Supplementary On-Line Material for: High thermoelectric performance in two-dimensional tellurium: An *ab initio* study

Zhibin Gao,[†] Gang Liu,^{*,‡} and Jie Ren^{*,†}

 Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China \$\$Chool of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China

E-mail: liugang8105@gmail.com; Xonics@tongji.edu.cn

Figure S1: Electronic band structure of α -Te at HSE06 level, which narrows the range of electronic energy in Figure 1(c) in the main text from [-4 eV, 4 eV] to [-2 eV, 2 eV]. The lowest (highest) point in conduction (valence) band is tagged with capital letter A (B).

Figure S2: Effective masses m* along the x or y direction in the isotropic α -Te material, calculated as m* = $\hbar^2 (\partial^2 E/k^2)^{-1}$ by fitting (a) conduction band minimum around A point and (b) valence band maximum around B point to a quadratic function.