorphous forms, was recently
found to possess a two-dimensional structure. In this work, we
use ab initio calculation and evolutionary algorithm to unveil
three new two-dimensional (2D) silica structures whose
thermal, dynamical, and mechanical stabilities are compared
with many typical bulk silica. In particular, we find that all
three of these 2D silica structures have large in-plane negative
Poisson’s ratios with the largest one being double of penta
graphene and three times of borophenes. The negative
Poisson’s ratio originates from the interplay of lattice symmetry and SiO tetrahedron symmetry. Slab silica is also an
insulating 2D material with the highest electronic band gap (>7 eV) among reported 2D structures. These exotic 2D silica with
in-plane negative Poisson’s ratios and widest band gaps are expected to have great potential applications in nanomechanics and
nanoelectronics.

KEYWORDS: Two-dimensional material, silicon dioxide, in-plane negative Poisson’s ratio, 2D material with widest band gap,
crystal structure searching

Silicon dioxide with the chemical formula SiO2 is the
fundamental component of glass, sand, and most minerals

and is also known as one of the building units of earth crust and
mantle. There are a large number of isomers with the formula
of SiO2 in crystalline and amorphous forms, such as quartz, ,
and glassy SiO2. In all of the known SiO2 compounds, Si has sp3

hybridization with 4-fold tetrahedron configuration. O is
coordinated with 2 Si atoms but sometimes with angle type
like O in H2O and sometimes with linear type like C in CO2.
The variety of SiO2 phases mainly originates from the space
stacking form of Si−O tetrahedron. Normally, bulk silicon
dioxides are hard (α-quartz with theoretical Vickers hardness
30.2 GPa1), high-quality electrical insulators and favorable
dielectric materials. Because of the outstanding mechanic and
electronic performances, SiO2 films and slabs have significant
applications in mechanics, optics, and electronics.
Two-dimensional (2D) materials are substances with a

monolayer or few atomic layers thickness2,3 (Figure 2). Because
of quantum confinement effect, electrons in these materials
only have freedom in 2D plane, which could give rise to new
physics. But so far, the 2D materials are quite rare and most of
them are semimetals (for example, graphene) or semi-

conductors (for example, black phosphorus, sulfide, and
selenide) with few being insulators, for example, h-BN, the
reported insulating 2D structure with the widest band gap (4.7
eV theoretically4−6 and 6.4 eV experimentally7). It is well-
known that 3D silicon dioxide is a good insulator with wide
band gap. Therefore, it is interesting to explore whether the
corresponding 2D counterpart may also be stable as a
monolayer and exhibit novel properties. If confirmative, it is
likely to make contributions to transistors of nanomaterials and
multifunctional van der Waals (vdW) heterostructures.8,9

Thin silica film has first been grown on metal Mo(112)
substrate.10−13 Then slab crystalline silica sheet is grown on
another metal Ru(0001).14,15 Furthermore, this hexagonal
quasi-2D silica can even be supported by graphene.16 In this
Letter, we focus on the intrinsic mechanical porperties and use
theoretical structure prediction to explore 2D crystalline
freestanding silicon dioxide. We identify three novel stable
2D silica phases, besides the reported 2D silica.14 They all
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display in-plane negative Poisson’s ratio (NPR), large band
gaps, and superhard mechanical properties compared to 3D α-
quartz.
Computational Details. Crystal structure searching was

performed via the ab initio evolutionary algorithm in
USPEX17−19 that has been successfully applied to a wide
range of searching problems.20−22 Furthermore, we have
reconfirmed the obtained four structures of global minimum
free energy based on particle swarm optimization, implemented
in CALYPSO code.23 We sequentially used 1−6 times of
chemical formula SiO2 (up to 18 atoms) per unit cell for
searches. According to the experimental results,10,14 the
thickness of hexagonal 2D silica is 4.34 Å. Therefore, in
order to cover some extraordinary 2D silica, the original
thickness was set up to 5 Å and permitted to relax during the
evolution. The self-consistent energy calculations and structure
optimization were employed using the Perdew−Burke−
Ernzerhof (PBE) exchange-correlation functional24 along with
the projector-augmented wave (PAW) potentials25,26 as
implemented in the Vienna Ab initio Simulation Package
(VASP).27,28 The kinetic energy cutoff was 800 eV and
tetrahedron method with Blöchl correction29 was used to
integrate the Brillouin-zone. Energy convergence value in self-
consistent field (scf) loop was selected as 10−8 eV and a

