Degenerately Doped Transition Metal Dichalcogenides as Ohmic Homojunction Contacts to Transition Metal Dichalcogenide Semiconductors

Zhibin Gao, Zhixian Zhou, and David Tománek

ABSTRACT: In search of an improved strategy to form low-resistance contacts to MoS2 and related semiconducting transition metal dichalcogenides, we use ab initio density functional electronic structure calculations in order to determine the equilibrium geometry and electronic structure of MoO3/MoS2 and MoO2/MoS2 bilayers. Our results indicate that, besides a rigid band shift associated with charge transfer, the presence of molybdenum oxide modifies the electronic structure of MoS2 very little. We find that the charge transfer in the bilayer provides a sufficient degree of hole doping to MoS2, resulting in a highly transparent contact region.

KEYWORDS: transition metal dichalcogenides, contacts, ab initio calculations, electronic structure, charge transfer, doping, band offset

One of the key challenges in 2D semiconductor physics is finding better ways to inject charge carriers through transparent, ohmic contacts in order to reduce power dissipation and increase carrier mobility. This problem does not occur in 3D semiconductors, where degenerate doping, resulting in transparent contacts to metal electrodes, is achieved by ion implantation. That approach is not practical in atomically thin 2D layers, since bombardment by ions with a finite penetration depth would not only implant but also knock out atoms from the channel. Several alternative approaches have been explored in the past. The most common among these is doping by elemental substitution and by surface charge transfer. Doping the entire structure does improve charge injection in the contact region, but also turns the channel metallic, reducing its switching capability. Significant local doping by surface charge transfer may also be achieved using adsorbed molecules, but typically suffers from lack of chemical and thermal stability. Substitutional doping yields a stable structure, but cannot be strictly limited to the contact regions only. It generally causes structural changes and introduces scattering centers in the 2D channel, thus degrading its transport properties. Direct local contact between a 2D semiconductor and a metal with a favorable work function appears attractive, but typically results in a strong hybridization at the interface, causing the formation of midgap states and Fermi level pinning. One way to reduce these negative side effects of a metal contact is to insert an ultrathin insulating layer such as h-BN or MgO in-between the semiconducting channel and the metal. This approach favorably modifies the work function of the metal while reducing the net charge transfer between the contact metal and the channel, suppressing the formation of interlayer gap states and Fermi level pinning. The drawback of this approach is widening the vertical tunnel barrier between the contact metal and the channel. Whereas formation of midgap states can be

Received: October 25, 2018
Accepted: April 30, 2019
Published: April 30, 2019
avoided when using substitutionally heavily doped or metallic 2D transition metal dichalcogenides in van der Waals contact with the channel,10,21 the vertical tunnel barrier cannot be eliminated. An unusual way to optimize contacts to 2D semiconductors, which does not involve charge transfer to the channel, is by phase engineering.22–24 In this approach, an in-layer homojunction is formed when locally converting the semiconducting 2H phase of the channel material such as MoS\textsubscript{2} to a metastable, metallic 1T phase. This approach is, however, restricted to selected materials, and the phase stability is limited. All of the above strategies have significant drawbacks, which make continuing the search for suitable alternatives highly desirable.

We propose a previously unexplored approach to achieve degenerate hole doping in a local region of a semiconducting MoS\textsubscript{2} channel that is placed in direct contact with electropositive materials such as MoO\textsubscript{3} or MoO\textsubscript{2} using van der Waals assembly. To prove the viability of this approach, we perform \textit{ab initio} density functional calculations of the vertical heterostructure using density functional theory (DFT), which is known to describe charge distribution and doping correctly.

We find that the charge transfer between the doping layer and the channel is significant and results in degenerate doping of the MoS\textsubscript{2} channel by the adjacent molybdenum oxide layer. With only negligible hybridization at the bilayer interface and its negative side effects, the dominant electronic structure change is a net charge transfer giving rise to an interface dipole, which causes a rigid shift21 of the MoS\textsubscript{2} bands in the contact region and turns it metallic. In this case, no vertical tunnel barrier will form when the heavily doped and highly conducting contact region of the channel material is contacted by a metal on the side opposite the molybdenum oxide.

In common Si-based 3D semiconductor devices, charge transport is dominated by the intrinsic properties of the channel. Contacts do not play a significant role, since the contact region is degenerately doped by ion implantation, which allows for barrier-free charge injection from a metal electrode.6 The device characteristics change significantly in low-dimensional semiconductors, where contacts play the dominant role due to significant Schottky barriers and an associated wide depletion region caused by insufficient screening. The key role of Schottky barriers in the contact region has been recognized early in 1D semiconducting carbon nanotubes with metal contacts,25 with similar behavior extending to 2D semiconductors with metal contacts.26

There, the contact resistance can be reduced, albeit not eliminated, by selecting contact metals with a work function aligned with the valence band maximum (VBM) or conduction band minimum (CBM), depending on the type of carriers to be injected.14,27

Our alternative approach is to create a homojunction between a doped and a pristine segment of a 2D semiconductor such as MoS\textsubscript{2}. Key to this approach is the use of van der Waals assembly to contact the channel by a highly electronegative material that locally provides degenerate hole doping. The material of choice in this study is MoO\textsubscript{3} with a very high work function28 of 6.7 eV. This material has emerged as a promising surface acceptor material for a wide variety of systems including diamond thin films, graphene, and transition metal dichalcogenides (TMDs).29–32 Because the CBM of MoO\textsubscript{3} lies below the VBM of most semiconductors including TMDs, molybdenum oxide is a viable candidate to provide degenerate doping to 2D semiconductors.

RESULTS

MoS\textsubscript{2} in Contact with MoO\textsubscript{3}

The structure of isolated MoO\textsubscript{3} and MoS\textsubscript{2} monolayers, as well as that of the bilayer, is shown in Figure 1. The Bravais lattice of MoO\textsubscript{3} has a rectangular unit cell containing 2 Mo and 6 O atoms with \(a_1 = 3.71\) Å and \(a_2 = 3.95\) Å. The calculated cohesive energy per formula unit of a free-standing MoO\textsubscript{3} monolayer is \(E_{\text{coh}} = 24.62\) eV with respect to isolated atoms.

MoS\textsubscript{2} forms a triangular lattice with the lattice constant \(a = 3.18\) Å. The corresponding lattice constants of a conventional rectangular unit cell containing 2 Mo and 4 S atoms, useful when discussing epitaxy with MoO\textsubscript{3}, are \(a_1 = 3.18\) Å and \(a_2 = 5.51\) Å. The calculated cohesive energy per formula unit of free-standing MoS\textsubscript{2} is \(E_{\text{coh}} = 16.37\) eV with respect to isolated atoms.

Since the computational approach to investigate infinite structures requires a periodic array of identical unit cells and since the MoO\textsubscript{3} and the MoS\textsubscript{2} layers are incommensurate, we need to enforce commensurability by subjecting the individual layers to in-layer strain at some energy cost. To obtain quantitative understanding of the effect of strain on our results, we distinguished the smaller supercell A containing 4 Mo, 6 O, and 4 S atoms, shown in Figure 1(a), from the larger supercell B, which contains 44 Mo, 72 O, and 40 S atoms. Both supercells are shown in the Supporting Information.

The primary reason to consider the smaller supercell A, which is highly strained, is to obtain an intuitive understanding of the physics. The larger supercell B is less strained and expected to provide a better quantitative agreement with the real system.

The strain energy in stretched and compressed MoO\textsubscript{3} and MoS\textsubscript{2} monolayers, as well as in the bilayer is shown in Figure 2. The deformation energies \(\Delta E\), shown as a function of the lattice constants in Figure 2(a–e), allow judging the in-plane
compressibility of the MoO3/MoS2 bilayer and its components. The interlayer interaction energy in the bilayer system with supercell A, shown in Figure 2(f), has been fitted by the Morse potential \(\Delta E = E_0 [1 - \exp(\xi |d - d_0|)] \).

We find results based on DFT-PBE to be in very good agreement with those based on the DFT-optB86b-vdW functional. This indicates that the role of van der Waals interactions, which are specifically addressed in the latter functional, is only secondary. Since our results for both supercells indicate a significant charge redistribution within the vertical heterojunction, the role of the Coulomb attraction between adjacent MoO3 and MoS2 layers is more significant. We note that Coulomb interaction is described adequately by the DFT formalism.