maximum Hellmann−Feynman forces is less than 0.1 meV/Å.
Such a high criteria is found to be required to achieve
convergence for phonon calculations and all the elastic-constant
components. All the results in this paper is also checked with
the local density approximation (LDA) functional.30 Addition-
ally, because both LDA and PBE approaches usually under-
estimate the band gap of semiconductor and insulator, we
adopt the screened hybrid functional of Heyd, Scuseria, and
Ernzerhof (HSE06)31 for a more accurate calculation. Phonon
dispersion curves were obtained using the Phonopy package.32

Results and Discussion. Structures. A number of low-
energy structures had been searched and only the most stable
four 2D structures obtained in our computations are discussed
here, with space groups of P6/mmm Si4O8, Pbcm Si4O8, P-4m2
Si4O8, and P-4m2 SiO2. For simplicity, we define them as α-, β-,
γ-, and δ-2D silica, respectively. The optimized four silica
structures were shown in Figure 1. α-2D silica is hexagonal and
has been experimentally grown on Mo(112) and Ru(0001)
surfaces,10,14 whereas we obtain it intrinsically in a freestanding
form. That the known structure has been rediscovered in our
crystal structure prediction does validate the correctness of our
computational method in high-throughout computing. The
other three are our new discovered structures during the
explorations. α-2D silica has a perfect sp3 bonding network that

Figure 1. Equilibrium 2D monolayer silicon dioxide of (a) P6/mmm Si4O8 (α-2D silica), (b) Pbcm Si4O8 (β-2D silica), (c) P-4m2 Si4O8 (γ-2D
silica), and (d) P-4m2 SiO2 (δ-2D silica) in both top and side views. Large blue and small red balls in the (a−d) represent silicon and oxygen atoms,
respectively. The Wigner−Seitz cells are shown by the dotted black regions. The green solid arrows show the lattice vectors.

Table 1. Optimized Structural Properties of the Four Different 2D Silicon Dioxide Crystal Structuresa

phase α-2D silica (Si4O8) β-2D silica (Si4O8) γ-2D silica (Si4O8) δ-2D silica (SiO2)

space group P6/mmm Pbcm P-4m2 P-4m2

|a⃗1| (Å) 5.31 20.00 5.64 2.84
|a⃗2| (Å) 5.31 5.07 5.64 2.84
|a⃗3| (Å) 20.00 5.53 20.00 20.00
atomic positions Si 4h (0.67,0.33,0.42) Si 4d (0.55,0.70,0.25) Si 4k (0.50,0.75,0.55) Si 1d (0.00,0.00,0.50)

O 6i (0.50,0.50,0.39) O 4d (0.52,0.39,0.25) O 2f (0.50,0.50,0.40) O 2g (0.50,0.00,0.46)
O 2d (0.33,0.67,0.50) O 4c (0.59,0.75,0.50) O 2g (0.50,0.00,0.59)

O 4i (0.73,0.27,0.50)
Ec (eV/atom) 6.61 6.54 6.44 6.37
EG−HSE (eV) 7.31 7.69 7.40 7.34
thickness (Å) 4.34 3.51 3.84 1.71

a|a ⃗1|, |a ⃗2|, and |a ⃗3| are the lattice constants defined in Figure 1. Atomic positions are the group Wyckoff positions for each independent atoms in
fractional coordinates. Ec is the cohesive energy per atom in eV. EG−HSE is the band gap calculated by HSE06.
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means all O atoms are connected to Si atoms with same solid
angles 109°28′, that is, Si is in a perfect O tetrahedron. The
lattice constant in our computation of α-2D silica is 5.31 Å
which is in good agreement with the experimental data 5.2−5.5
Å.10,14 This confirms the accuracy of our structure prediction
and relaxation.
The optimized structural parameters of four structures are