![Figure 2](image_url)

Figure 2. Energy change \(\Delta E \) per unit cell as a function of the lattice parameters. Monolayer results are presented for (a) MoS2 with 3-fold symmetry and lattice constant \(a \) and (b, c) MoO3 with lattice constants \(a_1 \) and \(a_2 \). The unit cells we consider contain 3 atoms in (a) and 8 atoms in (b) and (c). MoO3/MoS2 bilayer results representing 14-atom unit cells show \(\Delta E \) as a function of (d) \(a_1 \), (e) \(a_2 \), and (f) the interlayer distance \(d \). The dashed lines in (a)–(d) and (f) are fits by the Morse potential. The dashed line in (e) is a guide to the eye. The legend in the panels specifies the symbols and line types for results based on DFT-PBE and also the DFT-optB86b-vdW functional, which specifically considers the van der Waals interaction.

![Figure 3](image_url)

Figure 3. (a) Electronic band structure of a MoO3/MoS2 bilayer with supercell A. (b) Superposition of the electronic band structure of isolated monolayers of MoS2 (solid red lines) and MoO3 (dashed green lines). (c) Superposition of the MoS2 bands in panel (b), shifted rigidly up by 0.711 eV, and the MoO3 bands, shifted rigidly down by 1.523 eV. The combined band structure in (c) is superposed to that of the MoO3/MoS2 bilayer in panel (a).
The relaxed geometry of the bilayer structure with the rectangular supercell A is characterized by the lattice constants $a_1 = 3.34 \, \text{Å}$ and $a_2 = 5.42 \, \text{Å}$ and the unit cell area $A_A = 18.11 \, \text{Å}^2$. We note that the optimum values of a_1 and a_2 in the bilayer lie in-between the values of the isolated monolayers. In the MoO$_3$ layer within the relaxed bilayer with supercell A, a_1 is compressed by 9.8% and a_2 is stretched by 37.0% at the energy cost of 5.5 eV/nm2. In the MoS$_2$ layer in the same geometry, a_1 is stretched by 5.1% and a_2 is compressed by 1.6% at the energy cost of 0.9 eV/nm2. The attractive interaction energy between the strained layers amounts to 0.1 eV/nm2, nearly compensating for the deformation energy of the individual layers.

The relaxed geometry of the bilayer structure with the rectangular supercell B is characterized by the lattice constants $a_1 = 15.87 \, \text{Å}$ and $a_2 = 11.07 \, \text{Å}$ and the unit cell area $A_B = 175.72 \, \text{Å}^2$. We note again that the optimum a_1 and a_2 values in the bilayer are in-between the values of the isolated monolayers. The relative deformations and the deformation energies are much smaller in the larger supercell B. In the MoO$_3$ layer within the relaxed bilayer with supercell B, a_1 is stretched by 7.0% and a_2 is compressed by 6.7% at the energy cost of 0.3 eV/nm2. In the MoS$_2$ layer within the same relaxed bilayer geometry, a_1 is compressed by 0.2% and a_2 is stretched by 0.5% at the energy cost of 0.6 eV/nm2. The attractive interaction energy between the strained layers in the bilayer amounts to 0.7 eV/nm2, nearly compensating for the deformation energy of the individual layers.

To obtain a basic understanding of what is happening in the system electronically, we first consider the smaller supercell A of the MoO$_3$/MoS$_2$ bilayer. The electronic band structure based on DFT-PBE Kohn–Sham eigenvalues, shown in Figure 3(a), suggests that the system is semimetallic. A superposition of electronic band structures of isolated MoO$_3$ and MoS$_2$ monolayers, constrained to their respective structure in the bilayer, is shown in Figure 3(b), with Fermi levels aligned at midgap. In view of the fact that fundamental gaps are typically underestimated in the Kohn–Sham DFT-PBE spectrum, we expect that the MoO$_3$/MoS$_2$ bilayer with supercell A, as well as the MoO$_3$ and MoS$_2$ monolayers, should be semiconducting. This expectation is confirmed in the corresponding band structure and density of states.
obtained using the hybrid DFT-HSE06 exchange–correlation functional, which is presented in the Supporting Information. Kohn–Sham spectra based on DFT-HSE06 typically have wider fundamental band gaps that agree better with observed electronic spectra than spectra based on DFT-PBE.

To inspect the level of hybridization at the interface, we superposed the DFT-PBE band structure of the bilayer with the bands of an isolated MoS2 monolayer, shifted rigidly up by 0.711 eV, and a MoO3 monolayer, shifted rigidly down by 1.523 eV. Comparing the band superposition with the bilayer band structure in Figure 3(c), we find only a minimum degree of hybridization between the individual layers. The same small degree of hybridization also occurs in DFT-HSE06 calculations. Similar to DFT-PBE results, the DFT-HSE06 band structure of the bilayer is represented well by a superposition of MoS2 monolayer bands, shifted rigidly up by 0.660 eV, and MoO3 monolayer bands, shifted rigidly down by 2.461 eV.