summarized in Table 1. In all of 2D silica, each silicon is
connected with four oxygens, constituting a tetrahedron like
bulk SiO2. Therefore, silicon atoms share 4-fold coordinations
and oxygen two, which means all atoms have no redundant
valence electrons. In the top view, α-2D silica, like graphene,
indeed has a hexagonal crystal structure, while the other three
have rectangular crystal configurations. Specifically, β-2D silica
is an anisotropic structure in orthorhombic lattice while γ-2D
silica and δ-2D silica are isotropic in tetragonal lattice. In the
side view, α-2D silica with mirror symmetry to z = 0 plane
consists of a “double” layers Si2O3 substructures connected by
intermediate SiOSi bonds oriented perpendicular to the
surfaces. However, the other three structures have large
inherent bucklings in their interlaminations and lost mirror
symmetry relative to x−y plane at z = 0. α-2D silica and δ-2D
silica each have only one uniform length of SiO bond, wheras
β-2D silica and γ-2D silica have three different bond lengths. In
the top view, the SiO bonds are like crossroads in β-2D silica,
γ-2D silica, and δ-2D silica crystal structures.
The four phases of 2D silica have different arrangement of

SiO tetrahedrons. By geometry (directions of SiO bonds
consistent with lattice vectors, lattice types and whether have
mirror symmetry relative to z = 0 plane), the above four
structures can be divided into two classes, one is α-2D silica, the
other are β-, γ-, and δ-2D silica. The latter class has special
crossed orientation of chemical bonds which is seldom found in
silicon dioxide crystalline forms.
A deeper insight is that SiO tetrahedron of symmetry

group Td has two special orthogonal projections: one goes
through a vertex and the center of its opposite face (3-fold
axis); the other goes through on opposite edges (2-fold axis).
For most bulk SiO2 phases and α-2D silica, the lattice vector is
along 3-fold axis, which means this direction is easy to build a
spacial framework by Pauling’s third rule33 (rule of sharing of
polyhedron corners, edges, and faces). The representative local
structure is double tetrahedron structure of [Si2O7]

−6, which is
the fundamental structure of α-2D silica and quartz. Here,
when the structure is limited to two dimension, the expansion
in three-dimensional space become not very important, and the
lattice vector can build the slab along 2-fold axis to get β-, γ-,
and δ-2D silica. These coupling of lattice symmetry and Si−O
tetrahedron symmetry also are the origin of NPR which will be
discussed later.
As quasi-2D structures, the atomic thickness of α-, β-, γ-, and

δ-2D silica are 4.34, 3.51, 3.84, and 1.71 Å, respectively. If we
add two van der Waals (vdW) radii of the outmost surface
atoms,34 their effective thicknesses are 7.38, 6.55, 6.88, and 4.75
Å, respectively. It is observed that δ-2D silica is the thinnest
structure, while the thickness increases by the sequence of δ-,
β-, γ-, and α-2D silica. β-, γ-, and δ-2D silica are thinner than α-
2D silica, which implies they are more like pure two-
dimensional structures and have more low dimensional effects.
Lower thickness makes these three phases lose mirror
symmetry and they do not have enough spaces for double
tetrahedron structure of [Si2O7]

−6, which is why they have
different SiO bond orientations. In this way, β-, γ-, and δ-2D

silica can be seen as a metastable intermediate products when
the atoms build silica from zero thickness to α-2D silica.

Stability and Wide Bandgap. Now our first priority is to
answer the question whether these new freestanding 2D silicon
dioxide materials are stable. In normal condition, silica exists in
many crystalline forms. Here we compare the free energies of
our 2D silica structures and 3D counterparts in thermody-
namics and the calculation are implemented in HSE06 method
(Figure 2). Compared with α-quartz, which has the lowest