In truth, the above semiconducting behavior is not intrinsic to the MoO3/MoS2 bilayer, but rather linked to using the small supercell A. DFT-PBE band structure results for the bilayer represented by the much larger and more adequate supercell B, presented in Figure 4(a), indicate a much higher degree of metallicity at the Fermi level. In realistic MoO3–x systems, there are nonstoichiometric composition variations with oxygen vacancies. Similar to MoS2 in Contact with MoO2. As mentioned before, experimental studies report nonstoichiometric variations of MoO3–x with oxygen vacancies and amorphous structure, which cannot be modeled as periodic structures. As a step in the direction of molybdenum oxide with a lower oxygen concentration, we consider instead the MoO2 stoichiometry. MoO2 has been discussed theoretically and found to form a stable honeycomb lattice, different from the MoO3 lattice with a rectangular unit cell. Since MoO2 shares the same 6-fold symmetry with MoS2, we have considered this system as a potential alternative to MoO3 in hole-doping MoS2.

The structure of the isolated MoO2 and MoS2 monolayers and the bilayer structure are shown in Figure 6. Unlike MoO3, MoO2 forms a honeycomb lattice with the lattice constant \(a = 2.83\ \text{Å} \). The calculated cohesive energy per formula unit of a free-standing MoO2 monolayer is \(E_{\text{coh}} = 19.65\ \text{eV} \) with respect to isolated atoms.

We describe the MoO2/MoS2 bilayer by an epitaxial triangular Bravais lattice with a basis and one formula unit per unit cell. The optimum lattice constant is \(a = \sqrt{3}/2\ a_{2D} = \sqrt{3}/2\ a_{2D} = 2.99\ \text{Å} \), and the unit cell area is \(A = 7.72\ \text{Å}^2 \). We note that the optimum value of \(a \) in the bilayer is in-between the values of the isolated monolayers. In the MoO2 layer, \(a \) is compressed by 6.1% at the energy cost of 4.5 eV/\text{nm}^2. The attractive interaction energy between the strained layers amounts to 0.1 eV/\text{nm}^2.

Similar to MoO3 interacting with MoS2, also interacting monolayers of MoO2 and MoS2 need to be strained to form a commensurate structure. The unit cell of the bilayer, shown in Figure 6(b), contains 2 Mo, 2 S, and 2 O atoms. The strain energy in stretched and compressed MoO2 and MoS2 monolayers as well as the bilayer is shown in Figure 7. Also in this system, we find results based on DFT-PBE to be in very good agreement with those based on the DFT-opt86b-vdW functional. This indicates that van der Waals interactions, which are specifically considered in the latter functional, play only a secondary role.

The electronic band structure of the MoO2/MoS2 bilayer, shown in Figure 8(a), indicates that the system is metallic as hoped for. A superposition of electronic band structures of isolated MoO2 and MoS2 monolayers, constrained to their respective structure in the bilayer, is shown in Figure 8(b), with the Fermi levels of the individual layers aligned. In contrast to the MoS2 channel, our results suggest that MoO2 should be metallic. In view of the fact that DFT-PBE calculations typically underestimate band gaps, we realistically expect MoO2 to be a semiconductor with a narrow, indirect band gap instead. This is confirmed by DFT-HSE06 band structure and density of states results, presented in the Supporting Information, which indicate a 0.5 eV wide indirect band gap in an isolated MoO2 monolayer. To inspect the level of hybridization at the MoO2/MoS2 interface, we superposed the band structure of the bilayer with the bands of the MoS2 monolayer, shifted rigidly up by 0.768 eV, and the unshifted bands of the MoO2 monolayer. Comparing the band superposition with the bilayer band structure in Figure 8(c), we find only a minimum degree of hybridization in the system. The same low degree of hybridization, but a significant charge redistribution in the bilayer is shown in Figure 5. The charge redistribution in the bilayer is shown in Figure 5. The net charge transferred from the MoS2 to the MoO2 layer is \(\Delta \rho_{2D} = 2.0 \times 10^{13} \text{e}/\text{cm}^2 \) in the bilayer with the smaller supercell A and \(\Delta \rho_{2D} = 4.5 \times 10^{13} \text{e}/\text{cm}^2 \) in the bilayer with the larger supercell B. When divided by the thickness \(t \approx 0.4 \text{nm} \) of the MoS2 channel, the charge transfer density ranges from \(\Delta \rho = 5 \times 10^{20} \text{to} 1 \times 10^{21} \text{e}/\text{cm}^3 \). This is high enough and considered degenerate doping, since \(E_F \) has been moved into the valence band. Having achieved degenerate doping in the contact region of the bilayer, the tunnel barrier to a metal contact at the side opposite the doping layer should also be negligibly small and of no consequence.
transfer from MoS$_2$ to MoO$_2$ causing a net metallic behavior of the bilayer, is also found in corresponding DFT-HSE06 band structure results presented in the Supporting Information. The charge redistribution in the bilayer is shown in Figure 9. The net charge transferred from the MoS$_2$ to the MoO$_2$ layer is $\Delta \rho_{2D} = 1.7 \times 10^{13}$ e/cm2 in the bilayer. When divided by the thickness $t \approx 0.4$ nm of the MoS$_2$ channel, the charge transfer density amounts to $\Delta \rho = 4 \times 10^{20}$ e/cm3, slightly lower than in the MoO$_3$/MoS$_2$ bilayer. This doping level is still considered to be degenerate, since E_F has been moved into the valence band of the channel. With degenerate doping in the contact region of the bilayer, the tunnel barrier to a metal contact on the side opposite the doping layer should again be negligibly small and of no consequence.

DISCUSSION

As expected in the outset, our numerical results based on a Bader charge analysis indicate a significant charge transfer between adjacent MoO$_{3-x}$ and MoS$_2$ layers in the bilayer geometry. To validate the amount of charge transferred between the layers, we compared the charge density difference $\Delta \rho_{2D}$ based on the current DFT-PBE nonlocal exchange correlation functional to those based on the local DFT-LDA functional. The specific values for $\Delta \rho_{2D}$ in MoO$_3$/MoS$_2$ are 5.55×10^{13} e/cm2 (LDA for supercell B), 4.49×10^{13} e/cm2
(PBE for supercell B), 2.09 × 10^{13} \ \text{e/cm}^2 (\text{LDA for supercell A})$, and 1.97 × 10^{13} \ \text{e/cm}^2 (\text{PBE for supercell A}). The corresponding values for $\Delta \rho_{\text{2D}}$ in MoO$_2$/MoS$_2$ are 1.80 × 10^{13} \ \text{e/cm}^2 (\text{LDA})$ and 1.67 × 10^{13} \ \text{e/cm}^2 (\text{PBE}). These results clearly indicate that the effect of the exchange–correlation functional on the charge transfer is very small. Since the treatment of exchange and correlation in the hybrid DFT-HSE06 functional with a slowly decaying Fock exchange is fundamentally different from the more localized form in DFT-LDA and DFT-PBE functionals, the DFT-HSE06 functional does not provide a simple way for a Bader charge decomposition and is not used for this purpose in our study.

In order to eliminate the tunnel barrier between a contact metal and a 2D semiconductor such as MoS$_2$, we have proposed a way to locally hole dope the channel using a stable 2D material. To achieve this objective without causing hybridization and the emergence of midgap states, we chose the highly electronegative 2D semiconductor MoO$_3$ or, alternatively, MoO$_2$. Our results confirm the expectation that the band structure in the contact region closely resembles the superposition of energetically shifted bands of MoS$_2$ and MoO$_3$ or MoO$_2$. We observed degenerate hole doping of the channel in contact with electornegative MoO$_3$ and MoO$_2$ layers. The rigid band shift in the doped contact region has an important side effect, namely, a rigid shift of the channel bands in the doped with respect to the undoped channel region. This is of no consequence for the vertical tunnel barrier in the contact region, which will become negligibly small if the channel in the conducting contact region is contacted on the side opposite the molybdenum oxide by a metal. In this case, we may say that we have reached the main objective of our study, which was to optimize the metal–channel contact, using our approach.

However, another challenge has emerged that had been overlooked so far to a large degree. The rigid shift of the channel bands in the contact region causes a band offset with respect to the undoped channel region, causing the formation of an in-plane Schottky barrier. Since screening in a 2D system is much lower than in conventional 3D systems, the resulting depletion region will be larger. The in-layer Schottky barriers have to be considered seriously, since their effect on carrier injection may be larger than that of the vertical tunnel barriers. In that case, this lateral Schottky barrier may dominate the contact transparency.