energy to be the thermal-dynamically stable phase of SiO2, all
2D silica are metastable phases. The structure of α-2D silica
with highest symmetry has the lowest energy (0.047 eV/f.u.) in
2D silica and the energy is comparable to α-quartz that is
chosen as the reference point of zero energy. Compared with
other 2D silica, α-2D silica is thicker and more like bulk silica.
That is why it has a similar energy to bulk quartz. SiO bond
length in α-2D silica is 1.63 Å with a quite similar to 1.61 Å of
α-quartz, while the SiO bonds are 1.64, 1.65, and 1.66 Å for
β-, γ-, and δ-2D silica, respectively, which means there is a
positive correlation between energy of structure and SiO
bond length since shorter distance intensifies the strength of
SiO bonds. In a word, [SiO4] tetrahedral unit in α-2D silica
is more similar to α-quartz than β-, γ-, and δ-2D silica.
Besides, according to Pauling’s fifth rule (parsimony rule33),

the number of essentially different kinds of constituents in a
crystal tends to be small. The repeating units will tend to be
identical because each atom in the structure is most stable in a
specific chemical environment. α-2D silica and α-quartz have
only one type of tetrahedral, while β-, γ-, and δ-2D silica have
two or three distorted tetrahedral because of symmetry
breaking. Therefore, the energy of α-2D silica is close to bulk
material with lower energy.
Though α-2D silica has been grown exprimentally,10,13,14 it is

not useless to explore other interesting phases with a little
higher energy in complicated but brand new 2D silica energy
landscape surface. As a matter of fact, metastable phases are
ubiquitous in condensed matter, which do not produce a bad
effect, but provide diverse structures transformation with vast
applications to modern industrial societies and our daily life.
The energies of β-2D silica (0.253 eV/f.u.), γ-2D silica (0.542

Figure 2. Energy landscape versus band gap of 3D and 2D silica
materials as performed in the HSE06 method. As α-quartz is the most
stable silica at low temperatures and is the most common form of
crystalline silica, we set it as the benchmark reference in green dashed
line to compare all silica structures.
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eV/f.u, and δ-2D silica (0.758 eV/f.u.) are comparable to
stishovite35,36 and seifertite37 and are much lower than energy
of fibrous W-silica.38 Because stishovite and seifertite are
observed by high-pressure experiments and quenchable to
ambient condition, and W-silica can be synthesized by chemical
methods, it is reasonable to believe that our three novel 2D
phases can exist as metastable phases at normal conditions. It is
also worth highlighting that β-2D silica has both the largest
band gap (up to 7.69 eV) in our HSE06 calculations and a
moderate low free energy.
The dynamical stability has been confirmed by calculating

phonon dispersion relations shown in Figure S1. All the
structures of four 2D silica are free from imaginary frequencies,
which means they are dynamically stable. Furthermore, the
dynamical stability of these freestanding 2D silica is also
validated by performing ab initio molecular dynamics
simulations using canonical ensemble at a series of elevated
temperatures with lifetime longer than 10 ps (Figure S2). The
result shows that all 2D silica are still robust even at high
temperature (1000 K). Particularly, β-2D silica can live in the
high temperature of 2500 K, which is much higher than the
melting point of quartz (1986 K).39

For 2D elastic solid materials, mechanical stability is
indispensable to the existence of materials. If a 2D material is
mechanically stable, the corresponding elastic constants have to
satisfy C11C22−C12

2 > 0 and C66 > 0.40 We have guaranteed that
all the elastic constants (shown in Table S1) of four 2D silica
always meet this compulsory requirement. Therefore, we have
verified that α-, β-, γ-, and δ-2D silica are metastable phases.
Band gap is the fundamental electronic property for

semiconductor and insulator. Theoretically, we find that 2D
silica is of the largest band gap in all reported 2D crystal
materials. As the electronic band structures are shown in Figure
S3, α-, β-, γ-2D silica are direct insulators while δ-2D silica is an
indirect insulator. Compared with h-BN which is reported to
have a large band gap of 4.7 eV theoretically4,6 (6.4 eV
experimentally7), silica put the upper limit of 2D band gap to
7.69 eV. This implies it is hard to change its electronic states in
2D silica. Because the absorption of light is related to the band
gap and the thickness, 2D silica can be the most transparent
materials in the world.
As good insulators, 2D silica can be an outstanding candidate

for dielectric materials. Dielectric constants of α-, β-, γ-2D silica,
and δ-2D silica are 3.18, 2.42, 2.24 and 2.49, respectively.
Notably, based on the formula of in-plane parallel capacitor c =
εS/4πkd, capacitance of δ-2D silica is around 1.76 times larger
than α-quartz because it is 0.31 times thinner than α-quartz.
This means it is a favorable dielectric material for next
nanomaterials transistors such as 2D transistors and 2D
electronic devices41 and a supercapacitor candidate.42