In principle, the band offset and the associated Schottky barrier could be reduced by replacing the semiconducting channel material outside the contact region by a different, isoelectronic material. In the specific case of p-doped MoS$_2$, using materials with their VBM aligned with or even higher than the shifted VBM of the channel in the contact region will eliminate such a lateral Schottky barrier and thus improve charge injection. Potential candidates for in-layer contacts with the heavily p-doped MoS$_2$ segment are WSe$_2$ and MoTe$_2$ as the channel material. Formation of such contacts by epitaxial growth of monolayer WSe$_2$–MoS$_2$ lateral junctions with an atomically sharp interface has recently been demonstrated. As an alternative, isoelectronic alloying in the channel region may be used. Whether the Schottky barrier is reduced by a lateral 2D/2D junction of different materials or by isoelectronic doping, either approach will create additional interface or impurity scattering centers.

CONCLUSIONS

We have proposed an improved strategy to form low-resistance contacts to MoS$_2$ and related semiconducting transition metal dichalcogenides by local degenerate hole doping in the contact region, where the atomically thin 2D channel material is in direct contact with an electronegative material such as MoO$_3$ or MoO$_2$. In contrast to metal contacts that are separate from the undoped 2D channel material, the homojunction in our study is between undoped and heavily doped regions of the same 2D material. To check the viability of this approach, we have determined the equilibrium geometry and electronic structure of MoO$_3$/MoS$_2$ and MoO$_2$/MoS$_2$ bilayers and their monolayer components using *ab initio* density functional calculations. Our results indicate that, besides a rigid band shift...
associated with charge transfer, the presence of molybdenum oxide modifies the electronic structure of MoS₂ very little, thus avoiding the formation of midgap states. We found that the charge transfer in the bilayer provides a sufficient degree of hole doping to MoS₂ to render the contact region metallic. A highly transparent contact will thus be formed by sandwiching the semiconducting 2D MoS₂ channel material in-between MoO₂ and a metal.

METHODS

We have studied the electronic structure, the equilibrium geometry, and structural stability of MoO₃ and MoO₂ interacting with MoS₂, using ab initio DFT as implemented in the VASP code.³⁰−⁴² We represented these 2D structures by a periodic array of layers separated by a vacuum region in excess of 20 Å. We used projector-augmented-wave (PAW) pseudopotentials⁴³,⁴⁴ and the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional. Since the fundamental band gap is usually underestimated in DFT-PBE calculations, we have resorted to the HSE06 hybrid exchange–correlation functional, as implemented in the VASP code, to get a different (possibly superior) description of the band structure. We used the default mixing parameter value α = 0.25 in these studies. The Brillouin zone of the conventional unit cell of the 2D structures has been sampled by a uniform k-point grid.⁴⁵ The specific sampling we used was 15 × 15 for MoS₂, MoO₂, and MoO₃ monolayers as well as the MoO₂/MoS₂ bilayer, 9 × 9 for the MoO₂/ MoS₂ bilayer with the supercell A containing 14 atoms, and 2 × 2 for the MoO₂/MoS₂ bilayer with supercell B containing 156 atoms. We used 50 eV as the electronic kinetic energy cutoff for the plane-wave basis and a total energy difference between subsequent self-consistency iterations below 10⁻⁵ eV/atom as the criterion for reaching self-consistency. All geometries have been optimized using the conjugate-gradient method,⁴⁶ until none of the residual Hellmann–Feynman forces exceeded 10⁻⁵ eV/Å. The maximum force criterion has been relaxed to 10⁻⁴ eV/Å in the optimization of the MoO₂/MoS₂ bilayer with a large supercell B containing 156 atoms.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b08190.

Supercells used to represent the incommensurate MoO₂/MoS₂ bilayer; comparison between the electronic band structure and density of states of MoO₂/MoS₂ and MoO₂/MoS₂ obtained using the DFT-HSE06 and DFT-PBE exchange–correlation functionals (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: tomanek@pa.msu.edu.

ORCID

David Tománek: 0000-0003-1131-4788

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

D.T. acknowledges partial support by the NSF/AFOSR EFRI-2-DARE grant number EFMA-1433459. Z.G. acknowledges financial support from the China Scholarship Council under grant number 201706260027 and the hospitality of Michigan State University. Z.Z. acknowledges partial support by NSF grant number DMR-1308436 and the WSU Presidential Research Enhancement Award. Z.G. acknowledges useful discussions with Jie Ren. Computational resources have been provided by the Michigan State University High Performance Computing Center.

REFERENCES