Superhard Mechanical Properties with NPR. When a
material is stretched in one direction, it usually contracts in
the other two directions perpendicular to the applied stretching
direction, the so-called positive Poisson’s ratio (PPR). Most
materials have a PPRs ranging from 0 to 0.5. From the classical
theory of elasticity, for 3D isotropic materials, the Poisson’s
ratio cannot be less than −1.0 or greater than 0.5.43 Materials
with NPR have the property that when stretched, they become
auxetic perpendicular to the applied force. These materials are
also called auxetics by its auxetic property with external strain.
This interesting phenomenon was first presented in foam
structure in 1987.44 Then materials with NPR attract a lot of
scientific interest by their wide applications, such as single-layer

graphene and graphene ribbons,45,46 single-layer black
phosphorus,47−49 hα-silica,50 penta graphene,40 borophenes,20

and semimetallic Be5C2,
51 and can be used in vanes for

aircraft,52 packing materials,53 body armor, and national
defense.54 Furthermore, we find that in-plane NPR is rare
and novel in 2D materials based on the collected data from the
available published papers with our utmost endeavor shown in
Figure S4.
Poission’s ratio ν and Young’s modulus E in the xy plane can

be expressed as the following equations
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where νxy is the Poisson’s ratio of the x-direction that is induced
by a strain in the x-axis. Ex is the Young’s modulus of the x-
direction that is the slope in the stress−strain curve. Similarly,
νyx and Ey are the Poisson’s ratio and Young’s modulus in the y-
direction. σ is the stress as a function of strain ε. We
quantitatively calculated the Poisson’s ratio ν and Young’s
modulus E for our four 2D silicon dioxides according to the eq
1 for uniaxial strain. The results of Poisson’s ratio are shown in
Figure 3. We also calculated the mechanical property by the

elastic solid theory (the detailed description of this method is
discussed in the Supporting Information). The results of elastic
solid theory and strain method are quite similar (Table S2).
Therefore, two methods confirm that our three 2D silica phases
have NPR mechanical property. In order to check the
correctness of our computational method and results, we select
graphene and black phosphorus as references. Our results
shown in Table S2 are in good agreement with the published
results.55−58 As we have mentioned above, α-2D silica, γ-2D
silica, and δ-2D silica are isotropic materials, while β-2D silica is
an anisotropic material. Therefore, except β-2D silica, all other
three materials have the mechanical properties Ex = Ey and νx =
νy.

Figure 3. Poisson’s ratio (short dashed lines denote the linear
response counterpart) as a function of uniaxial tensile strain of α-2D
silica, β-2D silica, γ-2D silica, and δ-2D silica in the (a) x-direction (νxy
= 0.522, −0.048, −0.022, and −0.112) and (b) y-direction (νyx =
0.522, −0.123, −0.022, −0.112). The horizontal black dashed lines are
set to zero for comparison.
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Figure 3a displays the strain response in the y direction when
applying stretch in the x-direction. Similarly, the Poisson’s ratio
of the y-direction is shown in Figure 3b. Obviously, there are
two kinds of mechanical response when four 2D silica are
stretched. α-2D silica is contracted perpendicular to the applied
force, while β-2D silica, γ-2D silica, and δ-2D silica are auxetic
during the uniaxial strain in 2D plane. Remarkably, β-2D silica
in the y-direction and δ-2D silica in both x- and y-directions
have large NPR values −0.123 and −0.112. These absolute
values of NPR are quite high, that is, they are equal to double
that of penta graphene (ν = −0.068),40 three times that of
borophenes (νx = −0.04, νy = −0.02),20 and are different from
single-layer black phosphorus whose NPR occurs in the yz
plane.47

NPR of our novel three 2D silica structures originates from
the low-dimensional effect. As discussed in Structures, [SiO4]
tetrahedron is the basic unit in both slab and bulk SiO2.
Normally, in a 3D system, by the request of sharing of
polyhedron corners (Pauling’s third rule33), the lattice is along
the 3-fold axis of the SiO tetrahedron. The tensile strain (in
green arrows) on the direction of the median line of bottom of
the tetrahedron makes the distance of two oxygen atoms
decrease (in black arrows), which implies a positive Poisson’s
ratio (ν > 0) shown in Figure 4a. However, for 2D materials

there is spatial constrains and the lattice can be along in the 2-
fold axis. When the tensile strain is applied to the edge to the
tetrahedron, the distance of two oxygen atoms increases,
leading to the NPR phenomenon (ν < 0) shown in Figure 4b.
Therefore, we believe the distinction between these two
situations stems from the coupling of lattice symmetry and Si
O tetrahedron symmetry, which is a low-dimensional effect.
In a word, our three new structures are thinner than α-2D

silica with stronger low-dimensional effect in geometry. This
low-dimensional effect further leads to a different type of
matching between lattice symmetry and SiO tetrahedron
symmetry, which finally leads to this interesting NPR
phenomenon.59

We have also revealed the Young’s modulus of these 2D silica
materials and prove that they are superhard 2D materials. As we
have explained above, we use the effective thickness of 2D
materials, including two vdW radii.34,60,61 The calculated
Young’s modulus are exhibited in Table S2. Generally, Young’s
modulus can be obtained by dividing the tensile stress by the
extensional strain in the elastic region of the stress−strain
graph. A material whose Young’s modulus is high can be
regarded as rigid. According to the experimental62,63 and
theoretical64 values, the Young’s modulus of 3D α-quartz is
around 100 GPa at atmospheric pressure. It is to be disclosed
that all four 2D silica are much harder than α-quartz. Young’s
modulus of δ-2D silica (346 GPa) is more than triple than that
of α-quartz (100 GPa)62−64 and is comparable to that of single-
layer boron nitride (BN) (366 GPa).65 Interestingly, the
Young’s modulus of β-2D silica in the y-direction (247 GPa) is
more than double of that in the x-direction (97 GPa), which
due to the strong anisotropy of its special crystal structures.
The hardness of these 2D silica can be explained by tetrahedral
silica structure in Figure 4 and phonon dispersion relations in
Figure S1. The slope of phonon dispersions denotes the group
velocity of each phonon. The bigger the group velocity, the
more rigid the material is. Therefore, δ-2D silica and β-2D silica
have a superhard and strong anisotropic mechanical properties.

Couclusion. In conclusion, we have performed a systematic
structure searching and computationally guided material
discovery for 2D silicon dioxide and found β-, γ-, and δ-2D
silica. The thermal, dynamical, and mechanical stability
checking guarantees that these 2D silica can exist as metastable
phases at atmosphere condition. In particular, in-plane NPR has
been identified in these three structures, whose values are so
large that are double that of penta-graphene,40 three times that
of borophenes (νx = −0.04, νy = −0.02)20 and are different
from single-layer black phosphorus’s NPR in the yz plane.47

The NPR originates from the coupling of lattice symmetry and
SiO tetrahedron symmetry, which is a low dimensional
effect. We have also proved these three 2D silica to be
superhard materials, which indicate superior thermal con-
ductivities compared to bulk silica materials. Furthermore, with
its largest electronic band gaps in reported 2D crystal materials,
we believe these novel 2D silica can be used as the most
transparent insulators and good dielectric materials, which are
expected to have great applications in many fields.
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Figure 4. The explanation of Poisson’s ratio for our new 2D silicon
dioxide structures. Each silicon atom is surrounded by four oxygen
atoms and due to its shape each SiO4 group is called SiO4 tetrahedron.
(a) When the tensile strain (in green arrows) is applied to the
direction of the median line of bottom of the tetrahedron (vertical to
3-fold axis) because of the angular variation, the distance of two
oxygen atoms decreases (in black arrows), leading a positive Poisson’s
ratio (ν > 0). On the contrary, (b) when the tensile strain is applied to
the edge to the tetrahedron (vertical to 2-fold axis), similarly because
of the angular variation the distance of two oxygen atoms increases,
leading a NPR phenomenon (ν < 0).
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